
Why the predictions of Bohmian mechanics agree with those of stan-

dard quantum mechanics

Klaus Kassner 3 February 2021

In the form that is currently used most of the time, Bohmian mechanics gives precisely the same results
for the the statistics of any conceivable experiment as nonrelativistic standard quantum mechanics.1

This fact is not appreciated by everybody. Some misconceptions regarding predictions for correlations
that arise in systems of identical particles seem to still be “in the air”. Bohmian particles seem to
be distinguishable, a notion suggesting to expect, at least on first thought, some differences in
predictions.2

Therefore, it may be useful to explain the reasons in more detail than just by casual referral to a
continuity equation why Bohmian mechanics does not, indeed, produce different predictions from
standard quantum mechanics. More precisely, a proof should be provided to switch from beliefs
(or the absence thereof) to certainty. I will do so in the following, hopefully without getting too
technical. Rather simple arguments (with minor mathematical support) suffice to clarify the issue,
and any objection would have to show these arguments to be wrong in order to become credible.

As a result, it will turn out that if we regard Bohmian mechanics as a theory different from standard
quantum mechanics (which may be justifiable on grounds to be discussed), this theory makes the
same predictions at the empirical level as standard quantum mechanics. Any falsification of Bohmian
theory would therefore falsify standard quantum mechanics and vice versa. Preference of one theory
over the other cannot then be justified on the basis of experiments. Instead, Occam’s razor might
be invoked. The situation is similar to the relationship between Lorentzian ether theory and special
relativity, which also are empirically equivalent. But special relativity gets by with one fewer entity,
as it does not require the existence of an ether (or a preferred reference system), therefore it would
be preferable. Standard quantum mechanics does not require the existence of particle positions at all
times – those are the hidden variables of Bohmian mechanics – so it has fewer entities than Bohmian
mechanics and would be preferable on these grounds.3

How to obtain predictions for experiments in standard quantum mechanics

The basic equation of standard quantum mechanics, by which I will always mean nonrelativistic
quantum mechanics, is the Schrödinger equation. In the position representation, it is a partial
differential equation that is first order in time. To set it up, we need the Hamiltonian of the qantum
system; to solve it, we need initial and boundary conditions.

The generic way to produce predictions for an experiment is to first specify the initial state via some
experimental preparation procedure. Preferably this will be a pure state, i.e., a wave function, rather
than a probability distribution of wave functions, describable as a density operator of a mixed state.

1A purist might therefore consider Bohmian mechanics not a different theory but just an alternative interpretation of
quantum mechanics, not distinguishable from it by any experiment.

2However, even classical particles may be indistinguishable in a statistical sense [1,2] – and still obey Maxwell-Boltzmann
statistics... Bohmian particles are indistinguishable in the same statistical sense and their statistics will be determined
by the symmetry properties of their wave function.

3But that is a criterion for the distinction of theories, it need not be considered convincing enough to establish a
preference for one interpretation of a theory over another...
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Boundary conditions and Hamiltonian are specified by the experimental apparatus and the system as
well as the interaction between both.4

Second, to generate the statistics of measurements of some quantity A made at time t after the initial
time t0, we solve the Schrödinger equation up to time t, determine the eigenvalues and normalized
eigenfunctions of the Hermitean operator Â describing the observable to be measured, and express
the solution of the Schrödinger equation at time t as a linear combination of these eigenfunctions.5

The coefficient c(a) in that expansion of the eigenfunction corresponding to an eigenvalue a of the
operator Â gives the probability amplitude for a measurement of eigenvalue a.6 Hence, the only
possible results of such an idealized measurement are eigenvalues of the operator associated with the
observable, and the probability of a occuring is given by |c(a)|2, if a is a discrete eigenvalue. If it
belongs to a continuous part of the spectrum of Â, |c(a)|2 is a probability density instead, with the
probability for the measured value lying in the interval [a, a+ da) given by |c(a)|2 da.

Note that this is a description of the rules only, how to obtain (statistical) predictions within quantum
mechanics. Essentially, these rules can be derived from Born’s rule that the probability density for
position measurements in an N -particle system described by the wave function ψ(x1, x2, . . . x3N , t)
is given by |ψ(x1, x2, . . . x3N , t)|2. The notion of collapse of the wave function need not appear in
these rules as long as we are dealing with a single measurement only. However, if we wish to make
a subsequent measurement on the system after having performed the first, another rule of quantum
mechanics states that the initial wave function for the second measurement is the eigenfunction
obtained in the first measurement. This projection of the original wave function onto an eigenfunction
of the observed dynamical variable constitutes an essential step of the collapse and is at the heart
of the preparation of initial states for any experiment, even the first one.

In some experiments, we may not be interested in determining the probability of an outcome but
rather wish to find the spectrum of possible results only.7 Then we will not need the initial wave
function and just have to solve an eigenvalue problem.8 But any measuring problem can, in principle,
be decomposed into a number of steps such as the one described above, and leaving out one does
not destroy the genericity of the scheme discussed.

To summarize, the basic theoretical problem in order to predict the statistics of an experimentally
measured value within standard quantum mechanics consists of solving the Schrödinger equation
starting from an appropriate initial state, corresponding to the experimental preparation, and of an
expansion of the calculated wave function in terms of the normalized eigenfunctions of the measured
observable. The probability distribution of the measured values, which are eigenvalues of the (oper-
ator associated with the) observable is obtained by assigning the absolute squares of the expansion
coefficients to the corresponding eigenvalues.9

4If everything is constrained to happen inside a box, the wave function should become zero wherever one of its positional
arguments is at the box boundaries.

5Which is possible as the eigenfunctions of a Hermitean operator form a basis of the Hilbert space.
6If the eigenvalue is nondegenerate.
7An example would be the atomic spectra determined in the early days of quantum mechanics. The determination of
the energy levels of the hydrogen atom alone constituted major progress in quantum mechanics, even without explicit
knowledge of their probabilities of occupation.

8Which is also useful for the time dependent solution, because the complete solution of the eigenvalue problem posed
by the stationary Schrödinger equation immediately enables solution of the initial value problem represented by the
time dependent Schrödinger equation. Expanding the initial wave function in terms of the eigenfunctions of the
Hamiltonian, we obtain the solution of the time-dependent Schrödinger equation via a replacement of the coefficients

cn of the expansion with cne
−

i

~
En(t−t0), where En is the eigenvalue of the Hamiltonian corresponding to the nth

eigenfunction in the expansion.
9If there are degenerate eigenvalues, the eigenfunctions have to be chosen orthogonally (in the non-degenerate case,
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Now that we are in a position to describe measurement outcomes within standard quantum mechan-
ics, let us consider what a similar attempt would look like in Bohmian mechanics.

How to obtain predictions for experiments in Bohmian mechanics

Bohmian mechanics has two fundamental equations of motion. One is the Schrödinger equation

i~
∂ |ψ(t)〉
∂t

= H |ψ(t)〉 . (1)

The wave function here describes a system with a fixed particle number N

〈x1, x2, . . . x3N |ψ(t)〉 = ψ(x1, x2, . . . x3N , t) (2)

and is assumed to have the same degree of reality as, say, a field in classical physics.10 As we shall
see, it governs the motion of particles. The second equation is the one describing particle motion
(and may be considered a single first-order ordinary differential equation for a 3N dimensional vector)

dxk
dt

=
~

mk

ℑ
(

∂xkψ

ψ

)

=
i~

2mk

1

ψ∗ψ

[

(∂xkψ
∗)ψ − ψ∗(∂xkψ)

]

, k = 1, 2, . . . 3N (3)

where for brevity the arguments of the wave function have been suppressed. (They are the same as
in Eq. (2).) A fully specified quantum mechanical state consists of a wave function and a set of
particle positions. It is assumed that the initial wave function can be prepared experimentally just
as in standard quantum mechanics. If the positions of the particles could be equally well initialized
in an experiment, the set of equations (1) through (3) would allow one to determine the outcome
of any position measurement exactly, not just probabilistically. However, preparation of the initial
positions is not controllable experimentally in the same way as that of the wave function. Rather, all
that is known in a particular experiment, is the probability distribution of initial positions of particles
and therefore, in spite of the deterministic nature of the equations, only probabilistic predictions
of particle positions will be possible. But this probabilistic aspect is not different from that of
classical mechanics: it is only due to a lack of knowledge that the exact positions to be obtained in
measurements are indeterminate. In principle, they are determined by the initial state (which is a
view that is distinct from that of standard quantum mechanics).

Originally, Bohm [3,4] contemplated the possibility that the probability distribution of the particle
positions described by Eq. (3) could be different from ψ∗ψ, which then would mean that his proposi-
tion constitutes a different theory from standard quantum mechanics indeed. It would make different
predictions from the latter simply because it would include scenarios where the distribution of particle
positions differs from ψ∗ψ, at the beginning of an experiment and, hence, later. Had that turned
out to be the case experimentally, Bohmian mechanics would be able to describe a branch of reality
that standard quantum mechanics could not. However, such a situation has never been observed in
a verified experiment, so it is customary to assume, as Bohm also did, in order to make his theory

orthogonality is automatic) and the probability (density) of measuring one of the degenerate values is given by the sum
of the absolute squares of the expansion coefficients multiplying the eigenfunctions belonging to that eigenvalue.

10That is, the wave function is ontic. Since this wave function is not a function on three-space (plus time) but on
configuration space with 3N dimensions, this seems impossible without configuration space itself being ontic. That
would, however, appear to imply, that special relativity is only an effective theory. Spacetime would be an epistemic
construct, not being ontic. There would be a preferred frame and a true time. The ontology of special relativity would
essentially reduce to that of a Lorentzian ether theory, without a way of determining the preferred frame or detecting
the ether.
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empirically equivalent to standard quantum mechanics, that the so-called quantum equilibrium hy-

pothesis holds. This states that in experimentally prepared (initial) states, the probability distribution
for the positions of Bohmian particles is always given by

w(x1, x2, . . . x3N ) = ψ∗(x1, x2, . . . x3N )ψ(x1, x2, . . . x3N ) , (4)

where the time argument has been dropped for convenience. There have been attempts to derive,
akin to the Boltzmann H theorem, that a system starting outside of quantum equilibrium will evolve
towards it. Moreover, Valentini [5,6] has shown that, if systems exist out of quantum equilibrium,
the violation of Bell-like inequalities will permit superluminal communication. If one does not believe
the ensuing violations of causality to be possible, the quantum equilibrium hypothesis is a way to
avoid them.

In the following, I will always assume Bohmian mechanics to be the theory, in which the quantum
equilibrium hypothesis is included as a postulate referring to initial states. As it turns out, that
hypothesis is not only a necessary but also a sufficient condition for the predictions of Bohmian
mechanics and standard quantum mechanics on the statistics of experimental results to become
identical. No other conditions are needed and claims to the contrary [7-11] are incorrect [12,13]. I
will discuss the first of Ghose’s papers in some more detail later. Before, I would like to outline the
proof of the assertion that Bohmian mechanics in the sense discussed does indeed make the same
predictions as standard quantum mechanics for the results of any experiment.

The proof consists of three steps. First, I will show that the (joint) probability distribution for position
measurements (of all particles) necessarily is the same in Bohmian mechanics as in standard quantum
mechanics. Then also marginal distributions referring to just a subset of particles of the system must
be the same in both theories. Second, I will demonstrate that this implies the probability distribution
for the measurement of any observable that classically becomes a phase-space function to be the
same in standard quantum mechanics and in Bohmian mechanics. Finally, more exotic variables such
as the spin are treated in Bohmian mechanics the same way as in standard quantum mechanics, so
they do not open room for different predictions on experimental results either.

To demonstrate the first assertion, we have to show that if the joint probability distribution satisfies
Eq. (4) at the initial time of an experiment (which it does by the postulate of quantum equilibrium),
then the same relation will hold at any time, as long as the evolution is by the Schrödinger equation.
Obviously, it will be sufficient to show

ψ∗ (x1(t+ dt), . . . x3N (t+ dt), t+ dt) ψ (x1(t+ dt), . . . x3N (t+ dt), t+ dt) dx1(t+ dt)

. . . dx3N (t+ dt)

= ψ∗ (x1(t), . . . x3N (t), t)ψ (x1(t), . . . x3N (t), t) dx1(t) . . . dx3N (t) , (5)

because this demonstrates that if ψ∗ψ is the probability density for a measurement of the N particles
at positions x1, . . . x3N at time t, then ψ∗ψ will be the correct probability density at time t + dt
for the particles to be at the later positions x1(t+ dt), . . . x3N (t+ dt). Taking the ratio of the two
volume elements to the left-hand side, we can rewrite Eq. (5) as follows

ψ∗

(

x1(t) +
dx1
dt

dt, . . . x3N (t) +
dx3N
dt

dt, t+ dt

)

×

ψ

(

x1(t) +
dx1
dt

dt, . . . x3N (t) +
dx3N
dt

dt, t+ dt

)

J

= ψ∗ (x1(t), . . . x3N (t), t)ψ (x1(t), . . . x3N (t), t) +O(dt2) , (6)
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where

J =
∂ (x1(t+ dt), . . . x3N (t+ dt))

∂(x1(t), . . . x3N (t))
(7)

is the Jacobian determinant giving the ratio of the two volume elements. This Jacobian can be
calculated using the equations of motion for the particle coordinates (3):

∂xm(t+ dt)

∂xk(t)
=

∂

∂xk(t)

[

xm(t) +
dxm
dt

dt

]

+O(dt2) = δmk + dt
∂

∂xk(t)

dxm
dt

+O(dt2)

⇒ J = 1 + dt
∑

k

∂

∂xk

(

i~

2mk

1

ψ∗ψ

[

(∂xkψ
∗)ψ − ψ∗(∂xkψ)

])

+O
(

dt2
)

. (8)

Moreover, the product ψ∗ψ at time t+ dt on the left-hand side of Eq. (6) can be expressed via the
product at time t with the help of the Schrödinger equation (1), from which we obtain a continuity
equation11

∂

∂t
ψ∗(t)ψ(t) +

∑

k

∂

∂xk

~

2mki

(

ψ∗
∂

∂xk
ψ −

(

∂

∂xk
ψ∗

)

ψ

)

= 0 , (9)

which may then be inserted into

ψ∗(t+ dt)ψ(t+ dt) = ψ∗(t)ψ(t) + dt
∂

∂t
ψ∗(t)ψ(t) + dt

∑

k

∂

∂xk
(ψ∗(t)ψ(t))

dxk
dt

+O(dt2) ,

(10)

where we have dropped spatial arguments for conciseness. Now we may write out the left-hand side
of Eq. (6)

ψ∗(t+ dt)ψ(t+ dt) J

=

[

ψ∗(t)ψ(t) + dt
∂

∂t
ψ∗(t)ψ(t) + dt

∑

k

∂

∂xk
(ψ∗(t)ψ(t))

dxk
dt

](

1 + dt
∑

k

∂

∂xk

dxk
dt

)

+O(dt2)

= ψ∗(t)ψ(t)− dt
∑

k

∂

∂xk

~

2mki

(

ψ∗
∂

∂xk
ψ −

(

∂

∂xk
ψ∗

)

ψ

)

+ dt
∑

k

∂

∂xk
(ψ∗(t)ψ(t))

i~

2mk

1

ψ∗ψ

[(

∂

∂xk
ψ∗

)

ψ − ψ∗
∂

∂xk
ψ

]

+ dt ψ∗(t)ψ(t)
∑

k

∂

∂xk

i~

2mk

1

ψ∗ψ

[(

∂

∂xk
ψ∗

)

ψ − ψ∗
∂

∂xk
ψ

]

+O(dt2) , (11)

where the last two terms can be combined as the pair of summands add up to a derivative of a

product, so we have under the sum ∂
∂xk

{

ψ∗ψ i~
2mk

1
ψ∗ψ

[

. . .
]}

and the ψ∗ψ in the numerator cancels

that in the denominator. But then the sum of these two terms is just the negative of the second term

11To derive Eq. (9), use the product rule on the time derivative of ψ∗ψ and express the two arising time derivatives via
the Schrödinger equation. The two terms containing the potential add up to zero because of the sign change of the
imaginary unit on taking the complex conjugate. The remaining two gradient terms in Eq. (9) give the probability
current and the preceding derivative with respect to xk makes the sum a divergence of the probability current.
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on the right-hand side (the i is in the denominator there and the sign of the parenthesis expression
is opposite), so we end up with

ψ∗(t+ dt)ψ(t+ dt) J = ψ∗(t)ψ(t) +O(dt2) , (12)

which means that the product of ψ∗(t)ψ(t) and the comoving volume element in configuration space
does not change to linear order in dt, so its time derivative is zero, no ψ∗(t)ψ(t) flows into or out
of the comoving volume element. Hence, ψ∗(t)ψ(t) behaves exactly as a probability density (of
non-colliding particles in configuration space). This concludes the proof that if ψ∗(t0)ψ(t0) is the
probability density of the initial ensemble of Bohmian particle positions, ψ∗(t)ψ(t) is the probability
density of the same ensemble at time t under the evolution of ψ governed by the Schrödinger
equation. Usually, this problem is short-circuited by referral to the continuity equation (9). My
more detailed considerations demonstrate why the validity of this continuity equation, together with
the Bohmian equation of motion for particles, Eq. (3), implies that a quantum equilibrium initial
distribution remains quantum equilibrium forever. If that was clear to you anyway, all the better for
you...

Bohmian mechanics states that measurement of the particle positions will detect the positions of
the actual particle configuration, described by Eq. (3), and that the probability distribution for
this measurement will be ψ∗(x1, . . . , x3N , t)ψ(x1, . . . , x3N , t), which is identical to the distribution
for position measurements predicted by standard quantum mechanics. So there is always statistical
agreement in position measurements of the two approaches. What about measuring other quantities?

Here, the second part of the proof comes into play. All we have to show – and we can copy this
from standard quantum mechanics – is that the probability distribution for any observable described
by an operator acting in the same Hilbert space as the position operator can be obtained from the
probability distribution for position measurements via a standard procedure.

An important quantity in probability theory is the characteristic function, because it contains the full
information on a probability distribution, expressed as an expectation value. For a (one-dimensional)
random variable X with probability density w(x), this would be defined as

FX(α) ≡
∫

∞

−∞

eiαxw(x) dx =
〈

eiαX
〉

. (13)

Since the absolute value of the exponential function with imaginary exponent is bounded, this expec-
tation value exists for any probability distribution w(x). That it contains the full information about
the distribution transpires from the fact that it is not only an expectation value but also the Fourier
transform of the probability distribution. Inverting it, we obtain

w(x) =
1

2π

∫

∞

−∞

e−iαxFX(α)dα =
1

2π

∫

∞

−∞

〈

eiα(X−x)
〉

dα = 〈δ(X − x)〉 , (14)

where we have made use of a standard representation of Dirac’s delta function in terms of an integral
over the exponential function with imaginary argument. Now this provides a neat way of switching
from one random variable X to another, Y = f(X). The characteristic function of Y is simply
FY (α) =

〈

eiαY
〉

and transforming back to the probability distribution, we find

w̃(y) = 〈δ(Y − y)〉 = 〈δ(f(X)− y)〉 , (15)

which allows us to evaluate the expectation value as an integral using w(x). So this is a way of
calculating the probability distribution for functions of a random variable from the probability distri-
bution of the random variable itself. The formulas straightforwardly generalize to multidimensional
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random variables and have the advantage that the dimension of the vector Y need not be equal to
that of the vector X, so the formula is more versatile than that based on a transformation of volume
elements in configuration space, as we can directly compute marginal distributions via the choice of
a random variable of reduced dimension.

What is even more enjoyable, all of this generalizes nicely to quantum mechanics. We just have to
replace the random variables by appropriate Hermitian operators and evaluate expectation values the
quantum way. In particular, we have the formula

wA(a) =
〈

δ(Â− a)
〉

=
〈

ψ
∣

∣

∣
δ(Â− a)

∣

∣

∣
ψ
〉

(16)

that provides the probability (density) for a measurement of the observable A giving the value a.
We may evaluate the expectation value in whatever representation we like. Choosing the position
representation, we have

wA(a) =

∫

∞

−∞

dx1 . . .

∫

∞

−∞

dx3N ψ∗ (x1, . . . x3N , t) δ(Â− a) ψ (x1, . . . x3N , t) , (17)

which obviously allows us to determine the probability distribution of measurable values for any
operator acting in the Hilbert space of the wave functions on configuration space. Which means,
we have a recipe of how to calculate the statistics of other measurements than that of positions in
Bohmian mechanics. Well, at least if we can give concrete meaning to the formal result Eq. (17).
But that is not so difficult. Let us simply expand the wave function in terms of eigenfunctions of the
operator Â,

|ψ〉 =
∑

n

cn |φn〉+
∫

c(a) |φa〉 da . (18)

Herein, the |φn〉 are the eigenfunctions from the discrete part of the spectrum of Â, normalized
according to 〈φm|φn〉 = δnm and the |φa〉 are the eigenfunctions (in the sense of Dirac vectors)
from the condinuous part, satisfying 〈φa|φa′〉 = δ(a− a′) (and of course 〈φm|φa〉 = 0). Either the
discrete part of the spectrum or the continuous one can be absent but not both. Then we obtain

δ(Â− a) |ψ〉 =
∑

n

cnδ(an − a) |φn〉+
∫

c(a′)δ(a′ − a) |φa′〉 da′

=
∑

n

cnδ(an − a) |φn〉+ c(a) |φa〉 , (19)

which we may rewrite in the position representation and insert into Eq. (17). Using in addition the
expansion analogous to (18) for ψ∗, we finally get, after having carried out all the position space
integrals, using the orthogonality of the |φn〉 and |φa〉:

wA(a) =
∑

n

|cn|2 δ(an − a) + |c(a)|2 . (20)

Now, this formula has a simple interpretation. It says that the probability of obtaining, on measuring
A, one of the discrete eigenvalues an, is |cn|2 (or, if an is degenerate, the sum of all |cn|2 corre-
sponding to an = a) and that the probability density of obtaining a, if it belongs to the continuous
part of the spectrum, is |c(a)|2 (or, in the case of degeneracy of a, the sum of several |c(a)|2). We
have here derived this result for Bohmian mechanics. However, we know that this is precisely the
rule that is valid also in standard quantum mechanics.
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All that remains to be considered, are observables, such as for example spin, whose associated
operators do not act on the same Hilbert space as position operators. These quantities do not have
a classical analog,12 so their probability distribution cannot be derived from one in configuration
space. Bohmian mechanics takes an interesting point of view on the description of variables of this
type.

Spin is an emerging property, arising trough the wave function, not through the particles, which
entails that just as in standard quantum mechanics, particles may acquire the property of having a
spin through measurement. If we have, for example, an entangled two-particle wave function of two
identical particles with total spin zero, then neither of the particles has a spin pointing in a well-defined
direction. Measuring one of the two spins will determine its direction and produce a new two-particle
wave function that determines the second spin to point in the opposite direction. So while particles
in Bohmian mechanics do have, contrary to the situation in standard quantum mechanics, a definite
position and velocity, hence momentum, for which the Heisenberg uncertainty relationship only
applies because measurement of both cannot be done simultaneously without mutual disturbance,
they do not have – and this is the same situation as in standard quantum mechanics – well-defined
spin components in orthogonal spatial directions. In standard quantum mechanics, all observables
are equal, so to speak, whereas in Bohmian mechanics, some are privileged. Position is a particle
property and the position that arises in the fundamental equations is directly measurable. Velocity
and momentum are particle properties, but measured velocities and momenta do not normally agree
with the values that could be read off the equations at any instant in time.13 Spin is not a particle
property and may even be created by measurement only.

What are, then, the rules that permit the calculation of the statistics of measured values for non-
classical observables in Bohmian mechanics? Well, they are obtained by simple extension of the rule
(16). Expansion of the wave function into eigenfunctions of the hermitean operator associated with
the observable14 then produces (20) again, i.e., the absolute squares of the expansion coefficients
will produce the probabilities or probability densities of measuring the system in the corresponding
eigenstate, which in the non-degenerate case is the same as the probability (density) of measuring
the corresponding eigenvalue. But this rule is the same as in standard quantum mechanics.

To summarize, in order to predict the statistics of an experimentally measured value within Bohmian
mechanics, it is sufficient to solve the Schrödinger equation starting from an appropriate initial
state,15 corresponding to the experimental preparation, and to expand the calculated wave function
in terms of the normalized eigenfunctions of the measured observable. The probability distribution
of the measured values, which are eigenvalues of the (operator associated with the) observable is
obtained by assigning the absolute squares of the expansion coefficients (or sums thereof, in the case
of degeneracies) to the corresponding eigenvalues.

This is the same procedure as in standard quantum mechanics. The initial wave function is the same
as in standard quantum mechanics, by the quantum equilibrium postulate. The Schrödinger equation
to be solved and the boundary conditions are the same, so the wave function from which the result is
calculated is the same in both approaches. Then the result must also be the same. There is no way
to obtain different outcomes from Bohmian mechanics for observable quantities than from standard
quantum mechanics, provided both theories are applied correctly. This holds as long as quantum

12Which would provide a classical phase space description and the possibility to construct an operator representation that
acts on configuration space functions.

13I will discuss that later.
14These will now contain kets acting on a Hilbert space describing internal degrees of freedom, i.e., one that does not
correspond to classical phase space.

15A solution of Eq. (3) is not even necessary.
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equilibrium is postulated as part of the theory.16

Attempts at criticizing Bohmian mechanics

Notwithstanding the knowledge that a proof of the equivalence of predictions from standard quantum
mechanics and Bohmian mechanics exists, some authors have tried to escape its conclusions. Ref-
erences [7] through [11] do not constitute a complete list. Unfortunately, none of these approaches
have tried to come up with an error in the derivation (which they may not have followed in detail
anyway). Rather, they start from a rough idea why there might be a difference and then discuss an
experiment, for which they claim that its Bohmian description will give a result different from that
of standard quantum mechanics. Invariably, they either apply Bohmian mechanics incorrectly to the
problem or even standard quantum mechanics. Reference [13], for example, demonstrates by explicit
numerical simulation of the equations of Bohmian mechanics that the claims made in [7] and [9-11]
about differing predictions of the two theories on experiments suggested therein do not hold.

Note that there is a more intelligent way of criticizing Bohmian mechanics. This has been done by
Englert, Scully, Süssmann, and Walther (ESSW) [14], who suggested a thought experiment with an
incomplete Stern-Gerlach interferometer and the storage of which-way information in a microcavity by
a single photon, emitted when an atom traverses the cavity. The arrangement of the interferometer
has a symmetry plane, and the simplest Bohmian mechanics treatment as a one-particle system
(with the stored photon described as a spin!) states that a particle trajectory cannot traverse this
plane. Standard quantum mechanics predicts that an atom that has triggered the which-way detector
above the symmetry plane will arrive on the screen below it and vice versa. The standard quantum
mechanical interpretation thus suggests that particles cross the symmetry plane whereas the Bohmian
trajectories do not do so. Therefore, if we measure the position of a particle twice with a sufficient
time interval between them, the two positions will not lie on the same Bohmian trajectory, which
hence is a metaphysical rather than a physical concept, or surrealistic rather than realistic.

A counter argument of Bohmianists was that the measurement via a which-way detector, which
corresponds to a rather microscopic process (a single photon is deposited in the cavity), did not con-
stitute a measurement. Note that ESSW explicitly state that they do not claim Bohmian mechanics
to make predictions that differ from those of standard quantum mechanics [15]. Their argument
rather attacks the plausibility of the (unobservable) Bohmian particle trajectories. They also do not
deny the mathematical existence of these trajectories [16], they just consider their interpretation as
particle trajectories doubtful. While a description of the photon as a second particle rather than a
spin will allow the Bohmian particle describing the atom to cross the symmetry plane some of the
time, the statistics of these crossings still does not agree with standard quantum mechanics where
crossing happens in 100 percent of the cases. Bohmianists must, in those cases, where they conclude
that the atom did not cross the plane, assign the triggering of the detector on its other side to the
wave function producing that interaction rather than the (atom) Bohmian particle. So they succeed
in a description of the experiment but with a pretty counterintuitive path taken by the atom and a
non-locally triggered detector.

The way to successfully attack the Bohmian interpretation, then, is not via its predictions on ob-
servables which cannot differ from those of standard quantum mechanics but by focusing on what

16Once this is done, the theory may be considered a mere reinterpretation of standard quantum mechanics. Because
of the hugely different ontologies behind the two interpretations, some will certainly prefer to still consider them
different theories. They say very different things about “reality” but do not actually make so different statements
about observable reality.
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it says about the non-observable sector of reality, i.e., the Bohmian particle trajectories. In fact, the
trajectories can be observed in a sense, i.e., they can be made visible. This has been shown in newer
work by the Steinberg group [17]. Considering the way Bohmian trajectories are constructed, it is
obvious that they just correspond to the path of volume elements of probability, i.e., in a stationary
situation they are the streamlines of the probability current density.17 These streamlines may be
determined via weak measurement techniques.18 If they are considered average particle trajectories,
we then have a measurement method for Bohmian trajectories [17]! Nevertheless, it is not clear
at all to what extent this gives us information about true particle trajectories. In hydrodynamics,
streamlines indicate the local direction of motion of fluid volume elements. They can be used to
construct trajectories of volume elements. But of particles of the liquid? No. The particles diffuse
in addition to the motion indicated by the streamlines and move arbitrarily far away from them. The
average may have nothing to do anymore with the true trajectory, after a sufficient amount of time,
as particles enter and leave volume elements of liquid. In a continuum description (via a Langevin
equation) the trajectories are nondifferentiable, the streamlines are smooth. There is no proof that
in quantum mechanics particle trajectories coincide with the streamlines of the probability current
density. Hence, an argument that the measurement of these streamlines makes them less surreal as
Bohmian particle trajectories may be considered doubtful.

But let me return to the unsuccessful attempts at differentiating on the grounds of apparently
diverging predictions between Bohmian mechanics and standard quantum mechanics. I will focus
mostly on Ref. [7] by Ghose. Ghose, who is aware of the claim that Bohmian mechanics and standard
quantum mechanics produce the same statistical predictions on all experiments, essentially invokes
three arguments against this, two of them a bit global in order to justify why to bother with the
problem at all, the third consisting in the analysis of an experiment that is supposed to decide
between the two theories.

His first argument is that in standard quantum mechanics identical particle are indistinguishable,
which leads to certain statistical particularities, while in Bohmian mechanics, Eq. (3) would allow
to follow the individual particles from their initial configuration,19 thereby rendering them distin-
guishable. He believes that this must lead to differences in predictions for statistical correlations of
indistinguishable particles, which leads him to consider a pair of identical particles in a double-slit
experiment. Now the proof that Bohmian mechanics and standard quantum mechanics make the
same statistical predictions does not rely on any particular symmetry properties of the wave function.
It does not use them, hence is independent of the presence or absence of such properties. Moreover,
it demonstrates that the statistical predictions of Bohmian theory about observable quantities can
be obtained without even using the equation (3).20 Only the wave function is needed, the only
equation that must be solved in the end is the Schrödinger equation. What Ghose fails to realize
is that the hypothetical distinguishability of quantum particles is irrelevant as long as it cannot be
realized by consideration of the wave function only. If the wave function has the symmetry properties
of bosonic or fermionic particles, then the predictions of Bohmian mechanics on anything observable
are those for indistinguishable particles. As far as the wave function is concerned, these particles are
indistinguishable, and that is all that matters.

Ghose’s second general argument is about ergodicity.21 He states that identical statistical predictions

17One trajectory in 3N dimensional space can be chopped into N trajectories in three-dimensional space.
18And they may be calculated within standard quantum mechanics by adopting Eq. (3), yet interpreted as an equation
of motion for a hypothetical tracer particle (in 3N dimensions) carried along by the probability current.

19If we could know that configuration...
20While that equation is certainly needed in the proof, it is not needed anymore for predictions from the theory, once it
has been shown that these are calculable the same way as in standard quantum mechanics.

21For our purposes, ergodicity may be simply defined to mean equality of the time and ensemble averages for all (or
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of both theories can only be expected, when the ensemble average (of Bohmian mechanics) is equal
to the time average and thus does not hold for a system, in which the equations of motion (Eq. (3))
do not guarantee ergodicity. He proposes to present such a system. Well, it is known that ergodicity
is important in statistical mechanics, even though most systems relax to equilibrium in much shorter
times than ergodicity arguments would suggest. However, an experimentally measured equilibrium
property usually is a time average, whereas it is theoretically calculated from an ensemble average. On
the other hand, in Bohmian mechanics the equality of ensemble and time average does not seem to
play any role at all! Expectation values of an experimentally measured quantity are essentially always
just ensemble averages. The average is performed with the state, not on a time sequence. During
an experimental time sequence, the quantum state normally changes with each measurement, so a
single wave function is not sufficient to calculate the time average of the series, neither in standard
quantum mechanics, nor in Bohmian mechanics.

There are two exceptions to this: if the measured quantity satisfies a conservation law, then after the
first measurement all subsequent ones will give the same value, because the observable commutes
with the Hamiltonian and the wave function will remain an eigenfunction to the observable after
the first measurement. In that case, the time average is a constant and the ensemble average will
be the same constant, because the wave function remains an eigenstate. The second exception is
the quantum Zeno effect. If measurements of a fixed observable are made sufficiently closely timed,
then it does not matter, whether the measured observable is a conserved quantity. After the first
measurement, the system is in an eigenstate of the observable and if the next measurement follows
fast enough, it will still be close to that eigenstate and the measurement in fact forces it back into
it. So the sequence of measurements keeps the system in the eigenstate, the measured eigenvalue
is always the same again, and we have both a constant time and ensemble average, given by that
same eigenvalue. In both cases, ergodicity is automatic. But in general, measurements refer to a
given state, i.e., they are made on several systems initialized in the same quantum mechanical state.
Reference is then not to a given quantum system, on which repeated measurements are made without
preparing the system in a desired initial state in between measurements. Therefore, ergodicity does
not play any role. The predictions discussed here refer to measurements on a state. With repeated
measurements on a system, successions of wave functions corresponding to state modifications by
each measurement must be considered. Of course, if the predictions of Bohmian mechanics and
standard quantum mechanics agree for a single state, they will also agree for a succession of states.

Having discarded Ghose’s general arguments, let us have a look at the specifics of his experiment. He
considers a pair of identical bosons going through a double slit and detected on a screen later. There
are symmetry requirements for the wave function both from geometry and from indistinguishability.
The (2D) double slit is symmetrical about the y axis, so the two-particle wave function must satisfy
the condition to remain unchanged if both arguments x1 and x2 change sign. And it must be
unchanged under an exchange of both particles, which is, in fact, already ensured by the ansatz

ψ(x1, y1, x2, y2, t) =
1√
2
(ψA(x1, y1, t)ψB(x2, y2, t) + ψA(x2, y2, t)ψB(x1, y1, t)) . (21)

The geometrical condition then takes the form ψ(x1, y1, x2, y2, t) = ψ(−x1, y1,−x2, y2, t). Ghose
asks, in a somewhat unjustified manner, for a stronger condition, viz. ψA(x1, y1, t) = ψB(−x1, y1, t)
and ψA(x2, y2, t) = ψB(−x2, y2, t). But since that will also lead to the required symmetry of ψ, we

almost all) trajectories/histories of the system.
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may accept this as a possible realization. It is then easy to derive, using Eq. (3)

dx1
dt

∣

∣

∣

x1,y1,x2,y2
= −dx1

dt

∣

∣

∣

−x1,y1,−x2,y2
, (22a)

dx2
dt

∣

∣

∣

x1,y1,x2,y2
= −dx2

dt

∣

∣

∣

−x1,y1,−x2,y2
, (22b)

from which it is seen that if the two Bohmian particles are both on the y axis, then both their velocities
vanish, so they cannot simultaneously cross the axis. Ghose then tries to set up an experimental
situation, in which the wave function depends on x1 − x2 only, which would lead to

dx1
dt

+
dx2
dt

= 0 , (23)

and where the Bohmian particles start symmetrically about the y axis, so even

x1(t) + x2(t) = 0 . (24)

The particles then must be detected as being symmetrically distributed about the y axis, whereas
the standard quantum mechanical prediction would be that there are asymmetric detection events
as well. Unfortunately, all of Ghose’s conditions cannot be satisfied simultaneously, at least not
starting with the original double-slit wave function. So he ends up comparing two situations, where
the effective wave function that is needed to set up the situation described by his Bohmian particles
is different from that the standard quantum mechanical description is carried out with. Therefore,
either Bohmian mechanics or standard quantum mechanics are not applied correctly here, because
for the comparison to be meaningful, the (initial) wave function for both must be taken to be the
same.

To obtain the desired velocity relation, Ghose notes that far from the slits, the wave function will,
due to translational invariance, take the form

ψ = Φ

(

1

2
(x1 + x2)

)

φ(x1 − x2) , (25)

introducing center-of-mass and relative coordinates. We then have, due to Eq. (3)

dx1
dt

=
~

m

[

ℑ
(

∂x1Φ

Φ

)

+ ℑ
(

∂x1φ

φ

)]

,

dx2
dt

=
~

m

[

ℑ
(

∂x2Φ

Φ

)

+ ℑ
(

∂x2φ

φ

)]

=
~

m

[

ℑ
(

∂x1Φ

Φ

)

−ℑ
(

∂x1φ

φ

)]

,

dx1
dt

+
dx2
dt

= 2
~

m
ℑ
(

∂x1Φ

Φ

)

, (26)

and for this to be zero Φ must not depend on either x1 or x2 at all. We now have three restrictions
on the wave function, it must satisfy Eq. (21), Eq. (25) and Φ must depend on the y coordinates
only. A way to satisfy these conditions (and possibly the only one) is to assume ψA and ψB to be
plane waves: ψA(x, y, t) ∝ ei(k1x+k2y), ψB(x, y, t) ∝ ei(−k1x+k2y), which leads to

ψ(x1, y1, x2, y2, t) ∝ eik2(y1+y2) cos(k1(x1 − x2)) . (27)

Herein, Φ depends on y1 + y2 only and φ on x1 − x2 only, which meets the requirements. Also φ
is a cosine, describing an interference pattern on the screen. And indeed we have, for each pair of
Bohmian particles, the probability distribution of which is proportional to |φ(x1 − x2)|2 that (23)
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holds. But we cannot require (24) because from the distribution proportional to cos2(k1(x1 − x2))
many pairs (x1, x2) can be drawn with a sum different from zero. In fact, the sum can be arbitrarily
large. So the condition that this sum be zero, used in Ghose’s argument, requires a different wave
function. In an attempt to achieve it, we might multiply the starting wave function at the slits by the
delta function δ(x1+x2).

22 But then the wave function would have a dependence on x1+x2 for most
of the interval between the slits and the screen, meaning that Eq. (23) will not hold throughout that
interval and the trajectories of the two particles need not be symmetric about the y axis. Crossing
of the axis is then not forbidden by Bohmian mechanics, and Ghose’s prediction fails.

The problem here is that the Bohmian ensemble arising from a standard wave function used to de-
scribe the double-slit experiment (for simultaneous sending of two identical bosons into the apparatus)
does not lead to the requirements (23) nor (24). These requirements hold only for a sub-ensemble of
particle pairs, not for all pairs whose probability distribution follows from the wave function. Now it
is not inconceivable that an initial wave function may be prepared that will generate the probability
distribution for just the subensemble of Bohmian particle pairs considered by Ghose.23 Then particles
from each pair would indeed impinge at symmetric positions above and below the symmetry axis and
Ghose’s Bohmian prediction would become correct. But – precisely that wave function would also
have to be used to produce the prediction from standard quantum mechanics. And of course, that
prediction would now agree with the one from Bohmian mechanics. So Ghose’s technical mistake can
be seen in effectively having used two different wave functions to generate predictions from standard
quantum mechanics and from Bohmian mechanics. That cannot lead to a meaningful comparison.

To summarize, a many-particle wave function with the appropriate symmetry properties contains all
the correlations resulting from the indistinguishability of identical particles. So Bohmian mechanics
will make the correct statistical predictions for that case as well. It is assumed in standard quantum
mechanics that the wave function encodes the maximum amount of information that may be available
about a system. Which means that it also includes all many-particle correlations. In calculations of
Bohmian mechanics that wave function is available. Therefore, all the information that it encodes is
derivable in that approach to quantum mechanics, too.

Another attempt at discovering a failure of Bohmian mechanics that I have seen was based on the
velocity distribution that can be calculated from the position distribution and Eq. (3). Now while
a Bohmianist might even call that quantity the real velocity distribution, he would not predict it
to be the measured velocity distribution. That distribution could be obtained by first defining a
velocity operator v = i

~
[H,x] = p/m (where the second equality only holds for a non-relativistic

Hamiltonian sporting the standard form of kinetic energy) and then determining the probability
distribution for measured velocities from the expansion of the wave function in eigenfunctions of v.
There is no reason for this probability to be equal to the distribution of real velocities. This may
be rationalized by realizing that a velocity measurement typically involves two successive position
measurements (and division by the time interval between the two), and after the first measurement,
we have a different wave function, so the velocity obtained from both measurements need not be
the velocity of the particle detected by the first position measurement. Position and velocity do
not commute. An alternative way to determine the probability distribution of velocities would be
to first obtain the distribution for position measurements from the prepared wave function, then
calculate, for each position, the probability of obtaining a second position result for a wave function

22Since one cannot divide by a delta function, the velocity formula (3) cannot be directly applied to a wave function
containing a delta function factor. In practice, the delta function would have to be replaced by a very narrow Gaussian
or another narrow function approaching the delta function. If needed, the limit of vanishing width of the function
may be applied after evaluating the velocities. Note that standard quantum mechanics also cannot use delta functions
directly in certain situations. They do not constitute bona fide wave functions, being not normalizable.

23That feat does, however, look difficult to me.
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evolving from the position eigenfunction determined in the first measurement. This will give the joint
probability distribution of two positions, which can be integrated over position pairs with the side
condition of constant velocity to obtain the marginal distribution describing the probability density
of velocity measurements. For consistency reasons, this procedure should give,24 within standard
quantum mechanics, the same result as the one using velocity eigenfunctions and only the prepared
wave function. However, the operations to be performed in Bohmian mechanics are the same, so
both procedures should give the same result within that approach, too. But that result would be
different from the distribution of real velocities. Real positions can be measured directly in Bohmian
mechanics, real velocities cannot.

An atomic version of the Hong-Ou-Mandel experiment was also suggested to lead to a situation,
in which Bohmian mechanics would not work. The experiment has two identical bosons impinge
simultaneously on some kind of half-transparent effective mirror from both sides so that the two
possibilities for the particles to appear on opposite sides of the mirror interfere destructively and,
hence, both bosons will appear on one side of the mirror (with equal probability for either side).
This is the prediction of standard quantum mechanics. The idea behind the suggestion was that
the correlations arising due to indistinguishability of the two bosons are not captured by Bohmian
mechanics, which would therefore predict a nonzero probability for the bosons to appear on different
sides of the mirror, in conflict with what follows from standard quantum mechanics. I discussed in
my science education project on ResearchGate how in this case the agreement of the predictions of
Bohmian mechanics and quantum mechanics can be visualized using the two-particle wave function.
Since ResearchGate no longer supports projects, I have moved the articles published there (including
this one) to my personal website. To find the discussion, navigate back from this page to the science
education project (once “Up” from the page “About Bohmian mechanics”) and find the entry on
“The Hong-Ou-Mandel experiment and Bohmian mechanics”, dated 25 July 2017. There is an
introduction and a link to a PDF file with nice pictures.
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