

Simulating the Shape Evolution of Crystals with Monte Carlo Methods

Andreas Voigt¹ and Kai Sundmacher^{1,2}

¹ Process Systems Engineering, Otto-von-Guericke University Magdeburg, Germany ² Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg, Germany

Contact: Andreas.Voigt@ovgu.de

OvGU and MPI Magdeburg

Crystal shape – Modelling the Evolution – Design this Property

Experimental observation

Crystal shape images of model system BaSO₄

Influence of macroscopic process conditions on shape evolution

Modelling the shape evolution

Basic principles of kinetic Monte Carlo simulation

Comparison of simulation and experiments

Crystal Shape Variations

Crystal shape – Modelling the Evolution – Design this Property

Experimental observation

Crystal shape images of model system Ba₂SO₄

Influence of macroscopic process conditions on shape evolution

Modelling the shape evolution

Basic principles of kinetic Monte Carlo simulation

Comparison of simulation and experiments

Current Research on Model System Barium Sulfate – BaSO₄

C. Steyer and K. Sundmacher (2009): *Impact of feeding policy and ion excess on particle shape in semi-batch precipitation of barium sulfate*, Journal of Crystal Growth **311**, p.2702-2708.

OvGU / MPI Magdeburg

AIChE Meeting 2009, Nashville

Change of Shape due to Process Variation

• Experiments in a isothermal semi-batch CSTR with BaCl₂ and K₂SO₄ feed

Change in Feed Rate: Slow and fast

Summary of Experiment

Crystal shape – Modelling the Evolution – Design this Property

Experimental observation

Crystal shape images of model system BaSO₄

Influence of macroscopic process conditions on shape evolution

Modelling the shape evolution

Basic principles of kinetic Monte Carlo simulation

Comparison of simulation and experiments

Space Discretisation of 2D/3D-Simulation

Lattice Monte-Carlo Simulation in 2D/3D

• Simple square/cubic lattice for molecule movements

Movies of Free Diffusion 2D/3D

Unit Movement at the surface

Statistical Analysis of Results

Congruential -, seed'

statistics

OvGU / MPI Magdeburg

simulation box boundary

Simulation Variations in 2D

Crystal Shape Variations by concentration variation

- •Change of shape from square to starlike
- Change of size from small to larger
- •Change in attachment rate from low to high
- •Change in ratio of boundary to area (from two-dimensional to fractal)

Surface-Energy related Crystal Growth in 2D/3D Simulation

Piana et al: J. AM. CHEM. SOC. 128(41), p. 13569 2006.

Lattice Monte-Carlo Simulation in 3D

- Crystal growth of BaSO₄ depends on (i j k)-surface
- Free molecules attach to a crystal nucleus at different faces with different probability
- Monte-Carlo move probability p_{move} relates the energy difference ΔE between surface-free/surfacesurface site and Boltzmann temperature

$$p_{move} = e^{-\frac{\Delta E}{k_B \cdot T}}$$

Simulation Variations in 2D

Variation of Anisotropy

Crystal Shape Variations by anisotropy variation

- •Change of shape from square to needle-like
- Change of size from small to large
- •Change in attachment rate from low to high
- •Change in ratio of boundary to area (from two-dimensional to onedimensional)

Phase Diagram of Anisotropic 2D Growth

Concentration

OvGU / MPI Magdeburg

AIChE Meeting 2009, Nashville

17

Simulation Variations in 2D

Variation of Seed Shape

Crystal Shape Variations by seed shape variation

- At **low** concentration growth is dictated by anisotropy of attachment energy
- •Crystal forgets its past no memory
- At **high** concentration growth follows dendritic pattern
- •Number of arms defined by number of edges (4-fold, 6-fold, 8-fold etc.)
- Growth of dendritic substructures

OvGU / MPI Magdeburg

Crystal shape – Modelling the Evolution – Design this Property

Experimental observation

Crystal shape images of model system Ba₂SO₄

Influence of macroscopic process conditions on shape evolution

Modelling the shape evolution

Basic principles of kinetic Monte Carlo simulation

Comparison of simulation and experiments

- Model the crystal shape evolution at different scales
- Combine molecular level data with mesoscale level Monte Carlo simulation
- Use modeling tools for process design and control for tailor-made crystal shape

AIChE Meeting 2009, Nashville

Thank you for your attention.

Questions?