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I already wrote an essay on one aspect of this question near the end of 2016. Its trigger was a
ResearchGate question asked by Muhammet Ali Okur:
https://www.researchgate.net/post/If_a_functions_limit_is_zero_at_infinity_does_

that_imply_its_derivative_has_same_limit_at_infinity#view=5cf2da2bf0fb6213f01c5013

We may extend the original question to: If the limit of a real function at infinity is a constant,
does that imply that its derivative has the limit zero at infinity? This was answered in the
negative pretty fast, and my essay referred to the problem whether adding the condition
that the function is of bounded variation will lead to a positive answer. I gave a sequence of
counterexamples fk(x) showing that even with this additional condition, limx→∞ f ′k(x) does
not exist. My examples were not only differentiable but analytic on the whole real line (in
fact, they were even analytic on C), so their derivative existed everywhere on R. Later (in May
2019), J. Domsta gave a counterexample that was even somewhat simpler to treat. Because it
was defined as an integral, the derivative could be read off without any effort (whereas in my
case its calculation is not difficult, but still requires a minimum of care).

I also gave a simple condition that, when added to the assumptions about the function, indeed
leads to the limit of its derivative for x→∞ to vanish. This condition is simply existence of the
limit. If limx→∞ f ′(x) exists and limx→∞ f(x) = c ∈ R, then we also have limx→∞ f ′(x) = 0.
This I stated without proof.

Recently, Itzhak Barkana posted a paper on ResearchGate which can be found at
https://www.researchgate.net/publication/333561851_If_a_function_ft_has_a_constant_

limit_for_t_does_its_derivative_always_have_to_end_with_a_constant_limit_of_0_

for_t

and in which he claims that the counterexamples are wrong and that indeed the limit of f ′(x)
as x → ∞ must be zero if f(x) tends to a constant value in the same limit. So he essentially
denies the correctness of the proofs given before.

The purpose of the present essay is, on the one hand, to explicitly give the proof for the
aforementioned proposition that I only stated in my earlier discussion of the subject. On the
other hand, I will analyse Barkana’s approach and point out what is wrong with it. For those
who are impatient, besides a number of peripheral errors (that I may mention or skip) his main
error is an insufficient distinction between the limit of a function as its argument approaches
x0 and its value at x0 (these can be different!), together with a negligence of the fact that
∞ is not a number in R. However, the main reason why I am discussing this at all (instead
of considering his paper completely useless), is that his approach may actually be useful in
non-standard analysis on the extended real line R∪{∞}. Needless to say that if I were a referee
of the paper, I would still require major revision...

We start with the positive assertion P1:
Let f(x) be a real function on the real numbers, satisfying limx→∞ f(x) = c, with c ∈ R a
constant, and its derivative f ′(x) having the property that limx→∞ f ′(x) exists. Then it is true
that limx→∞ f ′(x) = 0.1

1In my proofs, I will not normally give premises in terms of very detailed mathematical notation, such as
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Proof :
If limx→∞ f ′(x) exists, it must take some value d ∈ R. Assume now that d 6= 0. As we shall
see, this leads to a contradiction.

Set g(t) = f(x), t = 1/x. The preimage of a small neighborhood of t = 0 with |t| < δ, δ > 0
contains all values x with |x| > 1/δ and may be considered a “neighborhood of infinity”. The
mapping is continuous for x 6= 0. We have

g′(t) = f ′(x)
dx

dt
= f ′(x)

(
− 1

t2

)
, (1)

f ′(x) = −g′(t)t2 ,

d = lim
x→∞

f ′(x) = lim
t→0
−g′(t)t2 ⇐⇒ g′(t) ∼ −d

t2
, t→ 0 . (2)

Here, I introduce the notation ∼ from asymptotic analysis. Its precise meaning is given by
a(t) ∼ b(t), t → t0 ⇔ limt→t0 a(t)/b(t) = 1. This is the meaning of the symbol, whenever
the right-hand side is a function. It then represents a single asymptotic relationship. If the
right-hand side is a series, the symbol has a somewhat different meaning, representing infinitely
many asymptotic relationships. We will not encounter that case here. Another symbol that I
will use is �, with the meaning a(t)� b(t), t→ t0 ⇔ limt→t0 a(t)/b(t) = 0.2

From (2), we conclude that a function h(t) exists3 that satisfies

g′(t) =
−d
t2

+ h(t) , h(t)� d

t2
, t→ 0 (3)

and integrating we obtain

g(t) =
d

t
+

∫ t

h(t′)dt′ + const. ,

∫ t

h(t′)dt′ � d

t
, t→ 0 . (4)

The smallness relation for the integral of h holds, because the integrand −d/t2 of the first
integral does not change sign and h(t) is small in comparison with that integrand, so even the
integral of |h(t)| remains small in comparison with d/t as t → 0, because that term diverges
and so any constant contribution from the lower boundary of the integral cannot become large
enough to overcome the dominant term d/t in the limit t→ 0. Hence we have

g(t) ∼ d

t
, t→ 0 , (5)

implying

f(x) ∼ d x , x→∞ , (6)

which because of d 6= 0 contradicts the fact that f(x) ∼ c , x→∞ by assumption. Hence, we
cannot have d 6= 0, which proves that limx→∞ f ′(x) = 0 . �

f : R→ R, x→ f(x). That makes them less readable. While a mathematician may consider the omission a lack
of rigor (because some premises may not be stated explicitly enough), I think that the readers will be able to
fill in “self-understood” points. Also, it will be seen easily that and how the proofs can be made rigorous with
little effort, for anyone who is interested in getting hold of a watertight formulation.

2Note that the relationsship a(t) � b(t), t → t0 can hold for a(t) > 0, b(t) < 0. The symbols are read a(t) is
asymptotic to b(t) for t→ t0 and a(t) is very small in comparison with b(t) as t→ t0, respectively.

3That function is simply h(t) = g′(t) + d/t2.
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The astute reader may note a gap in this proof. I introduce a new function h(t) that I integrate
without having checked whether it is integrable. This is because I did not want to overload the
proof with distracting details. That h(t) is integrable, can be concluded from the existence of
limx→∞ f ′(x). The idea is as follows. The existence of the limit requires, by the very definition
of a limit (which I will give below) f ′(x) to exist for all x greater than some value x0 (to
be found in each concrete case). Since f ′(x) is a derivative, it is integrable from that value
x0 (or any larger value) to arbitrarily large x. Via the transformation law given by Eq. (1),
f ′(x) dx = g′(t) dt, we infer that g′(t) is integrable on corresponding intervals from t0 (= 1/x0)
towards arbitrarily small t > 0, and by construction its antiderivative is g(t). Hence, the first
two terms of Eq. (3) are integrable from t0 to t, so their difference h(t) must be integrable, too.
If the lower bound of integration is taken to be t0, the const. in Eq. (4) becomes g(t0)− d/t0,
which is negligibly small in comparison with d/t for t � t0. The same holds for the integral
on h(t) and so we arrive at Eq. (5).

Next, I will give, for reference, a counterexample to the statement that limx→∞ f ′(x) = 0, if
all the conditions of P1 except for the requirement of existence of the limit are satisfied.4 I
will discuss one of the basic objections by Barkana and show that it does not invalidate the
counterexample, so the proposition that he claims to prove in his paper is wrong. Finally, I
will consider the strategy of his proof and demonstrate what he actually proved.

Consider the function

f(x) =
sinx2

x
, (7)

defined for all x ∈ R, x 6= 0. It is seen by inspection, that limx→∞ f(x) = 0 – the absolute
value of the numerator is bounded by 1, so we will have |f(x)| ≤ 1/x, ∀x ∈ R, which means
that f(x) must go to zero as x grows without bound.

The derivative of f(x) is

f ′(x) = 2 cosx2 − sinx2

x2
. (8)

Now Barkana objects to using this formula for x→∞, arguing that sinx2 is not differentiable
for x → ∞, becoming a bunch of spikes there.5 Now this is a somewhat funny objection, as
there is – so far – no notion of being “differentiable for x → ∞”. We only have a definition
for differentiability at a point. And sinx2 is of course differentiable at all values of x.6 That
is, if we wish “differentiable for x→∞” to mean “differentiable for all x > x0 with x0 taken
sufficiently large”, then sinx2 is also “differentiable for x → ∞”. But that is obviously not
what Barkana wants his notion of differentiability to mean, as he explicitly states sinx2 not
to be “differentiable for x→∞”.7

The function f(x) itself is differentiable for all x 6= 0. Moreover, it is certainly differentiable for
“arbitrarily large but finite” x, to use an expression repeatedly used by Barkana in trying to

4This simple example is the one that lead to the answer with most recommendations in the ResearchGate thread.
5This is because the oscillations of the function happen with ever shortening local wavelength.
6It is an entire function, after all. For the experts.
7If he means that the limit of the derivative of sinx2 does not exist for x → ∞, then he is right, but it is
insufficient to refer to it becoming a bunch of spikes there. The function sinx2/x2 also becomes a bunch of
spikes as x→∞, but its derivative has a limit there.
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explain what mathematicians mean by the notion of limit. His explanation is not quite correct,
therefore I will give here the nominally rigorous definitions for the meaning of the limit of a
function as x → x0 and as x → ∞.8 (In order to avoid clumsiness, I do not specify explicitly
in the formulation that all numbers considered are real numbers, therefore the restriction
nominally regarding the rigor of the definitions. They are rigorous with a few preliminaries.)

Definition D1: The limit of g(x) as x approaches x0 is r, written limx→x0 g(x) = r, if for any
ε > 0, there exists a δ > 0 so that |g(x)− r| < ε for all x satisfying 0 < |x− x0| < δ.

Definition D2: The limit of g(x) as x approaches ∞ is r, written limx→∞ g(x) = r, if for any
ε > 0, there exists a δ > 0 so that |g(x)− r| < ε for all x satisfying |1/x| < δ.9

A few remarks may be in order. First, these definitions do not require evaluating g at the
argument, for which the limit is desired. In the first definition, this follows from the restriction
0 < |x− x0|, in the second from the restriction that x has to be a number (which ∞ is not).10

Second, talking about a limit “as x approaches” some value or “for x approaching” some value,
suggests an idea of motion that is not implied by the definition. Clearly, this notion is useful
in the visualization of limits as “processes” and visualization may be important to clarify
ideas before delving into a calculation. Nevertheless, a statement about a limit is simply a
statement about a property shared by the function values of a set of points. (All points, for
which x is closer to x0 than δ have the property that f(x) is closer to r than the distance given
by ε, except possibly the point x = x0 itself.) Third, the δ appearing in the definition usually
depends on ε. So if we wish to determine, starting from the definition, whether r is a limit of
g, what we typically do is to prescribe ε and to try and find a δ so that the closeness property
is satisfied. If we manage to to this for arbitrary ε > 0, then we confirm the limit property, if
we can prove that no such δ exists, we have shown that r is not a limit. (To prove that the
limit does not exist, we have to demonstrate that no r value will do.)

In light of these precise definitions, the notion of being “differentiable for x → ∞” remains
murky, suggesting differentiability in a set of more than one point at the same time, i.e., with
the same limit for all of them.11 Probably this is not what Barkana means. In any case, it is
not what follows from his formulas. There the interpretations is clear, and one purpose of this
article is to give that clarification.

Let us return to the objection of evaluating f ′(x) according to Eq. (8), i.e., using the product
and chain rules. Barkana suggests to use the definition of a derivative instead:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
. (9)

Now there are certainly instances where recourse must be had to this formula, defining what
is meant by a derivative. But the rules that were used in evaluating f ′(x) in Eq. (8) from f(x)
in Eq. (7) are derived from formula (9), given certain regularity conditions for the constituent

8Two different definitions are needed, because the notion of a neighborhood is different for finite x values and
for “the point ∞”.

9There is a similar definition for x approaching −∞.
10Therefore, this kind of limit is specified as deleted limit. For an undeleted limit, the restriction 0 < |x− x0| < δ

in D1 is replaced by |x− x0| < δ, which has the consequence that if g(x0) 6= r, g cannot have the limit r at x0.
With a deleted limit (the normal case), it is possible for the limit of g, as x approaches x0, to be different from
g(x0). This happens for functions g that are discontinuous at x0.

11We can have a limit of a derivative for x→∞ but differentiability is a property that is defined for each point
separately (without implying differentiability for the limit automatically).
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functions (essentially continuity of the functions and of their derivatives).12 Hence, there can
be no doubt that Eq. (8) gives the correct derivative f ′(x) corresponding to f(x) of Eq. (7)
on the full real axis diminished by the point x = 0. And indeed, Barkana finds the same result
by explicit use of Eq. (9).

But then we can check whether the derivative has a limit for x → ∞ by direct exploitation
of definition D2. This is certainly not the fastest way, but it has the advantage of not being
affected by any argument of how to calculate the limit of the derivative for x→∞. To check
the definition, we never need anything but finite arguments of f ′ and for finite arguments, we
have a completely valid form. To proceed, we need a value r for the presumed limit. Since
f ′(x) takes on the value +2 for x2 = 2nπ where n 6= 0 is an integer, we will first assume r = 2
and, having shown that this is not the limit, we will consider the case r 6= 2.

Proof of nonexistence of limx→∞ f ′(x):
Set r = 2 and ε = 1. If r is the sought-for limit, then there has to exist a δ > 0, so that we
have ∣∣f ′(x)− r

∣∣ =

∣∣∣∣2 cosx2 − sinx2

x2
− 2

∣∣∣∣ < ε = 1 , for all x > 1/δ . (10)

However, setting x = ((2n+ 1)π)1/2 with n ∈ N, we find cosx2 = −1 and sinx2 = 0, hence∣∣∣∣2 cosx2 − sinx2

x2
− 2

∣∣∣∣ = |−2− 0− 2| = 4 > 1 , (11)

and since we can always choose n so large that x > 1/δ no matter what value is taken for δ,
there is no possible choice of δ that makes |f ′(x)− r| smaller than 1 for all values of x > 1/δ.
This demonstrates that r = 2 cannot be the limit of f ′(x), as x approaches infinity.

Now take r arbitrary but r 6= 2. Set ε = |1− r/2|. This is greater than 0. Setting x = (2nπ)1/2,
we have cosx2 = 1 and sinx2 = 0, hence

∣∣f ′(x)− r
∣∣ =

∣∣∣∣2 cosx2 − sinx2

x2
− r
∣∣∣∣ = |2− r| > 1

2
|2− r| = |1− r/2| = ε. (12)

Again, no matter what value we try for δ, there are always x values larger than 1/δ (obtaina-
ble by choosing n large enough) for which |f ′(x)− r| does not become smaller than ε. This
demonstrates that r 6= 2 cannot be the limit of f ′(x) either, as x approaches infinity.

Hence, there is no possible limit, which demonstrates its nonexistence. �

Note that Barkana’s objection does not affect this proof at all. Even if he were right that
he has a more correct way (than the other participants in the ResearchGate discussion) of
calculating the limit of the derivative as x → ∞ (and this gives zero), this does not matter.
We have tried out all possible limits13 (including zero) and found that none of them satisfies
the definition that would make it a limit.

12As an example, I sketch the derivation of the product rule: (u(x)v(x))′ = limh→0
u(x+h)v(x+h)−u(x)v(x)

h
=

limh→0
u(x+h)v(x+h)−u(x)v(x+h)+u(x)v(x+h)−u(x)v(x)

h
= limh→0

[
(u(x+h)−u(x))

h
v(x+ h) + u(x) (v(x+h)−v(x))

h

]
=

u′(x)v(x) +u(x)v′(x), where to obtain the final equality the fact has been used that a limit of a sum/product is
the sum/product of the corresponding limits of the summands/factors, provided that each of these limits exists
separately. The latter condition is secured if u, v, u′ and v′ are all continuous at x.

13{r|r ∈ R, r = 2 or r 6= 2} exhausts all possible real values for r.
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Now it is time to consider Barkana’s suggestion of how the limit of the derivative of f(x)
should be calculated for x → ∞. Since he discusses cases for finite x first, I will write the
general expression and call it E1 for further reference:

E1[x0] = lim
h→0

lim
x→x0

f(x+ h)− f(x)

h
. (13)

Here, x0 = ∞ in the case that we are finally interested in, but it is very useful to start with
considering finite values of x0.

For a quick interpretation, we note that provided f is continuous at x0 and at x0 +h, the inner
limit simply gives (f(x0 + h)− f(x0))/h, i.e., the difference quotient (9) at x0 and hence the
outer limit will give f ′(x0), if it exists. Note that no limit of f ′(x) is calculated, only the single
value f ′(x0).

For x0 =∞, we cannot argue this way, because neither the function f(x) nor f ′(x) are defined
at infinity. However, as we shall see later, this can be cured in non-standard analysis, by
extending the domain of the function to the projectively extended real line14 R̂ = R ∪ {∞} or
the affinely extended real line15 R = R ∪ {−∞,+∞} = [−∞,+∞]. Later, we shall discuss in
more detail how non-standard analysis makes sense of E1[∞].

I did not follow the ReseachGate discussion of this question closely after 2016. However, I
was contacted via E-mail by Itzhak Barkana, who asserted that the had “solved” the question
in a way that contradicted the standard answer and written a paper on it. I pointed out to
him that in order for an expression in the style of E1 to represent a limit of the derivative of
f , the limits in general have to be taken in the opposite order. And I think I saw later that
some of the mathematically well-versed members of the ResearchGate community told him
the same thing. That is, we are certain that the expression to be considered is, instead of E1
the following:

E2[x0] = lim
x→x0

lim
h→0

f(x+ h)− f(x)

h
. (14)

Here, the inner limit gives, if it exists, the derivative f ′(x) and the outer limit produces, if
f ′(x) is continuous at x = x0, the value f ′(x0).

Hence, if the two limits commute and both f and f ′ satisfy certain continuity conditions,
they give the same result. But only E2 even considers a limit of the derivative function f ′.
Expression E1 considers a limit of difference quotients and then takes the limit defining (in
some cases) a derivative of f in a single point.

Barkana claimed that he never interchanged orders of limits, which I first interpreted as him
saying that he did not even take the limit x → ∞, But he clearly does, as he gets the result
that the difference quotient becomes zero. While f(x + h) − f(x) may happen to be zero
(at isolated points) for large but finite x, this result is not independent of h and taking the
limit h→ 0 afterwards will make the difference nonzero again (in fact, it will oscillate for our
example from Eq. (7)). In order to get zero independent of h, the limit x→∞ must actually

14This is an open set and the point ∞ is approachable along the positive half line as well as along the negative
half line. We could consider this a subset of the extended complex plane, which is obtained from the complex
plane via addition of the single point infinity. Any path leading to infinity leads to that point, so −∞ and ∞
are identical.

15This is a closed set, and functions can only have right-sided derivatives at −∞ and left-sided derivatives at ∞.
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be taken. Meanwhile, I think that Barkana did not want to say that he did not take two limits
but that he did not interchange their sequence, because he thinks that his sequence of limits
is the correct one.16

Before embarking on a precise discussion of what the two expressions E1 and E2 actually mean,
I would like to give an informal argument that is not rigorous but uses notions that may be
more convenient to readers who have a good deal of working experience with real functions
and are able to develop a decent intuitive feeling about their behavior but may not be too
comfortable with abstract mathematical proofs based on logic without visualization.17

First, we note that sinx2 is an oscillatory function and we can define a local wavelength of
the oscillation as follows. Suppose sinx21 = a, then we take as the wavelength the distance to
the next value x2 (> x1), for which sinx22 = a and the passage through the value a is in the
same sense, i.e., if sinx2 passes through a from below (above) at x1, it should do the same
at x2. Obviously, we do not need this directional information, if a is either a maximum or a
minimum, because those will be taken on only once during each oscillation (whereas all other
function values will be taken on twice during each oscillation). Then we have:

x22 − x21 = 2π ⇒ λ(x1) ≡ x2 − x1 =
2π

x1 + x2
<

π

x1
, (15)

i.e., the local wavelength becomes smaller as x1 increases (and goes to zero for x1 →∞). Next,
the difference quotient (f(x+h)− f(x))/h has the geometrical meaning that it is the slope of
a secant to the graph of f connecting the points (x, f(x)) and (x + h, f(x + h)). And finally,
the derivative of f(x) at x (or its differential quotient) is the slope of the tangent to the graph
of f at the point (x, f(x)). The definition (9) then simply comes from the observation that
the slope of the secant becomes a better and better approximation to the slope of the tangent
as h gets smaller. So we calculate derivatives by improving approximations via the slope of
secants.

Barkana introduces the inner limit of E1[∞] by saying that he sets h arbitrarily small but
fixed and then lets x become arbitrarily large. Now, our difference quotient may have been
a good approximation to the derivative at the initial value of x. But as x gets larger, two

things happen. First, f(x+ h)− f(x) = sin(x+h)2

x+h − sinx2

x get smaller, because the numerators
are bounded by one and the denominators get larger. Second, the local wavelength λ(x) also
gets smaller and will eventually become smaller than h. So the difference quotient becomes
arbitrarily small, but the interval, over which the secant is taken contains more and more
wavelengths. But we know from Eq. (8) that during each full oscillation, the derivative f ′(x)
runs through all the values between −2 and +2.18 So the difference quotient is not a good
approximation to the differential quotient (i.e., the derivative) anymore when h is larger than
the local wavelength. Therefore, there is no reason to expect that the outer limit, taken when
the inner one has become independent of h will approximate any derivative!

16Maybe he also referred to the fact that once the inner limit was taken, the outer was not needed anymore,
because the result was independent of h and so zero was obtained even without taking the outer limit. While
that is true, the outer limit must formally be taken, in order to get a derivative. Otherwise, all one has shown
is that the difference f(x+ h)− f(x) goes to zero for x→∞, which is trivial given that f has a finite limit, as
x approaches infinity.

17In my experience, a number of engineers and experimental physicists belong into that category.
18At least. The extrema of f ′(x) are not exactly at x2 = (2n+ 1)π, n ∈ N, but the values −2 and +2 are taken

on by f ′(x) during each full oscillation of sinx2.
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Note that the argument does not work for finite x0. Since the fixed value of h for the inner
limit of (13) can be taken arbitrarily small, we may choose it to be much smaller than λ(x0)
which is the smallest wavelength that will appear for x ≤ x0. But then the difference quotient
is a good approximation to the derivative throughout the interval of x considered (with upper
limit x0), and taking the limit h→ 0 will then give the derivative. For infinite x0, however, no
matter how small we choose h, λ(x) will at some point become smaller than the finite value
of h, so the difference quotient loses its meaning as an approximation to the derivative.

To get a better idea on what happens in performing the limits E1[x0] and E2[x0] and to go
beyond the above informal argument, let us consider a few examples with finite x0. We start
with the simple case of an analytical function.

Set f(x) = sinx, then we have f ′(x) = cosx, and

E1[0] = lim
h→0

lim
x→0

sin(x+ h)− sinx

h
= lim

h→0

sin(h)

h
= 1 , (16)

E2[0] = lim
x→0

lim
h→0

sin(x+ h)− sinx

h
= lim

x→0
cosx = 1 . (17)

No surprises here, the limits commute, we get the same result for both expressions.

Now consider

u(x) =

{
x(1 + x sin(1/x)) for x 6= 0

0 for x = 0
(18)

(and replace f by u in the expressions E1 and E2), then we have, for x 6= 0,

u′(x) = 1 + 2x sin(1/x)− cos(1/x) . (19)

We immediately see that the limit of u′(x) does not exist for x→ 0. But the derivative at x = 0
exists! We have limh→0(u(h) − u(0))/h = limh→0(1 + h sin(1/h)) = 1. Hence, the derivative
can be written as

u′(x) =

{
1 + 2x sin 1

x − cos 1
x for x 6= 0

1 for x = 0
. (20)

Clearly, u′(x) is discontinuous at x = 0, because u′(0) exists, but limx→0 u
′(x) 6= u′(0). Let

us denote this inequality coming from nonexistence of the limit by the following suggestive
notation:

u′(0) = 1 6= lim
x→0

u′(x) = 〈@ 〉 . (21)

We are now in a position to evaluate our expressions E1 and E2:

E1[0] = lim
h→0

lim
x→0

u(x+ h)− u(x)

h
= lim

h→0

u(h)− u(0)

h
= lim

h→0

h(1 + h sin(1/h))

h
= 1 , (22)

E2[0] = lim
x→0

lim
h→0

u(x+ h)− u(x)

h
= lim

x→0

(
1 + 2x sin

1

x
− cos

1

x

)
= 〈 @ 〉 . (23)

So we find that E1 gives us the value of the derivative of u(x) at x = 0, whereas E2 indicates
non-existence of the limit of the derivative u′(x), as x approaches 0. From both expressions

8



together, we can conclude that the derivative is not continuous at x = 0. (Note that the
ResearchGate question never was about the value of the derivative f ′(∞) but about the limit
of f ′(x) as x→∞.)

Here is another interesting case. Sometimes we obtain solutions to equations as limit expres-
sions themselves. Consider therefore the one-parameter family of functions

vµ(x) =
sinx

x+ µ2
, µ ∈ R (24)

and assume that the solution of our (physical) problem is given by the limit

v(x) = lim
µ→0

vµ(x) =

{
sinx
x for x 6= 0

0 for x = 0
. (25)

Note that limx→0 v(x) = 1, so v(x) has a discontinuity at x = 0. This means that it cannot be
differentiable at x = 0. However limx→0 v

′(x) does exist, as we shall see.19 Let us then calculate
the derivative function v′(x);

v′(x) =
x cosx− sinx

x2
, x 6= 0

v′(0) = lim
h→0

v(h)− 0

h
= lim

h→0

sinh

h2
= lim

h→0

cosh

2h
= 〈@ 〉 , (26)

lim
x→0

v′(x) = lim
x→0

cosx− x sinx− cosx

2x
= lim

x→0
−sinx

2
= 0 ,

where we have used l’Hôpital’s rule to evaluate the limits in lines two and three. If the limit
in the second line were one-sided, it would give ∞ or −∞, but since h can have any sign in a
proper limit, we cannot state more than that the derivative is undefined.

On to our two double limit expressions:

E1[0] = lim
h→0

lim
x→0

v(x+ h)− v(x)

h
= lim

h→0

v(h)

h
= lim

h→0

sinh

h2
= 〈 @ 〉 , (27)

E2[0] = lim
x→0

lim
h→0

v(x+ h)− v(x)

h
= lim

x→0
v′(x) = 0 . (28)

Again, expression E1 gives us the value of the derivative at x = 0, which here means it becomes
undefined, whereas expression E2 gives us the limit of the derivative, as x approaches zero,
which is perfectly well-defined here, because v(x) has a removable singularity at x = 0. If

we replace v(x) by ṽ(x) =

{
v(x) x 6= 0

1 x = 0
, we obtain a function that is differentiable (even

infinitely often) at x = 0. Since the value of the derivative at x = 0 plays no role at all in the
definition of its limit as x approaches 0,20 its limit must be the same for v(x) and ṽ(x).

Finally, let us consider a wild example. There exist functions that are everywhere continuous
on the real axis but nowhere differentiable.21 An example is the Weierstrass function:

W(x) =
∞∑
n=0

an cos (bnπx) . (29)

19The situation is opposite to that in the preceding example. There, the derivative exists at x = 0, but its limit
for x→ 0 does not, whereas here, the derivative does not exist, but its limit for x→ 0 does.

20Remember, we are dealing with the standard definition of limit, which is the deleted limit.
21It should be clear that such a function cannot be drawn. So we cannot argue with the graph of the function

but must rely on logic entirely.
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This is actually a two-parameter family of functions. It was shown by Weierstrass to have the
above-mentioned properties for certain parameter values a and b (viz. 0 < a < 1 and b being
restricted to odd integers greater than 5) and later by Hardy [1] to be everywhere continuous
and nowhere differentiable, provided only that 0 < a < 1 and ab > 1. From this we can
construct a function that is interesting for our purposes, namely Wd0(x) ≡ xW(x). I claim
that Wd0(x) is differentiable at x = 0 but nowhere else. This is easy to show:

lim
h→0

(x+ h)W(x+ h)− xW(x)

h
= lim

h→0

[
x
W(x+ h)−W(x)

h
+W(x+ h)

]
=

{
limh→0W(h) =W(0) for x = 0

〈@ 〉 for x 6= 0
, (30)

where we have used the continuity ofW(x) to show the line for x = 0 and employ an argument
of reduction to a contradiction for x 6= 0. Suppose the limit for x 6= 0 exists. Since limh→0W(x+
h) = W(x) exists and x is an h-independent factor, existence of the total limit would imply
also the existence of limh→0(W(x + h) − W(x))/h, which would mean that W(x) would be
differentiable at x. But it was proven (by Hardy [1]) to be nondifferentiable.22

We now consider our two expressions.

E1[0] = lim
h→0

lim
x→0

Wd0(x+ h)−Wd0(x)

h
= lim

h→0

Wd0(h)

h
= lim

h→0

hW(h)

h
=W(0) , (31)

E2[0] = lim
x→0

lim
h→0

Wd0(x+ h)−Wd0(x)

h
= 〈@ 〉 . (32)

In the formula for E2[0], the inner limit does not exist (see Eq. (30)), because x 6= 0 there.
Expression E1[0] picks out the value of the derivative at x = 0 and therefore gives a result.
Expression E2 tries to calculate a limit of a derivative function which cannot succeed, because
the derivative exists only in one point.

Having understood the meaning of expressions E1[x0] and E2[x0] for finite x0, let us now move
on to the case x0 =∞. We start with E2[∞], which is easier to interpret,

E2[∞] = lim
x→∞

lim
h→0

f(x+ h)− f(x)

h
= lim

x→∞
f ′(x) , (33)

where the second equality holds if f(x) is differentiable at x. Then the inner limit exists and
gives the derivative. For the whole expression to make sense, it is sufficient that there is some
finite value a so that the inner limit exists for all x > a. Then we can check whether the outer
limit exists using definition D2. If it exists and takes on some value d, then E2[∞] = d is the
limit of the derivative of f(x), as x approaches infinity. If it does not exist, i.e., limx→∞ f ′(x) =
〈 @ 〉, then E2[∞] = 〈 @ 〉, and we have shown that the derivative of f(x) does not have a limit

as x approaches infinity. This is the result that we obtain for f(x) = sinx2

x .

Now consider

E1[∞] = lim
h→0

lim
x→∞

f(x+ h)− f(x)

h
= lim

h→0

limx→∞ f(x+ h)− limx→∞ f(x)

h
= lim

h→0
0 = 0 .

(34)

22For the limit as h approaches zero, x is a constant factor, which cannot make the difference quotient into which
it is multiplied covergent – unless it is zero.
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The result is simple here, but as we shall see, it does not have a meaningful interpretati-
on expressible via derivatives of f within standard analysis. The second equality holds if
limx→∞ f(x) exists, and since in that case limx→∞ f(x + h) must give the same value, the
numerator reduces to zero and the outer limit becomes trivial. However, what is the meaning
of the expression after the second equality? Because f : R→ R, f(x) is not defined at infinity
({∞} 6∈ R), so we cannot interpret the numerator limx→∞ f(x + h) − limx→∞ f(x) as part
of a difference quotient anymore. Even if f(∞) were defined, we would not necessarily have
limx→∞ f(x) = f(∞), because just as our example v(x) above was defined at x = 0 but diffe-
rent from limx→0 v(x), limx→∞ f(x) may exist but be different from f(∞). Therefore, we have
no valid interpretation for E1[∞] in terms of the derivative of f .

However, if we are willing to introduce a few elements of non-standard analysis, we can provide
an interpretation that parallels that of the finite-x0 case. I will discuss only the case of the
projectively extended real line R̂ here, assuming that the readers will themselves be able
to construct the analog for the affinely extended real line R. In the case of R̂, existence of
limx→∞ f(x) means that the limit must also exist, as x approaches −∞, and that the two

limits must be the same. Since this is true for f(x) = sinx2

x , we may use R̂ and can avoid the
restriction to one-sided derivatives necessary at ±∞ in R.

Let us then assume f to be a real function on R̂, i.e., f : R̂ → R.23 Then f(∞) should be

defined. What value should we assign to f(x) = sinx2

x at infinity? Well, it is natural to set
f(∞) = limx→∞ f(x) = 0.24 Then the inner limit of E1[∞] can be written as (limx→∞ f(x +
h)− limx→∞ f(x))/h = (f(∞+h)−f(∞))/h and the outer limit produces f ′(∞) by definition.
So we obtain

E1[∞] = lim
h→0

f(∞+ h)− f(∞)

h
= f ′(∞) = 0 , (35)

which means we have succeeded in calculating the derivative of f at infinity! Essentially, this is
a definition of the derivative at infinity rather than a calculation. Then what is so interesting
about this?

Well, here is the point that I find interesting. To define f(∞) we had to invoke the limit of
f(x) as x approaches infinity. That makes f continuous at infinity. An engineer might think
this is not a big deal, because there is no other meaningful way to extend the definition of f
to the domain R̂. Then, on the one hand continuity at infinity seems to imply differentiability
at infinity.25 On the other hand, expression E1[∞] provides us with a definition of f ′(∞) that
makes f ′(x) discontinuous at infinity. After all, the full definition of the derivative on the whole
domain is now (if we define f(0) to be the limit as x→ 0 of f(x))

f ′ : R̂→ R

f ′(x) =


2 cosx2 − sinx2

x2
for x 6= 0, x 6=∞

1 for x = 0

0 for x =∞
. (36)

23We could also include ∞ in the codomain of f , i.e., assume f : R̂ → R̂. But that would have no effect on the
discussion.

24This is by no means compulsory. If we consider our real function a restriction from the corresponding complex

function to the domain R̂, then we could assign any value to f(x), because f(x) = sin x2

x
has an essential

singularity at the point infinity of the extended complex plane, meaning that f(x) takes on almost every complex
value in any neighborhood of x = ∞. However, taking f(∞) 6= 0 would make the real function discontinuous
at infinity, and we would again not be able to assign meaning to E1[∞] in terms of a derivative of f .

25To be checked further...
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It is easy to verify that f ′(x) is continuous at x = 0, in fact for all x ∈ R, but is discontinuous
at x =∞. The last statement follows from the consideration of E2[∞] presented above.

Therefore, we have the interesting situation that f ′(x) can be defined at x = ∞, but not by
taking the limit of f ′(x) as x→∞, because that limit does not exist, rather via its definition
in terms of f(x) and its difference quotient. Then the engineer who thought that the only
reasonable extension of a function to the domain R̂ = R ∪ {∞} would be to set its value at
infinity equal to its limit as its argument approaches infinity, would have to realize that this
very reasonable approach to defining f(∞) leads to a definition of f ′(∞) in an equally natural
way that does not satisfy his constraint of reason, because f ′(x) is different at infinity from
its limit at infinity, i.e., it is discontinuous there.

Nevertheless, this definition of f ′(∞) looks quite consistent, because it leads to the result zero
always, if f remains continuous and finite at infinity. Clearly, this is the correct result also in
cases where limx→∞ f ′(x) exists, because then the conditions of theorem P1 apply. This then
corresponds to a situation where f ′(x) remains continuous at x =∞ and therefore, the double
limits E1[∞] and E2[∞] give the same result.

Let me summarize what we have learned. Barkana’s “proof” that the limit of the derivative of
f(x), as x approaches∞, must be zero, if limx→∞ f(x) = const. does not work. The expression
E1 that he uses to establish this result never calculates a limit of the derivative of f(x). Instead,
E1[x0] with x0 finite calculates f ′(x0), if f(x) is continuous in a neighborhood of x0; E1[∞]
always is zero but cannot be interpreted as a derivative or limit of a derivative for functions
defined on R, it is the limit of a difference quotient that loses all information on functions
f(x) satisfying the aforementioned limit condition (being zero no matter what). If we extend
the domain of functions to R ∪ {∞}, then the interpretation of the inner limit of E1 as a
difference quotient at a particular value of the argument x remains feasible and the outer limit
then calculates f ′(∞) which hence is zero. But again, no limit of f ′(x) is calculated, just a
value. (There is no third limit that would act on a derivative, the other two are acting only on
difference quotients.) Of course, the possibility of defining f ′(∞) this way and the fact that it
is zero under the conditions specified, is an interesting result in itself

On the other hand, the expression E2 does precisely what is needed for the answer to the
original ResearchGate question. Its inner limit calculates f ′(x) and the outer limit is the limit
of f ′(x), as x approaches x0 in the finite case (E2[x0]) and infinity in the case of E2[∞].
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