

Modeling Solution Crystallization – Small steps and big leaps towards an improved understanding

Andreas Voigt¹ and Kai Sundmacher^{1,2}

¹ Process Systems Engineering, Otto-von-Guericke University Magdeburg, Germany ² Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg, Germany

Crystals from Solution

Simulation

Experiment

- Established experimental set-up small-scale reactor with wet solution chemistry
- Development of product analysis procedures: TEM, AFM, REM, XRD, UV-Vis, microscopy ...

Outline

• Simulations - Use of established tools and development of new simulators

OvGU / MPI Magdeburg

AIChE Meeting 2010, Salt Lake City

3

Motivation

Evolution stages of crystal production: Solution - Nucleation - Growth

Simulation Approaches

Electronic details between solute and solvent molecules - Quantum Mechanics

Molecular motion of molecules and clusters - Molecular Dynamics

Brownian diffusion of crystals and agglomerates - Monte Carlo

Modeling and validation – Experimental possibilities and limitations

Short time dynamics and small box simulation - Small steps

Mesoscale experiments and modeling - Big leaps

Summary and Outlook

Growth

Simulation Approaches

Motivation

Evolution stages of crystal production: Solution - Nucleation - Growth

Simulation Approaches

Electronic details between solute and solvent molecules - Quantum Mechanics

Molecular motion of molecules and clusters - Molecular Dynamics

Brownian diffusion of crystals and agglomerates – Monte Carlo

Modeling and validation – Experimental possibilities and limitations

Short time dynamics and small box simulation - Small steps

Mesoscale experiments and modeling - Big leaps

Summary and Outlook

Molecular Structure

- Solving time-independent Schrödinger equation
- Apply **approximations** like Born-Oppenheimer (mass difference)
- Use simplifications like Hartree-Fock
- Compare with experiments like attosecond laser puls technology (COLTRIMS)
- Limited to simple structures small(er) molecules ground states stationary states

From: Meckel et al., Science 320, 2008.		
OvGU / MPI Magdeburg	AIChE Meeting 2010, Salt Lake City	9

Molecular Dynamics

- Using parametrized force fields from QM
- Solving systems of equation of motion
- Use Newtons force law
- Use different **potential approximation** like Lennard-Jones
- Apply **simplifications** to convert complex molecules into single beads
- Compare with dynamic experiment like surface growth AFM
- Limited to
 - small time and length scales
 - available force fields
 - clean systems

Diffusion Monte Carlo

- Using parametrized probabilities from MD
- Evolving discrete entity systems with Monte Carlo simulation
- Use random number generators
- Use event probabilities for case differention i.e. face growth
- Apply **Boltzmann factors** for event selection rules
- Compare to dynamic experiments with real-time data
- Limited to
 - mesoscale length and times
 - available MD input data
 - coarse-grained systems

OvGU / MPI Magdeburg

AIChE Meeting 2010, Salt Lake City

Population Monte Carlo

11

- Simulate dynamics of high-dimensional property distributed systems
- Use of random number generators
- Application of rate probabilities for dynamic changes
- Observe system size limits with finite size scaling rules
- Compare to final state observations and dynamic experiments
- Limited to
 - discretized systems
 - approximated dynamics
 - larger scales in size and time
 - proper statistics and repetition

Motivation

Evolution stages of crystal production: Solution - Nucleation - Growth

Simulation Approaches

Electronic details between solute and solvent molecules - Quantum Mechanics

Molecular motion of molecules and clusters – Molecular Dynamics

Brownian diffusion of crystals and agglomerates - Monte Carlo

- Modeling and validation Experimental possibilities and limitations
 Short time dynamics and small box simulation Small(er) steps
 Mesoscale experiments and modeling Big(ger) leaps
- Summary and Outlook

AIChE Meeting 2010, Salt Lake City

Small steps with big impacts

13

Start of model experiment due to company request: Scale-up issues with batch production?!

- Modeling the gold cluster formation
- Cluster diffusion with temperature dependence
- Modeling nucleation clusters and counting

- Change in product quality with shape
- Analysis with **TEM** pictures
- Use dynamics of UV-Vis signals for simple control of production process

Solution:

500

1. Fix mixing issues!

700

2. Provide constant temperature

Bigg(er) steps in little droplets

- Discrete population model of droplet dynamic exchange and reaction
- Modeling the dynamical evolution including solution, nucleation and growth within emulsion droplets lead to predictions for mean size and size distribution

- Polydispers magnetic nanocrystals from microemulsion precipitation
- Change in superparamagnetism with size
- Obtain morphology from XRD data
- Calculate particle size from XRD line broading (applying Scherer formula)

AIChE Meeting 2010, Salt Lake City

15

Motivation

Evolution stages of crystal production: Solution - Nucleation - Growth

Conclusion

Theoretical Approaches

Electronic details between solute and solvent molecules - Quantum Mechanics

Molecular motion of molecules and clusters - Molecular Dynamics

Brownian diffusion of crystals and agglomerates - Monte Carlo

Modeling and validation – Experimental possibilities and limitations

Short time dynamics and small box simulation - Small steps

Mesoscale experiments and modeling - Big leaps

Summary and Outlook

Collaborators

- Soumik Banerjee (now UMich, Ann Arbor) and Heiko Briesen (TU Munich)
- Petra Pulisova and Pavel Raschman (TUKE Kosice, Slovakia)

Motivated and enthusiastic undergraduate students

- Nanogold: Fabian Weigler and Thorsten Hoffmann
- Crystal growth & AFM: Sophia Bongart, Janine Matschek, Matthias Karl
- Modeling and simulation: Uwe Lelke
- Exchange program with Purdue

at MPI Magdeburg: Nate Goodwin & Jiang Guo

- Company support
 - Sasol GmbH (Surfactant supplies)
 - Human GmbH Magdeburg (Nanogold investigations)

Every (big) journey starts with the first (little) step.

OvGU / MPI Magdeburg

AIChE Meeting 2010, Salt Lake City

19