See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/323783259

# A configuration which breaks the Lorentz Invariance

Preprint · March 2018

| CITATIONS | reads |
|-----------|-------|
| O         | 76    |
| 1 author: |       |



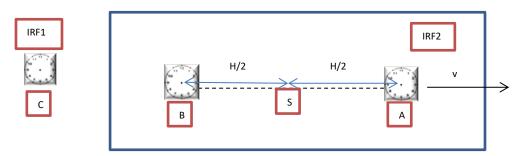
Project

#### Stefano Quattrini

Ordine degli ingegneri della provincia di Ancona

**20** PUBLICATIONS **4** CITATIONS

SEE PROFILE


#### Some of the authors of this publication are also working on these related projects:

Limits of the Equivalence principle, new effects of quantum and gravitation View project

All content following this page was uploaded by Stefano Quattrini on 18 March 2018.

## BREAKING THE LORENTZ INVARIANCE By Stefano Quattrini 18/03/2018

- 1) Clocks A, B are separated by a distance H, at rest with the clock C in IRF1 (inertial reference frame) and S is a device set at a distance of H/2 from both A, B.
- 2) A,B are set in sync with  $t_A=0$  and  $t_B=0$ .
- 3) A and B are co-accelerated at speed v, S co-move with them. A stop signal departs from S as soon as the system reaches speed v and are in IRF2.



- 4) Clocks A and B are stopped in IRF2, provided that the stop signal, is given enough time to arrive at both clocks after the pulse. It is T>=  $\gamma$  H/2c= T<sub>min</sub>, the minimum time required to stop the clocks.
- 5) Lorentz Transformations predicts that  $t_A t_B = \gamma v H/c^2 (1)$ , with  $\gamma = 1/v(1-v^2/c^2)$ : the clock B looks being slowed down. The result is due to the "relativity of simultaneity", as illustrated also by Boughn (1989) "The case of the identically accelerated twins" Am. J. Phys. 57.

### The following configuration replaces the point 3)

- 6) A pulse let A and B reach the speed v in a negligible time  $t_{acc}$ . The minimum time counted by  $t_A$  before being stopped in IRF2 is just the sync time  $T_{min}$ , hence  $t_A = \gamma H/2c$ .
- 7) By trivial substitution in (1) the rear clock reads  $t_B = \gamma H/2c \gamma v H/c^2$  when both clocks are stopped.
- 8) The equation H/2c vH/c<sup>2</sup> = 0 is solved by v=c/2, hence if v=< c/2,  $t_B > 0$
- 9) if v > c/2 t<sub>B</sub> < 0.

\*The configuration is physically realizable, since  $t_{acc}$  can be finite (but still  $t_B < 0$ ), by assuming that the speed c/2<v<c.

CONCLUSION: in order to avoid the negative values of the time of the clocks, which is absurd, it has to be  $\gamma v H/c^2=0$ , hence  $t_A - t_B = 0$ , unless modifying "ad hoc" the LT, at least in the above configuration. Hence the Lorentz Invariance is broken at least in the configuration proposed.