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Lack of awareness of the problem

Back in 2012, when I wrote my paper on how to resolve Selleri’s paradox [1], I started its
first version with an extensive discussion of the conventionality of simultaneity, in which I also
explained why “measurements” of one-way velocities using only a single clock do not allow one
to avoid choosing a synchronization. My previous experience with a paper [2], submitted to
the same journal (American Journal of Physics), made me deem this necessary: I had gotten
the impression that a substantial fraction of the referees of the journal were unaware of the
subtleties of simultaneity in relativity. Two of the referees of [2] consistently asserted the
correctness of my paper, whereas the third accepted its “general relativistic” part1 but did not
buy my “special relativistic” approach deriving the same results without the use of a metric.
My attempts to explain to the adverse referee where he was wrong, by pointing out that the
interpretation of length measurements of moving objects depends on the synchronization of
clocks in the measuring system, were to no avail. He insisted that “everybody knows” that
the relative velocities of two inertial systems are reciprocal (which is true only with Einstein
synchronization) and that moving lengths could be measured “with a single clock” (which is
only true after the synchronization has been fixed). So this referee did not have the slightest
idea about the issues related to synchronization.

I found this a deplorable state of affairs. If even some referees of Am. J. Phys. have so little
knowledge about an aspect of relativity that is emphasized by Einstein in his very first pa-
per on the subject, what about the general readership? After sifting through several years of
Am. J. Phys., I realized that while there are many papers about relativity, there are hardly any
about synchronization. There is some older stuff (for example by Alan Macdonald who under-
stands the subject well) but nothing comprehensive. A paper by Cranor et al. [3], while giving
a correct discussion, is about the twin paradox, not about synchronization. Its readers may
be left with the impression that alternative synchronizations cannot arise except in rotating
frames or possibly in situations where there is acceleration. In any case, the aforementioned
referee did not learn enough from the Cranor paper (which he knew) to correctly assess my
explanations although I gave all the necessary mathematics.

Therefore, I put some focus on synchronization in the first version of [1] (which even had
a different title), with the Selleri paradox being but one example among several. This time
the reaction of the referees was that my paper was too long and explained (trivial?) stuff
in too much detail. So I threw out most of the discussion of conventionality of simultaneity
and reduced the length of the paper by about a factor of two, now putting the emphasis on
the paradox and its resolution. I added many references to leave no doubts about the sound
experimental basis of special relativity (reinforced rather than opposed by the Sagnac effect).
Not counting the references, the paper had a length of a little more than four pages, which
then apparently was succinct enough to allow immediate publication.

But that left the readership of Am. J. Phys. largely uneducated about the conventionality of
simultaneity. As to the members of Research Gate, the situation rather seems worse, as various
discussion contributions from that side demonstrate. It may therefore be useful to exhibit the
relevant points in writing. I do so using TEX, because some formulas are necessary that would
be tedious to produce in HTML.

1By which the referees (and myself) meant the use of a metric to derive results. Since no gravity was taken into
account in the description, it remained of course fully inside the realm of special relativity.
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The notion of velocity

Before entering the topic of simultaneity and its ambiguities, I would like to briefly touch on
the concepts of velocity and related spatiotemporal notions, which will motivate the necessity
of considering simultaneity issues.

It should be obvious that in our current philosophical frameworks regarding space and time,
velocity is not a primitive or fundamental entity; it rather is a derived notion. Velocity is, in its
simplest form, distance covered per time interval, so it is defined in terms of more fundamental
quantities, namely distance and time. Are these well-defined? In order to give quantitative
meaning to a notion, which is what physics is largely about, its constituent notions must be
quantifiable as well, so spatial and temporal distances must be quantitatively definable, before
velocity is.2

A starting definition of velocity v might be: v = ∆x/∆t = (x2 − x1)/(t2 − t1), where x1 is
the position of our moving object at time t1 and x2 is its position at a later time t2, with the
(vectorial) distance ∆x = x2 −x1 and the time interval ∆t = t2 − t1.

3 This is a definition for
a one-way velocity: x1 and x2 are usually different positions (unless the result is zero) and
the motion from one to the other is monotonous, there is no see-sawing to and fro. A two-way
velocity (better: speed) would be defined as v = 2 |x2 − x1| /(t1f − t1i), where the motion is
from x1 to x2 and back, with the starting time being t1i and the final time t1f . It is not a
vector. We will focus on one-way velocities.

In order for our velocity definition to be complete, we need quantitative definitions of the
two positions and the two times appearing in the velocity expression. How are positions and
times defined? In order to have something usable (rather than an abstract definition such as
“element of a vector space”), we should provide an operational procedure to measure each
quantity. It need not be practical but must work in principle.

Dependency on frame of reference

As it turns out, positions are not absolute,4 so their measurement requires a frame of reference.
This can be thought of as any body that may be considered to be at rest and the shape of which

2Of course, any major theoretical edifice will have some undefined notions at its basis, which cannot be further
clarified as language cannot explain itself. In Euclidean geometry, points and straight lines are essentially
undefined. While Euclid gives “definitions” – a point is that which has no part, a straight line is a line that

lies evenly with the points on itself – these do not play any role in the geometry that is erected on the basis
of his five postulates. Only the properties of points and straight lines that are evoked in the postulates are
relevant for the theory. The “definitions” are little more than an appeal to our intuition, so we may believe that
there are objects for which Euclidean geometry provides an appropriate theory. As an example from physics we
might quote mass and force in Newtonian mechanics, which Newton does not define in sufficient detail to make
the definition relevant in the formulation of physical laws. Mass is introduced as a measure of the quantity of
“stuff”, with two identical objects having twice the mass of one. Otherwise, it is assumed that an intuitive idea
of the concept of mass exists that will sharpen as the theory is developed. Force is introduced as the “cause of
motion”, which hardly is a definition allowing to quantify forces. Again, it is assumed that a prior intuition of
the concept exists. Moreover, that concept gets modified later when pseudoforces are introduced that are not
causes of motion but caused by motion. Newton’s second axiom should not be taken as a definition of force,
otherwise it would not be a physical law and could not be tested experimentally. You cannot falsify a definition

by an experiment. But Newton’s second law in its simplest form F = ma was falsified experimentally when
electrons were accelerated to near the speed of light and a relativistic generalization was needed.

3This definition is appropriate as long as the result does not vary strongly with time. It can be sharpened to
give the momentary velocity by taking the limit ∆t → 0: v = dx/dt.

4While Newton certainly postulated space to be absolute and gave his famous bucket experiment as a proof
for the absoluteness of rotating motion, classical mechanics does not provide any physical law allowing one to
determine a state of absolute rest.
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allows one to define three fixed axes in space.5 Experience tells us that only unaccelerated
(i.e., in particular, non-rotating) bodies qualify as a rest frame.6 We then introduce standard
rulers defining a length unit and measure the positions x1 and x2 by laying out rulers parallel
to the three axes from the origin of our frame of reference to the points x1 and x2. The
path along which the rulers join the origin and the point to be measured consists of (possibly
several) pieces parallel to the three axes, and to obtain the three coordinates of the vector xi,
we simply count the number of unit rulers needed in each direction. For higher precision, it
may be necessary to put some rulers with lengths that are a fixed fraction (1/10 th, 1/100 th,
etc.) of our length unit.

The result for our velocity numerator will depend on the chosen frame of reference. It is no
surprise that the values for x1 and x2 themselves depend on the frame of reference, because
they must clearly depend on how far the origin located in our reference body is from the points.
It is more interesting that also the difference ∆x will in general be frame dependent.7

Dependency on synchrony

Next, we need a procedure for the determination of the two times appearing in the velocity
expression. Similar to standard rulers used to measure distances we may introduce standard
clocks to measure times. These will be a bit more complex to set up. Whereas for a standard
ruler we may take a single rod made of almost any solid material, use it as length unit and then
obtain more rulers simply by making identical copies8 and integer multiples or fractions of it,
a good standard clock will generally be a sophisticated apparatus, using a periodic process
(such as an electromagnetic wave emerging from a certain hyperfine transition of a cesium-133
atom), counting a certain number of cycles as a time unit and determining, for an interval to
be measured, how many such units fit in. The basic periodic process should be as independent
of external conditions as possible and those conditions on which it does depend must be kept
equal (atom at rest, no external magnetic and electric fields, etc.). It is believed that atomic
transitions may serve as good standard clocks, measuring their own proper time.9

Obviously, we need such a clock (in principle) at each of the two different positions x1 and x2,
where we wish to measure time and while their nature of being standard clocks will make their
rates equal automatically,10 we also have to make sure that their offset (the “origin” for time
measurement11) is the same. That is, the clocks must be synchronized in order to make sure
they show the same time. The problem then arises what it precisely means for clocks to be
synchronized, if time is not absolute, i.e., if there is the possibility for time to run differently

5A parallelepiped or an ellipsoid with axes of different lengths would do.
6Accelerated frames of reference are of course possible, but we do not wish to base a definition of a fixed position
in space such as x1 and x2 on fixed coordinates in such a frame.

7This is a consequence of the relativity principle asserting that there is no local experiment that would allow
us to determine a body to be in a state of absolute rest. So two different observers may choose two different
frames of reference that are moving with respect to each other. That motion cannot be accelerated, because
acceleration of a frame is experimentally detectable. Once we have a complete definition of velocity, we will
be able to characterize the motion of two acceptable rest frames with respect to each other as uniform or as
motion at constant velocity.

8Which when used for measuring should be kept at identical conditions such as temperature, pressure, etc.
9Nonstandard clocks may be produced by providing an additional mechanism, decreasing or increasing their rate
by a factor. This is applied with the GPS satellites, the proper time of which is running fast in comparison
with earth based clocks, so a detuning mechanism is implemented to get them into synchrony with the latter.
Therefore, they have a rate in orbit that is smaller than the rate of their proper time.

10They are at rest with respect to each other.
11This is analogous to the origin for position measurement, which is simply a fixed point of the frame of reference.
Here, we need a “fixed point in time” to be the same.
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in different places.12

In short, (two or more) distant clocks are synchronized, if they show the same time for events,
each next to one of the clocks, happening simultaneously. That is, we need to give a definition
of simultaneity at a distance. Simultaneity at the same position is trivial: two events at the
same position are simultaneous, if they coincide. Coincidence of events is something we may
assume to be easily ascertainable (within experimental uncertainties) – there is no problem
(in principle) of establishing that two phenomena (that are localized and short-lived) happen
at at the same place and time.

Simultaneity at a distance is a different thing. Its definition should not require a pre-defined
notion of time in all of space. After all, we are in the process of establishing such a notion
based on the concept of simultaneity at a distance. If we needed a notion of a common time
everywhere to define simultaneity, we would end up in a logical circle, defining simultaneity
via global time and global time via simultaneity. We may however extend a local definition of
time to a global one by defining simultaneity and identifying different local times connected
by a simultaneity relationship.

Simultaneity and causality

So how do we define simultaneity, i.e., what do we expect from a definition of simultaneity?
We may start from an everyday notion that we develop towards a precise concept within the
paradigm of Newtonian physics. Then we can study how far the approach carries within the
less familiar relativistic world description.

Standard relationships of temporal ordering are provided by the notions before and after. We
will certainly agree that in everyday situations we say an event A to happen before an event
B, if A could have causally influenced B and B could not have causally influenced A (and that
this is independent of where the two events happen).13 Next, we define that A happens after
B if and only if B happens before A. Finally, we may say that A happens simultaneously with
B, iff A does not happen before and does not happen after B.

In fact, in Newtonian mechanics, this provides us with a temporal equivalence relation. Con-
sider an event A− infinitesimally earlier than A at the same position. It is certainly before A,
because it can causally influence A but cannot be causally affected by A. But then it cannot
be causally influenced by the distant B either, which does not happen before A. So A− is
before B. Similarly, consider an event A+ infinitesimally later than A at the same position. It
is certainly after A, because it can be causally influenced by A, but cannot affect A causally.
But then it can be causally influenced by B (B does not happen after A, so it can affect A and
A can affect A+), but cannot itself influence the distant B (because it cannot even influence
the close A). So A+ is after B. Since the time interval between A− and A+ can be made
arbitrarily small, there is only one event at the position of A (“on a world line containing A”)

12In Newtonian mechanics, time is absolute by postulate, so it has to be the same in different places. In practical
experiments, it may of course still be necessary to synchronize clocks at different places. But this is easy in
principle: just as we can make identical copies of a standard ruler, we can make identical copies of a standard
clock; since transporting them does not influence their rate (as they measure absolute time) or setting (which
can be done before transporting them), putting them in different places provides us with a common time in
these places. Of course, the premise of a transport-independent rate is no longer true as we leave the domain
of validity of Newtonian mechanics.

13Note that this approach uses counterfactual arguments. It is not important, whether A actually could influence
B – which might be prevented by countermeasures against a physical interaction between the events – but only
whether A could in principle affect B. In Newtonian mechanics, this is always the case, if A does not happen
later than B. If A happens at the same Newtonian time as B, a mutual influence between the two events is
possible, in principle, because gravity travels at infinite speed in Newtonian mechanics.
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that is simultaneous with B, namely A itself. Mutatis mutandis, the same kind of argument
can be used to demonstrate that B is the only event at B’s position that is simultaneous
with A. Hence, simultaneity at a distance is unique and obviously symmetric. That it is also
a transitive relation can be easily seen by considering a third event C that is at a different
position both from A and B and simultaneous with B. That means B does not happen before
and does not happen after C. But since A does not happen before B, it also does not happen
before C, and since A does not happen after B, it also does not happen after C.14 So A
and C are simultaneous, too, and the simultaneity relation, being reflexive, symmetric, and
transitive, is an equivalence relation. We can synchronize clocks (measuring absolute time) at
a distance, simply by setting the time offset on each of them to the same value for a local event
simultaneous with a trigger event at the position of some master clock (which itself shows the
time value to which we set the others, at the moment of the trigger event). Alternatively, we
can produce copies of the master clock at the same position, set them to the same time, and
transport them to whereever we need to measure time afterwards (protecting the transported
clocks against mechanical perturbations that might affect their rate).

The preceding discussion demonstrates how to define simultaneity on the basis of a causal
theory of time in the Newtonian context. In Newtonian physics, all events are causally con-
nectible, but if a pair of events is not simultaneous, the causal connectibility is only one-way.
So simultaneity could be succinctly defined as two-way causal connectibility.

Things become a little different, if there is an upper limit to how fast causal influences can
travel.15 Assume that light signals16 provide us with the fastest way of causal connection.
The before relation then becomes equivalent to “inside or on the past light cone”, the after
relation to “inside or on the future light cone”. For pairs of events, we do not only have the
possibilities of being one-way causally connectible or two-way causally connectible but also
that of not being causally connectible at all.17

The relation before as given above remains transitive, because if B is in the past light cone (or
on its boundary) of C and A in the past light cone (or on its boundary) of B, then A is also
in the past light cone (or on its boundary) of C, because the interior of the past light cone of
B is a subset of the interior of the past light cone of C. Similarly, the relation after can be
shown to be transitive. But the relation not before, meaning the same as outside the past light
cone is clearly not transitive, as it encompasses spacelike and future events, and it is possible
for B to be spacelike with respect to A and for C to be spacelike with respect to B with C
being in the past light cone of A.18 Nor is not after transitive and so the relation not before
and not after is not transitive either: A is not before B and not after B simply means that A
and B are spacelike (i.e., outside each other’s past and future light cones), and this does not
constitute an equivalence relation.

Eric Lord, knowing relativity and aware of the many misunderstandings and misrepresentations
of the theory on Research Gate, suggested to avoid the notion of simultaneity at a distance

14The relations “not before” and “not after” are transitive in Newtonian physics. They are not transitive in
special relativity.

15Note that in order to determine whether a signal travels faster or more slowly than another, we do not need
a definition of velocity (we are still in the process of working that out in detail and noncircularly). If we send
two signals from an observer OA at the same time – that defines an event A – to an observer OB , then the
faster signal is the one that arrives earlier, i.e., if the first signal arrives at event B1, the second at B2, and B1

is before B2, then the first signal is faster.
16Or other signals traveling at the limit speed, such as gravitational wave signals.
17And two-way causal connectibility becomes rare as it applies only to pairs of coincident events. Spatially
separated events are either one-way causally connectible or not causally connectible.

18This is most easily seen by an example. Assume we have introduced Minkowskian coordinates (ct,x,y,z) on a
flat spacetime. Then set A = (1, 0, 0, 0), B = (1, 2, 0, 0) and C = (0, 0, 0, 0). Obviously A and B are spacelike,
B and C are also spacelike, but C is in the past light cone of A, so A and C are definitely not spacelike.
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altogether, as it did not have a place in the relativistic context. Rather, (future or past-
oriented) timelike and spacelike are the only objective (and therefore meaningful) time ordering
concepts within relativity. At the time he made his suggestion, I did not have a really good
answer.19 It simply seemed that people wanted to have an idea of simultaneity even for very
distant events, where it does not make much sense. Now I have a better response: a notion of
simultaneity is needed to even be able to define the concept of a one-way velocity.20 And we
certainly do not wish to drop the notion of velocity from our vocabulary.

Therefore, we need some definition of simultaneity in relativity, too. Simultaneity should be
an equivalence relation on the set of pairs of events and it should satisfy the requirements
coming from a causal theory of time, i.e., simultaneous events should be either coincident or
not causally connectible. As we have seen, the latter condition is not sufficient to define an
equivalence relation in a world the causal structure of which is governed by light cone geometry.
Hence, we are at liberty (or under duty!) to introduce an additional criterion to produce a
valid definition of a simultaneity relation.

Simultaneity definitions

Einstein was aware of this freedom. In his paper introducing the special theory of relativity [4],
he emphasized that simultaneity of events at spatially separated points A and B is established
by definition, requiring the “time” light needs to travel from A to B to be equal to the the
“time” light needs to travel from B to A.21 Clocks at A and B are synchronized, if

tB − tA = t′A − tB , (1)

where tA and t′A are the departure and arrival times (on a clock at A) of a light signal sent from
A to B and reflected back there at time tB (on a clock of the same kind at B). The event at
A that is simultaneous to the arrival of the signal at B happens at t′′A = (tA + t′A) /2 = tB. As
stated by Einstein himself even many years later, this statement about simultaneity is “neither
a supposition nor a hypothesis about the physical nature of light, but a stipulation” [5]. In
particular, Einstein did not make it a requirement on the (one-way) speed of light, thus avoiding
circularity in his logic.

To state it clearly, Einstein did not assume the one-way speed of light to be the same in
the directions from A to B and from B to A, as is sometimes stated. Rather, the equality
of the two one-way speeds is a consequence of his definition of simultaneity.22 Moreover, it
is at this point only that we have an instance of a complete definition of a one-way velocity,
because now all the ingredients in the numerator and denominator of the velocity expression are
defined. The universality of the one-way speed of light then follows from Einstein’s definition
of simultaneity, as soon as it is established that the two-way speed of light is universal, i.e.,
with the formulation of the second postulate.23

19Of course, a reassessment of the notion of simultaneity was the foundation for the theory, without which it
would have been difficult to develop, suggesting that the concept should not be given up at least in special
relativity.

20Or, for that matter, of any time derivative, because that requires a synchronized time to be defined in a
neighbourhood of the point where the derivative is to be evaluated.

21Here, A and B are not events but spatial positions (or world lines). I could rename them in order to avoid
confusion, but I would like to keep Einstein’s notation. And I do not want to change my notation above either,
as many changes would be needed.

22And most likely, he chose his definition with this consequence in mind. Nevertheless, his own wording informs
us that it is at least inaccurate to claim he made an assumption about the speed of light in his definition of
simultaneity.

23Which happened after his definition of simultaneity at a distance [4], so Einstein did not have to indicate wether
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That Einstein’s definition is not compulsory, was discussed in some detail by Reichenbach [6].
He gave an alternative definition, containing a parameter ε that may take a value between 0
and 1. It is written as

tB − tA = ε(t′A − tA) , (2)

which may be recast in the form tB = (1 − ε)tA + εt′A and that obviously reduces to (1) for
ε = 1/2. As we shall see, this definition will lead, for ε 6= 1/2 to a different speed of light from
A to B than from B to A, which means that we will not get the same simultaneity relation by
using Eq. (2) to synchronize the clock at A with that at B as by using the same equation with
the roles of A and B interchanged to synchronize the clock at B with that at A.24 That is, the
sychronization procedure is not symmetric for ε 6= 1/2. We would get the same simultaneity
relation, however, if in addition to interchanging the roles of A and B, we would replace the
parameter ε by 1− ε (which for ε = 1/2 means keeping the same value of ε as before, so the
Einstein synchronization procedure is symmetric).

Before discussing more details, let us calculate the speeds of light in the directions A → B
(which we indicate by a subscript +) and B → A (indicated by −). If the spatial separation
is ∆s, we have

c+ =
∆s

tB − tA
=

∆s

ε(t′A − tA)
, c− =

∆s

t′A − tB
=

∆s

(1− ε)(t′A − tA)
, (3)

which, together with the result for the two-way velocity,

c =
2∆s

t′A − tA
, (4)

leads to

c+ =
c

2ε
, c− =

c

2(1− ε)
. (5)

It is easy to see that 1/c+ + 1/c− = 2/c, which expresses the second postulate in the absence
of the requirement of Einstein simultaneity.

To obtain a simultaneity relation in all of space, we may now use one clock at a fixed position
A as the master clock and distribute clocks at many different positions B throughout space
that are synchronized with the clock at A. This is using Reichenbach’s prescription at face
value and I will call the procedure point-centered Reichenbach ε-synchronization. The resulting
simultaneity relation has the peculiarity that on a straight line containing A the speed of light
is c+ for light moving away from A and c− for light returning to it. A light ray passing through
A will change velocity from c− to c+, and this holds for all directions. It is clear that this makes
the position of A distinguished and that therefore the same procedure centered at different

the postulate refers to one-way or two-way speeds. Had he given his two postulates before defining simultaneity,
the second postulate could have referred to two-way speeds only, because one-way speeds remain undefined until
simultaneity is defined.

24As I perceive it, in most discussions of the synchronization procedure, it is tacitly assumed that it is the clock
at B that is reset after the trip of the light ray from A to B and back. If the time shown by the clock at B on
arrival of the light ray was tB old, then synchronization with that at A means resetting it after the full round
trip of the light to its actual reading plus tB − tB old. Clearly, this cannot be done at time t′A, because after
the return of the light signal, only A has all the information (the times t′A and tA) needed to calculate tB . So
at least one more signal has to be sent to B, informing them about t′A (they can already know tA, of course).
Therefore, the way the procedure is described (i.e., without the last signal), it can be used to synchronize the
clock at A with that at B, not vice versa. In the case ε 6= 1/2, we will however wish to synchronize many clocks
with A, using Eq. (2), so the third signal will be tacitly implied.
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points will lead to different synchronies. While point-centered Reichenbach synchronization
enables the definition of a global time and hence leads to an equivalence relation that defines
simultaneity of distant events, the operational procedure is, as we have seen, not symmetric,
nor is it transitive, unless, of course, ε = 1/2, i.e., it reduces to Einstein synchronization.
The prescription cannot directly be applied to any pair of clocks, rather every clock must be
synchronized with the clock at A.

However, the basic approach described by Eq. (2) for a pair of clocks can be generalized easily in
a way not distinguishing a single point and giving the resulting simultaneity relation the prop-
erty of translational invariance. I will call this a directional (Reichenbach) ε-synchronization.
The approach is straightforward in a 1 + 1 dimensional spacetime (the spatial part of which
we identify with the x axis). Use the synchronization rule with parameter ε for clocks to the
right of A (i.e., having x > xA) and with parameter 1−ε for clocks to the left of A (i.e., having
x < xA). Obviously, this will set the speed of light equal to c+ for right-moving light rays and
equal to c− for left-moving ones. Arbitrary pairs of clocks along the line can be synchronized
by either synchronizing the right one with the left one using the ε rule or the left one with
the right one using the 1 − ε rule. Obviously, the synchrony so obtained will be the same
whether we synchronize all clocks with that at A directly or start a chain of pairwise clock
synchronizations B ← A, C ← B, etc.25

Suppose now that ť corresponds to an Einstein synchronized time. If we take the direction
A→ B to be the x direction of our frame of reference, with A at x = 0 and xB > 0, moreover
set the “Reichenbach time” t at x = 0 according to t = ť, then a light signal sent to B from A
will reach B at ťB = ťA+xB/c (because ť is Einstein synchronized) and at tB = tA+2εxB/c =
ťA +2εxB/c. Subtracting the two expressions, we find tB = ťB + (2ε− 1)xB/c. This holds for
any position B, so the relationship between the Reichenbach time t and the Einstein time ť at
position x > 0 is generally

t = ť+
2ε− 1

c
x . (6)

It is easy to see that the same relation holds for negative x, if we use the Reichenbach pre-
scription with 1− ε (i.e., tB = tA − 2(1− ε)xB/c). Moreover, Eq. (6) can be taken to define a
directional Reichenbach synchrony in all of three-space,26 and we may then derive the relation-
ship between any velocity v as measured with Einstein synchronization and the corresponding
velocity ṽ resulting for this particular Reichenbach synchronization:

ṽ ≡
dx

dt
=

dx

dť+ dx (2ε− 1)/c
=

dx/dť

1 + ((2ε− 1)/c)(dx/dť)
=

v

1 + ((2ε− 1)/c) vx
. (7)

You can easily check that if v is oriented along the x direction and the Einstein speed is c,
we recover ṽx = c+ = c/(2ε) for x > 0 (where dx/dť = c) and ṽx = −c− = −c/(2(1 − ε)) for
x < 0 (where dx/dť = −c).

A different way to interpret the synchrony established by Eq. (6) is to realize that it makes the
simultaneity of the frame considered identical to Einstein simultaneity in a frame S′ moving
relative to it at a particular velocity. Since ť is an Einstein synchronized time, the time
t′ of a certain frame moving at velocity v parallel to the x direction is given by a Lorentz
transformation as t′ = γ(ť − vx/c2), with γ = (1 − v2/c2)−1/2, i.e. t′/γ = ť + ((2ε − 1)/c)x,

25If we do not start the chain by synchronizing some clock with A, we will still get the same synchrony, but the
time coordinate established may differ from one where the chain is started at A by an additive constant.

26This is equtivalent to synchronizing a clock located on the ray with direction cosine cosα referred to the x axis
with that at the origin, using as parameter εα = (1+ (2ε− 1) cosα)/2. Clocks in the yz plane will therefore be
Einstein synchronized with that at the origin (because α = π/2).
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provided v = −c(2ε − 1). Hence, the time t is proportional to t′ with a constant (positive)
proportionality factor, so the sets of hyperplanes given by t′ = const. and t = const. are
identical. We could then make all inertial systems have the same simultaneity relations as
the Einstein synchronized system S′ by defining simultaneity in a system moving at velocity
u with respect to S′ using a directional ε synchronization with the orientation given by u

and its parameter by ε = (1 + |u| /c)/2). (This would give rise to Tangherlini’s [7] absolute
Lorentz transformation and S′ might be considered an absolute frame, defining simultaneity
for all others. Of course, it would be only pseudo-absolute, because any inertial frame could
be taken as the absolute one, not just S′.)

We have thus defined an alternative synchronization in flat spacetime that we may use as a
case in point when we wish to examine how functional relationships change in comparison with
the standard synchrony (which is the one chosen by Einstein). Of course, much more general
modifications of the simultaneity relation are possible. Consider a time

t∗ = ť+ f(r) . (8)

Any resynchronization of this type will leave the round-trip time of light invariant on any
closed path. Causality requirements impose an additional condition. For a light signal moving
from r1 to r2 the time taken is

∆t∗ = ∆ť+ f(r2)− f(r1) =
|r2 − r1|

c
+ f(r2)− f(r1) (9)

and this must be positive.27 The same holds for the time light takes from r2 to r1. Both
relations taken together yield the condition

|f(r2)− f(r1)| <
|r2 − r1|

c
, (10)

which for t∗ = ť+ax means that |a| < 1/c, and for a = (2ε− 1)/c this translates to 0 < ε < 1.

An even more general way (than that given by Eq. (8)) to generate a synchrony on a spacetime
is to use an arbitrary spacelike foliation of spacetime. A foliation of spacetime is a subdivision
into disjoint codimension-1 hypersurfaces the union of which gives the whole spacetime; it is
spacelike, if each hypersurface is spacelike. The hypersurfaces define equivalence classes and
their being spacelike ensures that these classes yield an appropriate simultaneity relation. Note
that in a general spacetime, a global foliation of this kind may not be possible.28 For a flat
spacetime – which is all we are concerned with in special relativity – such a foliation always
exists.

Before closing this section, I would like to mention that in order for one-way velocities to be
definable, we only need a locally valid definition of simultaneity, because a derivative with
respect to time can be defined as soon as we have a well-defined time variable in a small
neighbourhood of where the derivative is needed. The simultaneity definition plays an essential
role in the extension of the definition of a time coordinate along a world line to the surroundings
of that world line. It is well-known that extensions of local coordinates to a larger domain may
be limited by the appearance of coordinate singularities; in the case of the time coordinate,
such a singularity would prevent global validity of the simultaneity relation beyond the singular
point. If a local simultaneity relation can be maintained along the full path considered (let
us call it P), a velocity may still be well-defined along it, but due to the failure of global

27Or non-negative, if we are willing to admit infinite signal velocities. In that case the range of ε includes the
values ε = 0 and ε = 1.

28The Goedel universe [8], containing closed timelike curves, does not admit such a foliation.
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simultaneity, the average velocity between the endpoints of the path will not be given by a
simplified expression of the form ∆s/∆t, with t being a globally valid time coordinate, but
will rather take the form

〈v〉 =

∫

P
v dt

∫

P
dt

, (11)

where the time integration is along the path and involves the local time variable(s) compatible
with the local simultaneity relation.

This situation arises in the circular geometry leading to the Sagnac effect: locally, Einstein
simultaneity can be imposed everywhere along the circumference of the circle, but the corre-
sponding time coordinate develops a discontinuity when extended around the full circle. The
speed of light is c everywhere along the rim and in both directions and its average according
to (11) is c, too. But when the velocity is calculated as ∆s/∆t, where ∆t refers to the local
time at the position from which the light was emitted and to which it returns, the result will
be different from c and depend on the direction, with or against the sense of rotation, taken by
the light ray. This happens because the local time cannot be simultaneous with the time along
the light path in its entirety. Instead, there is at least one point, beyond which simultaneity
gets lost and the local time differs (by an additive constant) from the time along the light path.
Details are given in my small treatise Sagnac effect and uniform speed of light of August 21,
2023.

In the current exposition, I would like to discuss some possible attempts to refute the alleged
dependence of velocities on synchronization experimentally. Of course, if the logical situation
is the way I explained it, such a feat must fail. If velocities are not defined before simultaneity
is, then they cannot be determined experimentally without at least an implicit specification
of a synchrony. It may be useful to demonstrate this explicitly with concrete examples.

Velocity measurement using the Doppler effect

When thinking about ways to measure one-way velocities using a single clock, the first thing
that may come to mind is the Doppler effect. Suppose the moving object sends a monochro-
matic light signal towards ourselves, the observers, the frequency of which is known (because
the emitting device on the object was prepared beforehand). Then by measuring the frequency
of the signal that we receive, we should be able to infer the velocity of the object from the
Doppler shift between emission and reception, using no more than a single clock, right?29 Well,
let us find out...30

Consider ourselves being at rest in system S, in which we have synchronized our clocks ac-
cording to the Einstein procedure, establishing the time coordinate ť of Eq. (6). Assume the
object the unknown velocity v of which we wish to measure to be at rest in the system S′.
Choose the x direction to coincide with the direction of motion of S′. Let ω′ and k′ = ω′/c
be the (angular) frequency and wave number of the light wave emitted by our object in frame
S′. Measure the frequency ω in S. What will be the velocity?

The Lorentz transformations connecting the two systems read (if we suppress two uninteresting
spatial coordinates)

x′ = γ
(

x− vť
)

, t′ = γ
(

ť−
v

c2
x
)

, (12)

29Or even no clock at all, if we measure the wavelength instead of the frequency.
30A similar example to what I will discuss now was in the original version of my paper [1], but taken out before
publication, in order to avoid lengthy and “trivial” discussions.
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with γ =
(

1− v2

c2

)−1/2
and

x = γ
(

x′ + vt′
)

, ť = γ
(

t′ +
v

c2
x′
)

. (13)

To derive a relationship between the measured frequency and the velocity, we exploit that the
phase of the emitted light wave is a relativistic invariant. Writing for a component A(x′, t′) of
the wave (assumed to move from x′ > 0 towards negative x′)

A(x′, t′) ∝ ei(ω
′t′+k′x′) , (14)

we may therefore set

ω′t′ + k′x′ = ωť+ ǩx , (15)

where we denote the wavenumber in S with an inverted caret for reasons that will become
transparent later. Replacing x′ and t′ on the left-hand side with their expressions given by the
Lorentz transformation (12), we obtain an equation that must be identically satisfied in ť and
x, yielding expressions for ω and ǩ in terms of ω′ and k′. These read

ω = γ
(

ω′ − vk′
)

, ǩ = γ
(

k′ −
v

c2
ω′

)

, (16)

meaning that ω′, k′ transform like x, ť. Inserting the dispersion relation ω′ = ck′ that holds
in S′, we find

ω = γ
(

1−
v

c

)

ω′ =

(

1− v/c

1 + v/c

)1/2

ω′ , ǩ = γ
(

1−
v

c

)

k′ =

(

1− v/c

1 + v/c

)1/2

k′ , (17)

The first of these is of course the well-known formula for the relativistic longitudinal Doppler
effect, which we rederived in order to have a template for a similar derivation within a Rei-
chenbach synchronized system. From the second and first formulas together, we note that
the dispersion relation in S has the same form as in S′, ω = cǩ, which is no surprise. (Both
systems are Einstein synchronized.)

Solving the first equation from (17) for v, we obtain a prescription of how to calculate the
velocity from the measured frequency

v = c
1− (ω/ω′)2

1 + (ω/ω′)2
. (18)

ω may be measured using a single clock (and the emitted frequency ω′ could be tuned before
the experiment using the same clock), so the claim that we did not need two clocks to measure
a one-way velocity looks justified. However, Eq. (18) was derived assuming Einstein synchro-
nization in S (where we wanted to determine the velocity). So the result is not likely to be
independent of synchronization,31 a question that we will explore further now.

To do so, we derive the Doppler effect formula for a time variable t that is Reichenbach
synchronized according to Eq. (6). Note that it is perfectly feasible to set up such a synchrony
in a laboratory experiment. A way to achieve it would be to first define a Cartesian coordinate
system in our laboratory hall. Then we could install a grid of atomic clocks along the coordinate

31Since we relied on the assumption of a particular synchronization, it might be argued that what we really did
was to use as the second clock (needed for the determination of a one-way velocity) a virtual device, the reading
of which could be inferred via the synchronization assumption from that of the clock actually in use.
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axes and parallels to them, say with a mesh size of 10m × 10m × 10m (actually one clock at
the origin and one at a known distance of the order of 10m along each axis would suffice, i.e.,
four base clocks). Clocks in the yz plane are synchronized with the one at the origin via the
Einstein procedure, clocks in the x direction with respect to one of these are synchronized with
the Reichenbach ε prescription (for some ε 6= 1/2). All time measurements in the experiment
would then be made with local radio clocks that work in the style of GPS clocks, except that
they receive their signal not from satellites but from the grid clocks in the hall. With four
signals, each local clock can calculate its position and time based on the known anisotropic
velocity of light along each spatial direction.32 In such a lab, measurement of time independent
quantities would give the same results as in any ordinary lab (which would sport an Einstein
synchronized clock system), even time intervals at fixed positions would remain the same, but
time intervals measured between different positions would normally be different. No physical
phenomenon would of course run differently. What would change is the description of certain
dynamical phenomena, because we would use a different time coordinate.33

Of course, the phase of a light wave would still be invariant, so we can equate the phase in S′

and that in the now Reichenbach synchronized system S:

ω′t′ + k′x′ = ωt+ kx , (19)

where in writing ω we anticipate that the frequency measured at a fixed position in S (i.e.
with one clock) is independent of which of the two synchronizations under consideration we
use. However, we write k for the wave number instead of ǩ, because we cannot expect the
wavelength to remain unchanged. (The wavelength is the distance between two successive
maxima of the oscillation at a fixed time. But the meaning of “fixed time” at the – different
– positions of the maxima is synchronization dependent.)

Let us introduce the abbreviation

aε =
2ε− 1

c
. (20)

Then we have ť = t − aεx and can easily derive, using the Lorentz transformation (12), the
coordinate transformations between (x′, t′) and (x, t):

x′ = γ(x− v(t− aεx)) = γ(1 + aεv)(x− ṽt) , (21)

where

ṽ =
v

1 + aεv
. (22)

ṽ has been introduced, as it clearly has the meaning of the velocity of system S′ with respect
to S, when the time in S is directionally Reichenbach synchronized with parameter ε. This is
trivial to see: set x′ = 0, this implies x = ṽt. It is then useful to express all quantities that
depend on v by ṽ:

v =
ṽ

1− aεṽ
⇒ γ =

(

1−
ṽ2/c2

(1− aεṽ)
2

)−1/2

=
1− aεṽ

[

(1− aεṽ)
2 − ṽ2/c2

]1/2
. (23)

32Alternatively, the local clock could calculate its time and position within an Einstein synchronized coordinate
system and then apply Eq. (6) to obtain its directionally Reichenbach ε-synchronized time.

33Hence, simultaneity at a distance is not a physical relation but a coordinate-like relation. It involves an element
of choice like the choice of coordinates.
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Moreover,

t′ = γ
(

t− aεx−
v

c2
x
)

= γ

(

t−

(

aε +
ṽ/c2

1− aεṽ

)

x

)

, (24)

and, eliminating v from (21), using 1 + aεv = 1 + aεṽ/(1− aεṽ) = 1/(1− aεṽ), we finally get:

x′ =
γ

1− aεṽ
(x− ṽt) , t′ = γ (t− bεx) , bε ≡ aε +

ṽ/c2

1− aεṽ
(25)

It is seen immediately that for ε = 1/2, i.e., aε = 0, this reduces to the standard Lorentz
transformation with ṽ = v.

The inverse transformation will not actually be needed in this section, but is given here for
reference (and use in a later section):

x = γ

(

x′ +
ṽ

1− aεṽ
t′
)

, t = γ

(

t′

1− aεṽ
+ bεx

′

)

. (26)

Note that the first of these equations tells us that S is moving with respect to S′ at velocity
−ṽ/(1− aεṽ), which is not the negative of ṽ (but is, of course, equal to −v). As stated in the
introduction, the velocities of S′ in S and of S in S′ are not reciprocal, if one of the systems
is not Einstein synchronized.

Using (25) in (19), we are able to derive the Doppler effect formula. We have

ω′γ(t− bεx) + k′
γ

1− aεṽ
(x− ṽt) = ωt+ kx (27)

and collecting coeffidients of t and x, we arrive at

ω = γ

(

ω′ −
ṽ

1− aεṽ
k′
)

, (28)

k = γ

(

k′

1− aεṽ
− bεω

′

)

, (29)

showing that ω′ and k′/(1 − aεṽ) transform like x and t. Using ω′ = ck′ again,34 we find for
the frequency

ω = γω′

(

1−
ṽ/c

1− aεṽ

)

(30)

and, using the definition of γ (Eq. (23)), we get

ω

ω′
=

1− aεṽ − ṽ/c
[

(1− aεṽ)
2 − ṽ2/c2

]1/2
=

(

1− aεṽ − ṽ/c

1− aεṽ + ṽ/c

)1/2

. (31)

This can be easily solved for ṽ (square, multiply with the denominator of the right-hand side,
collect terms linear in ṽ)

ṽ =
1− (ω/ω′)2

aε (1− (ω/ω′)2) + (1 + (ω/ω′)2) /c

34The dispersion relation for ω is not ω = ck. We have k = γ (k′/(1− aεṽ)− (aεc+ ṽ/(c(1− aεṽ))) k
′). Then,

k = (γk′/(1 − aεṽ))
(

1− aεc+ a2

εṽc− ṽ/c
)

= (γk′/(1 − aεṽ))(1 − aεṽ − ṽ/c)(1 − aεc) and many terms cancel
when we take the ratio between frequency and wave number: ω/k = c/(1 − aεc) = c/(2(1 − ε)) = c−. This is
of course completely consistent with our previous calculation of the speed of light for “left-running” waves.
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⇒ ṽ = c
1− (ω/ω′)2

1 + (ω/ω′)2
1

1 + aεc
1−(ω/ω′)2

1+(ω/ω′)2

. (32)

Obviously, this will reduce to (18), if aε = 0. For general ε, we obtain the relationship

ṽ =
v

1 + aεv
, (33)

which shows that the velocities ṽ and v correspond to the same state of motion, the former
for system S with directional Reichenbach synchronization, the latter for S with Einstein
synchronization.

Hence, if the same experiment is done twice in the same system S but with the two different
synchronizations, the measured frequency will be the same in both instances, but it will be
considered as measurement of different velocities (that however correspond to the same physical
state of motion). The reason is that the actual quantity measured is not a velocity but
a frequency and that theoretical reasoning is required to turn the frequency result into a
velocity measurement. In practice, this kind of theory-weighted indirect evaluation is frequent
with all modern experiments, as the observation of very microscopic or very distant objects
requires indirect methods that are far from straightforward input to our senses. (And even
what appears to be direct input often is already interpreted data the moment we become aware
of it.) To obtain the desired result from the observed quantity, we usually need theory. In
the case of a velocity measurement via the Doppler effect, this theory provides the connection
between the actually measured quantity, a frequency, and the quantity to be determined, a
velocity. That connection is different for different synchronizations. Therefore, even though
frequencies can be measured at one position with the help of a single clock, we cannot use this
to determine a one-way velocity independent of synchronization.

The same Doppler shift has to be interpreted as originating from different velocities of S′ on
the basis of different synchronizations. Physically, the two situations are nevertheless indistin-
guishable. Velocities have a gauge degree of freedom that they inherit from the corresponding
ambiguity of synchronization, so they take a definite value only after fixing of the gauge.

Velocity of a moving rod

Another suggestion to measure a one-way velocity using just a single clock is based on the
following idea: suppose you know the length L of a train; then you can measure its velocity by
positioning yourself next to the track, starting your stopwatch when its front end passes you
and stopping it when its back end passes you. If the time interval on your stopwatch reads ∆t,
then the train’s velocity was L/∆t, assuming the train did neither accelerate nor decelerate
during its passage by your position.

This approach clearly works within Newtonian mechanics, and it is based on the implicit
assumption that the length L of the train is velocity independent.35 If it was not, you would
not know the length unless you knew the velocity, the quantity you wish to determine. However,
if you know the velocity dependence of the length, it may still be possible to extract the velocity
of an object from a measurement of its length and of the passage times of the two ends at a
given position.

To turn this into a high precision laboratory experiment, let us replace the train by a (reason-
ably rigid) rod of rest length L. We measure L before setting the rod in uniform motion. Call

35Another assumption (that we will not call into question) is that all points of the train move at the same velocity.
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the rest system of the rod S′ and the positions of its left and right ends x′l and x′r, respectively.
The laboratory system is S and we measure the times ť1 and ť2 when the right and left ends of
the (right-moving) rod coincide with a predetermined position x1 (that initially is to the right
of xr). The conditions determining the two times are then x1 = xr(ť1) and x1 = xl(ť2). As
the naming of the laboratory times suggests, we work with Einstein synchronized clocks first
and will consider the more complicated case of a directional Reichenbach ε-synchronization
later. The goal is now to develop a formula for the velocity v of our rod that depends on
the measured quantities L and ∆t = ť2 − ť1 only. In the Einstein synchronized case we could
easily guess a formula using our knowledge about the relativistic length contraction. Never-
theless, we will approach the matter with somewhat more rigor, because this will clarify how
to proceed within other synchronizations.

Let the right end of the rod coincide with x1 at time ť1. Then the transformations (13) give
us:

x1 = xr(ť1) = γ(x′r + vt′1) , ť1 = γ(t′1 +
v

c2
x′r)

⇒ x1 = γ

(

x′r + v

(

1

γ
ť1 −

v

c2
x′r

))

= γ

(

x′r

(

1−
v2

c2

))

+ vť1 =
x′r
γ

+ vť1 . (34)

Moreover, if the left end of the rod coincides with x1 at time ť2, we have by an analogous
calculation:

x1 = xl(ť2) =
x′l
γ

+ vť2 , (35)

and subtracting (35) from (34), we find

0 = xr(ť1)− xl(ť2) =
x′r − x′l

γ
+ v(ť1 − ť2) =

L

γ
− v∆t , (36)

which yields

v =
L

γ∆t
, (37)

which is an implicit equation for the velocity, as γ depends on v. It has a simple interpreta-
tion: in system S (with Einstein synchronization), the length that has moved past x1 in the
measuring time interval is L/γ instead of L, due to the Lorentz contraction. So the velocity
must be L/(γ∆t), rather than L/∆t. Fortunately, the algebra is simple enough to calculate v
in explicit form:

v2 =
L2

∆t2

(

1−
v2

c2

)

⇒ v2
(

1 +
L2

c2∆t2

)

=
L2

∆t2

v =
L

∆t

1
(

1 +
L2

c2∆t2

)1/2
. (38)

A measurement of the velocity v would then be achievable by measuring the rest length L of
the rod and the time interval ∆t at one position (i.e., a single clock would suffice) passed by
the moving rod, and evaluating the result using formula (38). However, that formula is based
on assuming Einstein synchronization of clocks in S.

Let us now pretend that the experimenters in S use directional ε-synchronization and, for
simplicity, that the rod moves parallel to the x axis determinig the orientational anisotropy of

15



the synchronization.36 Then the procedure to obtain a velocity formula is essentially the same
as before, except that we now need the transformation (26) instead of (13).

Let the right end of the rod coincide with x1 at time t1:

x1 = xr(t1) = γ(x′r +
ṽ

1− aεṽ
t′1) , t1 = γ

(

t′1
1− aεṽ

+ bεx
′
r

)

,

⇒ t′1 =

(

t1
γ
− bεx

′
r

)

(1− aεṽ) ,

x1 = γ

(

x′r + ṽ

(

t1
γ
− bεx

′
r

))

= γx′r (1− bεṽ) + ṽt1 . (39)

The parenthesis containing bε can be rewritten in a more useful form:

γ (1− bεṽ) = γ

(

1− aεṽ −
ṽ2/c2

1− aεṽ

)

= (1− aεṽ) γ

(

1−
ṽ2/c2

(1− aεṽ)
2

)

=
(23)

1

γ
(1− aεṽ) .

(40)

Inserting this in the last equation from (39), we obtain

x1 = xr(t1) =
x′r
γ

(1− aεṽ) + ṽt1 , (41)

which bears a lot of resemblance to the last expression in (34) (and in fact reproduces it for
aε = 0).

A completely analogous calculation for the left end x′l arriving at x1 at time t2 provides

x1 = xl(t2) =
x′l
γ
(1− aεṽ) + ṽt2 , (42)

and subtracting (42) from (41) we get

0 = xr(t1)− xl(t2) =
x′r − x′l

γ
(1− aεṽ) + ṽ(t1 − t2) =

L

γ
(1− aεṽ)− ṽ∆t , (43)

where ∆t has the same value as in the calculation for the Einstein synchronisation, because it
refers to a time difference at one position (x1) and the Einstein time ť and the Reichenbach
time t differ by a constant offset at a fixed position, so the difference ť2 − ť1 = t2 − t1.

We arrive at an implicit equation for ṽ,

ṽ =
L

γ∆t
(1− aεṽ) , (44)

where now γ should be expressed as a function of ṽ (via Eq. (23)). Again, we can solve
explicitly for ṽ via a quadratic equation:

ṽ =
L

∆t

(

1−
ṽ2

c2(1− aεṽ)2

)1/2

(1− aεṽ)

⇒ ṽ2 =
L2

∆t2

(

(1− aεṽ)
2 −

ṽ2

c2

)

36In the Einstein synchronized case, we could simply choose the x axis to lie along the direction of motion of
the rod, because all directions are equivalent due to isotropy of space and the synchronization. In the case
of ε 6= 1/2, the synchronization and the direction of motion of the rod both define a direction in space and
coincidence of these two directions is but a special case. The general case can of course be treated, too, but is
more complicated, so we prefer to restrict generality here.
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⇒

(

1 +
L2

c2∆t2
−

L2a2ε
∆t2

)

ṽ2 + 2
L2

∆t2
aεṽ −

L2

∆t2
= 0 , (45)

with the positive solution of the quadratic equation given by

ṽ =
−

L2

∆t2
aε +

L

∆t

√

1 +
L2

c2∆t2

1 +
L2

c2∆t2
−

L2a2ε
∆t2

=
L

∆t

√

1 +
L2

c2∆t2
− aε

L

∆t

1 +
L2

c2∆t2
−

a2εL
2

∆t2

=
L

∆t

1
√

1 +
L2

c2∆t2
+ aε

L

∆t

,

(46)

and we end up with the neat explicit formula

ṽ =
L

∆t

1
(

1 +
L2

c2∆t2

)1/2

+ aε
L

∆t

. (47)

Clearly, this reduces to (38) for aε = 0. Moreover, it is easily verified that ṽ from (47) and v
from (38) satisfy the relationship ṽ = v/(1 + aεv).

Again, we see that in S with the indicated Reichenbach synchronization, measurement results
of L for the rest length of the rod and ∆t for the time interval in the “single-clock velocity
measurement” produce the “measured velocity” ṽ rather than v. Since the same values for
L and ∆t (measurable independently of the synchronization) lead to different values for the
velocity (either v or ṽ), it is logically inevitable that without a synchronization specified, the
experiment does not yield any meaningful value for the velocity. (The naive L/∆t is incorrect,
except for sufficiently small velocities, where the Newtonian limit is approached. Even then,
the relative error of the Newtonian result in comparison with the Reichenbachian one is of
order L/(c∆t), if aε 6= 0, not even quadratic in the small quantity.)

The Sagnac effect

As a final example, I would like to consider the Sagnac effect, which can be used to measure an
angular velocity by an interference experiment. Stefano Quattrini claimed that, consequently,
it is possible to obtain the rotational velocity of a Sagnac gyroscope independent of any
synchronization via observation of the phase shift of the interference pattern (between rest
state and rotating state of the gyrometer), and that this experiment does not need any clocks.
He is dead wrong about the synchronization independence.

I will not discuss this at the same level of detail as the methods from the two preceding
sections. A description of the Sagnac effect from scratch in a directionally ε-synchronized
system might become pretty complicated. However, from experience with our two preceding
examples we may obtain a velocity formula valid in the context of a directional Reichenbach
ε-synchronization in a rather direct way, without the detour of the Lorentz transformations
(where now arbitrary directions of the velocity within the plane would have to be considered,
so we would need the Lorentz transformations with more than one spatial dimension involved).

In my treatise of 21 August 2023 on the Sagnac effect, I derived the phase shift formula within
the lab system in a somewhat sloppy way (actually following other authors in this respect...),
evading discussions of the longitudinal Doppler effect that affect the waves along the ring.
There is no such effect in the corotating frame, so the derivation within that frame is more
rigorous. The end formula is nevertheless correct and agrees with literature results. Still, I
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would like to briefly discuss the Doppler effect here, so as to not completely sweep it under
the rug.

For visualization, it is useful to imagine the light source on the disk to be a point source
emitting spherical waves.37 While surfaces of constant phase of the emitted light signal will
be spherical in any inertial frame of reference (due to the universal speed of light),38 these
spheres will be concentrical only in a local inertial frame comoving with the source. For the lab
observer, seeing a rotating disk, when two successive wave crests are emitted in the “forward”
(i.e., corotating) direction, while the first will have traveled a distance c∆t (where ∆t is the
inverse of the frequency) from its emission point, the second is not emitted from the same
point but from a point v∆t to which the source has followed the first crest. Therefore, the
wavelength (the distance between two crests) will not be c∆t but (c − v)∆t, i.e., it will be
shortened by a factor of 1 − v/c. In addition, the frequency in the lab frame is reduced by
a factor

√

1− v2/c2 due to time dilation, meaning ∆t and, concomitantly, the wavelength is
increased by the inverse of this factor. The combined effect is a relativistic Doppler effect
in the forward direction, decreasing the wavelength by a factor of ((1 − v/c)/(1 + v/c))1/2.
Considering the counterrotating direction, we find that while a crest travels c∆t, the source
moves v∆t in the opposite direction, so the distance between two successive crests increases
by a factor 1+v/c. The time dilation effect is the same as before, resulting in a Doppler effect
in the backward direction that increases the wavelength by a factor ((1 + v/c)/(1 − v/c))1/2.
Therefore, the interference pattern resulting when the two waves meet again after having
circled the disk, will consist, within any region at rest in the inertial frame of the disk center,
of a superposition of two waves of different frequencies. As a consequence, it will not be
stationary,39 but drift at constant velocity. In fact, the velocity turns out to be exactly the
rotation velocity of the disk rim, i.e., in a reference frame attached to the disk, the interference
pattern will be a standing wave, it will not move.

Its wavelength turns out to be the emission wavelength (in the source frame), modified in the
inertial frame by the factor

√

1− v2/c2, which is the length contraction of the standing wave.40

This is understandable, as the standing pattern in a disk stationary frame would correspond
to a receiver that moves away from the source in the forward direction at the same speed
as the source itself moves towards it, so the Doppler effect at the receiving end of the signal
precisely cancels the Doppler effect of the source.41 When looking towards the oncoming signal
in the counterrotating direction, the receiver follows the source in a way to keep the distance
constant, which again cancels the Doppler effect. This is why Kevin Brown in his “Reflections
on Relativity” (https://www.mathpages.com/rr/s2-07/2-07.htm) emphasizes that there is
no Doppler effect in a Sagnac device.

Then the result for the phase shift in a Sagnac gyrometer rotating at angular frequency Ω (as
measured in the lab) is

∆ϑ = γ2
8π

λc
AΩ =

1

1−Ω2R2/c2
8π2R2

λc
Ω , (48)

37The wave packets traveling along the circumference will in any case behave the same way as the parts of a
spherical wave “cut out” by the disk perimeter.

38At this point, our discussion is in terms of the standard synchronization used in special relativity, i.e., Einstein
synchronization.

39This is what a direct calculation shows.
40Of course, this is not the wavelength of the interference pattern on a screen. It is much too small to be visible to
the eye, with optical frequencies. If the pattern is visualised on a screen, the latter is typically oriented almost
parallel to a surface of constant phase. If it makes a very small angle α with such a surface, the visible pattern
has a trace wavelength λ/ sinα ≫ λ, which is the distance between constant phase surfaces intersecting the
plane of detection.

41The distance of source and receiver remains constant along the arc.
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where A is the area enclosed by the light path and the second formula holds for a circular
path with radius R (i.e., A = πR2). If I recall correctly, Quattrini gave his corresponding
formula only for the nonrelativistic limit, i.e., without the prefactor γ2. I do not wish to
neglect this factor, however, as we have seen in the last section (and could verify in the section
preceding that one as well) that in the Newtonian limit, i.e., if all terms of linear or higher
order in the ratio between the velocity and the speed of light are neglected, then there will
be no difference between the results for Einstein synchronization and directional Reichenbach
ε-synchronization.42 Since it is this difference we are interested in, we should accurately take
into account relativistic effects.

We can easily solve Eq. (48) for the (positive) rotation velocity v = ΩR of the interferometer:43

v = c







[

(

4π2R

λ∆ϑ

)2

+ 1

]1/2

−
4π2R

λ∆ϑ







. (49)

According to Quattrini, this would imply a velocity measurement independent of synchro-
nization, as it could be done without two clocks (in fact, not even a single clock seems to be
necessary to measure the quantities on the right-hand side, i.e., R, ∆ϑ and the wavelength λ).

But of course, Einstein synchronization was assumed in deriving (49), from the very beginning:
the time difference between the two light rays going around the disk in opposite directions,
from which the phase shift can be inferred, was calculated using the speed of light to be
c in either direction, in the inertial system where the disk center is at rest. Moreover, the
wavelength on the right-hand side is also a quantity taken to satisfy νλ = c, where ν is the
frequency of the light; Einstein synchronization is implicit here as well.

In order to assess the value of Quattrini’s claim, we may consider the velocity expression that
holds under the assumption of a different synchronization. If that gives a different velocity for
the same measured quantities, then the claim is clearly invalid.

To make things more interesting, let us imagine a world, a planet called Rivusdives, where
clocks have been synchronized from ancient times according to a particular Reichenbach ε-
prescription. This might have its origin in ancient religious perceptions. Suppose, for example,
that the night sky of Rivusdives sports the spectacular view of three close-by cepheids aligned
along a straight line, all oscillating with exactly the same period. Let their distances be 2 ly
(light years), 4 ly, and 6 ly, and the offset of their oscillation maxima be 1 and 2 weeks,
respectively.44 In the mythology of the people on Rivusdives, these three brilliant stars that
oscillate almost synchronously might become the symbol of a god or of a goddess’s tool. If
the Rivusdivians were as inclined as the Maya on Earth to fashion their calendars (and their
timekeeping in general) according to astronomical phenomena, they might use the oscillation
period (which could be a few to somewhat above a hundred days) as the basic unit of their
time reckoning, in particular, if it happens to be close to an integer fraction of the length of
their year. It is not unconceivable that they would develop the idea of the mightiest goddess of
all manifesting herself under the sign of trinity (there are similar religious beliefs on Earth...).
Clearly, the fact that the three stars do not seem to oscillate exactly synchronously must be
due to some imperfection on the side of the measly believers. Of course, the Rivusdivians
would find a solution as their astronomical capabilities increase: that the three celestial clocks
do not seem to be synchronous comes from the fact that the speed of light is finite and so they

42The velocity of our moving rod will then be given by L/∆t in both synchronizations.
43Clearly, ∆ϑ and Ω must have the same sign, so we require the positive solution to the quadratic equation for
v (for positive ∆ϑ).

44This is an ambiguous statement. To make it precise, take it to be valid in the rest frame of the three stars
(which have no proper motion) with the standard Einstein synchrony.
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are seen at different points of their oscillation period, even though they have the same phase
at the same time. Taking into account the running time of the speed of light, the Rivusdivians
would find that they can get the three star-clocks into synchrony, but only if they assume the
time light takes to such a star to be slightly different from the time it takes on the way back.
That is, they could synchronize them assuming a directional Reichenbach ε-synchronization
with ε 6= 1/2. Now, modern times have come, but there are still vestiges of the influence of
the olden times, so the religiously motivated convention for simultaneity has been kept (just
as the seven-day week has been kept in our society in spite of the decimal system having taken
over in most other calculational activities).

In the modern world, Rivusdivians would have high-precision atomic clocks based on a GPS
like system with satellite based clocks replaced by a grid of master clocks, aligned with the
direction inscribed into space by the alignment of the three cepheids, which would give the
anisotropy direction of the synchrony. Of course, the clocks of the grid would have to be
mounted on rotating platforms that compensate for the rotation of the planet itself, so that
the grid axes would remain parallel and orthoghonal to the alignment of the cepheids.

Formulating laws of nature, Rivusdivians would note some peculiarities. For example, a disk
set in rotation by a short impulse along its rim would, as long as the friction between its axle
and the bearing is negligible, rotate at constant angular velocity, if it was oriented in the yz
plane, but the angular velocity would vary in the same experiment, if it was oriented in the
xy plane. Our theoretical knowledge allows us to deduce why. The disk in the yz plane would
be described with a time coordinate that is isotropically synchronized in that plane, so it is
equivalent to Einstein synchronization there. However, the disk rotating in the xy plane would
have an angular velocity Ω̃ that it calculable from its – constant – angular velocity Ω in an
Einstein synchronized frame according to (assuming the center of the disk to be at x0)

Ω̃ =
dϕ

dt
=

dϕ

dť+ aεdx
=

dϕ/dť

1 + aεd(R cosϕ+ x0)/dť
=

Ω

1− aεRΩ sinϕ
, (50)

that is, the angular velocity is oscillatory in time! The scientists of that world with its cepheid
goddess would also note that this oscillation is purely kinematical. It would not be visible –
the disk would seem to rotate completely uniformly, the light speeds from different parts of the
disk conspiring so harmoniously that the impression to the eye (arising due to a combination
of light arriving at the same time at the eye, not due to light sent at the same time) would
be that of a uniformly rotating disk. Also, measurements of stresses inside the disk would not
reveal any deviation from cylindrical symmetry, whereas Ω̃ from (50) breaks that symmetry
explicitly. Nevertheless, the non-uniformity would be measurable by surrounding the disk with
a set of directionally ε-synchronized clocks at equidistant arclengths, each of which notes the
time a marker painted on the rim at a fixed point of the disk passes the clock. Time intervals
at which successive clocks are passed would not be exactly equal but have a ϕ dependent
modulation.

Another peculiarity of the world described would be that mechanical clocks that Rivusdivians
would have been able to produce before their GPS based electronic ones and that did not
exchange radio signals with the master clocks to continually resynchronize themselves with the
grid would have a tendency to lose synchronization with the master clocks on journeys along
the x direction. On the other hand, the same clocks would easily keep their synchronization
with the grid when moved along a plane parallel to the yz plane, as long as the motion was
not too fast.

Finally, as the science of Rivusdives continued to develop, someday a genius named Unuslapis
might enter the stage and suggest that the goddess-given anisotropy of the world would dis-
appear if a different synchronization was introduced that did not even need master clocks but
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could be done completely internally. It would make a rotating disk behave the same no matter
what direction its axis of rotation was pointing. Slow clock transport would not lead to any
desynchronization depending on the direction of motion. Some scientists would embrace the
new world view, rendering some theoretical aspects much simpler than the preceding theories
of natural science. Others would be opposed, claiming that simultaneity must be a physical
given and one was not at liberty to choose a synchronization. The battle between the different
factions would continue even a hundred years after the first paper of Unuslapis in which he
declared synchronization to be definable in other ways than the one given by the trinitarian
goddess.

One reason, why I am telling this story (apart from it being fun) is that it gave me the oppor-
tunity to introduce Eq. (50). The “natural” state of a rotating disk in directional Reichenbach
ε-synchronization is not that with constant angular velocity. Rather, the rotation rate of he
disk circumference is a function of the position angle ϕ. Now, normally one cannot determine
an infinite set of values (the function values for different angles ϕ) from a finite set of mea-
surements, so it would seem difficult to measure the angular velocity of the disk and, with it,
the velocity of its rim in a Reichenbach synchronized world. How could a single value of the
phase shift in a Sagnac experiment determine the infinitely many different velocities of the disk
circumference? Of course, Rivusdivian scientists would have an answer to this - the angular
velocity of Eq. (50) has a well-known (to them) functional dependence on the angle, so all a
measurement must determine is the single parameter Ω that makes the relation quantitative.45

The vectorial velocity of a point of the disk rim is given according to Eq. (7) by

ṽ =
v

1 + aε vx
=

v

1− aεv sinϕ
, (51)

where x = x0 + R cosϕ implies vx = dR cosϕ/dť = −RΩ sinϕ = −v sinϕ. We are interested
in the absolute value

ṽ = |ṽ| = v/(1− aεv sinϕ) . (52)

(Note that |aεv| < 1 always.)

All we need now to convert Eq. (49) into an expression for the rotation velocity of the disk
measured on Rivusdives (for a disk rotating in the xy plane) is a way to express the wave-
length λ by a measurable quantity in that world. A problem that seems to pose itself is that
this wavelength is simply a constant in the standard expression, uniquely determined by the
frequency of the light source at rest. On Rivusdives, the wavelength of a light source is not a
constant at constant frequency, it is direction dependent, since the speed of light is direction
dependent itself. However, we can in fact measure the constant λ on Rivusdives as well, simply
by measuring the wavelength in a similar experiment in the yz plane. Then the following will
certainly be a correct formula in the particular Reichenbach ε-synchronization of Rivusdives:

ṽ = c
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(53)

The quantities R, ∆ϑ and λ are all measurable, the first two being independent of synchro-
nization and the last determinable as discussed. Of course, the constant c is measurable, too,

45The functional dependence would be different for different angles of the axis of rotation of the disk with the
anisotropy axis of the synchronization, but the scientists of Rivusdives would have figured that out as well and
take it into account after measuring the relevant angle, which would be easy as they would know the anisotropy
direction given by the three cepheids.
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as the two-way speed of light. Hence, measurement of the phase shift ∆ϑ (plus the three other
parameters, which can be measured before the Sagnac experiment) allows us to determine
the angle dependent velocity of the rim of the disk rotating in the xy plane on Rivusdives.
Of course, this velocity will not in general agree with the velocity measured in the case of
Einstein synchronization, according to Eq. (49). Hence, the claim of that measurement being
independent of synchronization is wrong, even though the four quantities to be measured for
the determination of the right-hand side will be the same in both synchronizations. The point
is (again!) that the theoretical results connecting the quantities actually measured with the
quantity to be determined are different in different synchronizations. (In the Newtonian limit
λ∆ϑ/(4π2R)≪ 1, however, we obtain v = ṽ = cλ∆ϑ/(8π2R).)

It may be useful to point out that Quattrini has taken two contradictory positions in our various
discussions of the Sagnac effect. The first is the aforementioned one, viz. that measurement of
the phase shift in the Sagnac effect allows us to determine the rotation velocity independent
of any synchronization, the second the claim that the Sagnac effect proves the existence of a
preferred frame of reference in the rotating system viz. a non-Einstein synchronized frame, in
which the speed of light is constant but different in the two directions. (That synchronization,
which I have termed central synchronization, is global on the circumference and can even be
made global on the whole disk, provided a non-standard time coordinate is admitted.)

Why do these two claims contradict each other? Well, suppose the first was true. Then the
determination of the rotation velocity via Eq. (49) would be the unique possible velocity result
compatible with the experimental phase shift ∆ϑ. If it is obtainable without prior (implicit or
explicit) setting of the synchronization, then it must set the synchronization itself, which would
then be physical and not conventional. But the synchronization so proven to be the correct
one would be Einstein synchronization. All derivations of the Sagnac phase shift in the non-
rotating system that I know of assume that system to be an (Einstein synchronized) inertial
system.46 Since the result applies to all inertial systems in which the center of our rotating disk
could be at rest, we would thus have proven that the only physically valid synchronization for
such a system would be Einstein synchronization. Because Einstein synchronization in inertial
systems moving at different velocities implies the relativity of simultaneity, this relativity would
be physical as well. Meaning that there would be no absolute synchronization. Moreover, for
local inertial systems no other than Einstein synchronization would be admissible as well
(which could be proven by considering a disk small enough that it fits into the local system).
Therefore, when going to a description of the rotating system in terms of many local inertial
frames along the rim, the only admissible synchronization for these would also be Einstein
synchronization. And I have shown in Sagnac effect and uniform speed of light that indeed
such a description is possible for the Sagnac effect. But that is not the description advocated by
Quattrini’s second claim, where he rather favors a non-Einsteinian “preferred” synchronization.
However, as we have seen, this would not be allowed as a consequence of his first claim...

Discussion and Conclusions

Occasionally, the statement is made that it is impossible to measure the one-way speed of
light. This is not accurate: obviously, one can measure the one-way speed of light as soon as
the synchronization is fixed, i.e., as soon as a working definition of simultaneity at a distance
is given. On the other hand, without a simultaneity definition (at least an implicit one), no
one-way velocity can be measured at all – the problem is not just one of the velocity of light.
This is something Veritasium has not understood in his video Why No One Has Measured
the Speed Of Light (https://www.youtube.com/watch?v=pTn6Ewhb27k), when he says in the

46As the velocity of light along the circumference is taken to be c in both directions.
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introduction: “We can’t measure the speed of light the same way we measure the speed of
anything else”. In fact, we can. Either we cannot measure both speeds (if we don’t have a
synchronization) or we can measure both of them (if the synchronization is fixed). The title of
the video implies a falsehood,47 unless we argue that it has become correct after the redefinition
of the meter in terms of the speed of light, which sets the limiting speed for causal interactions
to a fixed value and turns any measurement of that speed into a gauge measurement for our
length unit instead.

A typical argument against the measurability of the one-way speed of light is that if we use
Einstein synchronization to synchronize two clocks and measure the speed of light with these
two clocks on the basis of the definition of velocity (i.e., measuring their distance and the time
difference between the emission of a light signal from one clock and its arrival at the other), then
it is a tautology that the measured speed must be c, the known two-way speed, so we have not
measured but set the one-way speed. That may be true for the first measurement immediately
after synchronization of the clocks. But it does not hold for later following measurements.
There is no need to synchronize the same clocks a second time and subsequent measurements
of the speed of light using these clocks (kept at their positions) will tell us that the one-way
speed of light does not change with time. And this result is a genuine measurement result!

Of course, all of this begs the question what we should consider a valid measurement. The
three experiments discussed all do not measure the velocity directly, but some quantities from
which the velocity can be inferred via known theoretical relationships. In fact, I know of no
experiment that measures a velocity directly. The most direct way I can imagine is to measure
the distance between starting point and arrival point and the departure and arrival times and
to use the definition of velocity. What has been measured is positions and times, but the
theoretical relationship producing a velocity from these raw data is a definition and as such
infallible, so this kind of measurement might be accepted as not being indirect.

An answer to this question might be gathered from an anecdote told by Heisenberg. The
young Heisenberg had a very positivist view as to how to construct a physical theory and he
wanted to apply this to the new quantum mechanics that he was going to develop. During
a visit of Einstein, Heisenberg told him to believe himself that all concepts entering a theory
should be based on observable quantities (thus barring metaphysics). Einstein was doubtful
and pointed out: It is theory that decides what is observable. Heisenberg was duly impressed
and subsequently softened his positivist attitude.

There can be little doubt that Einstein was right. Only theory can tell you what you can expect
to observe in a particular experiment. Now measurements are simply particular observations,
viz. observations with a quantitative outcome. So it is theory that tells you what is measurable
and how. If you have a valid theory giving you the velocity from the measurement of some
other quantities, then that measurement constitutes a velocity measurement, albeit possibly
a relatively indirect one. In all three experiments discussed, this was the case. We had
a theoretical formula giving the velocity from the two measured frequencies in the Doppler
measurement,48 we had one in the case of the moving rod, measuring the rest length and the
time interval the rod took to pass a stationary clock, and finally we had a theoretical prediction
for the rotation velocity of the circumference of a Sagnac interferometer, with the essential
measured quantity being the phase shift. However, the theoretical formula was synchronization
dependent. While I gave the result for Einstein synchronization at first and separately in
all cases, only the formula for the directional Reichenbach ε-synchronization was actually

47The two-way speed of light has been measured many times and with Einstein synchronization this implies
a measurement of the one-way speed of light in the same sense as our three examples constitute velocity
measurements.

48The method is used in traffic control to detect the violation of speed limits via radar Doppler shifts.
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necessary, because it includes Einstein synchronization as the special case ε = 1/2. The
important point is that the result of the velocity measurement was synchronization dependent
even though the directly measured quantities were not.49

Some authors,50 when discussing synchronization issues in special relativity emphasize the
“circularity” of Einstein’s definition by claiming that synchronization relies on the equality
of the one-way speeds of light whereas the universality of the one-way speed of light follows
from Einstein synchronization. This is a misunderstanding, as I have pointed out before.
Einstein synchronization does not assume anything about the speed of light – its definition
only involves times, not speeds. It better had not, because (one-way) speeds are not defined
before synchronization is.

Synchronization is logically prior to the definition of any velocity. It does not need velocities
for its definition, but the velocity definition requires a synchronized time. Note that the times
appearing in the definition of synchronization are local times at A and B, not instances of an
already synchronized global time (where global means extended over a region containing A
and B), so there is no circularity there either. (Of course, after a resetting of the clock at A
or B in order to synchronize the two times, they do constitute instances of a common time,
extending over a whole region.)

This logical priority of a definition of synchronization over that of a velocity is not understood,
ignored or even denied by many, although it actually clarifies the issue. Why is this so? Be-
cause velocity is a concept that everybody believes to understand, whereas far fewer persons
have thought in depth about synchronization. In fact, historically, the definition of velocity
precedes definitions of synchronization.51 Newton’s absolute time made thinking about syn-
chrony obsolete; its absoluteness implied its objectivity, if it was observable at all.52 Therefore,
Newtonian time provides us with a global definition of simultaneity,53 which is implied in the
definition of velocities, essentially without thinking. Then everybody thinks they know what
kind of beast a velocity is and since this knowledge did not involve simultaneity or the necessity
of synchronization, they do not buy the logical priority of this concept, on a gut level.

General relativity has taught us otherwise. It is, among other things, a theory of spacetime.
In it, time is not absolute. Spacetime is.54 A spacetime point is describable by a four-vector,
which is an objective entity, in principle. Time is one component of the representation of
such a four-vector and, as such, not objective.55 If time is not objective, observers in different

49This holds for the first two examples. In the Sagnac effect case, the wavelength of light was obtained from a
measurement in an Einstein synchronized plane. I simply did not want to develop an even more complicated
formula, in which this wavelength was expressed via an angle dependent wavelength in arbitrary directional
ε-synchronizaton.

50For example Ohanian [9].
51This is true, if we don’t count in St. Augustine’s polemics against the validity of horoscopes, where he invoked
simultaneity of two distant births by having two wanderers walking from one place towards the other at the
same speed and meeting in the middle. The two newborns should have the same horoscopes but if one was
born into a rich house, the other into a poor one, they were not likely to have the same destiny... But that
“definition” is not as well-known as scientific velocity definitions from Galilei’s time.

52Absoluteness means being-so independent of anything else. Objectivity means observer invariance. So if an
entity is absolute and observable, it is also objective. An example for an absolute and non-objective entity is
the absolute time of Lorentz ether theory, which gives that theory an absolute simultaneity. Unfortunately, this
absolute time is unobservable and, hence, not objective.

53An in-depth discussion of how this can be derived on the basis of the notion of causal connectibility was given
above.

54One might argue against the absoluteness of spacetime by pointing out that matter tells spacetime how to curve,
so spacetime is dynamically dependent on its matter content, which makes it non-absolute. But this dynamics
is an internal dynamics resulting from an interpretation of spacetime geometry in terms of a splitting in space
and time. On the other hand, there is no external time, in which the four-dimensional spacetime would vary.
It is only static geometry and its absoluteness is to be understood in this sense.

55Remember the simple example of a force in Newtonian mechanics. It is a three-vector and objective, having
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places may experience time differently, i.e., experience different times. A velocity definition,
in which the two times appearing are not instances of a common time but actually different
and unrelated, would not make much sense. It could take arbitrary values that are not related
to each other by some transforation law. Therefore, it is necessary to define a common time
at the two positions appearing in the velocity definition. This implies that it must be possible
to say what it means that the time is the same at the two positions, hence the necessity of a
simultaneity definition.

Since time is but a coordinate in most contexts of general relativity, a common time will be
given by a coordinate that is global on a patch of spacetime. Obviously, there will be many
possible choices for such a coordinate, as there are only a few restrictions for a coordinate to
qualify as a time coordinate. Hypersurfaces of constant time must be spacelike. If they are,
they already define a simultaneity relation. The conventionality of simultaneity then follows
from the freedom of choice of coordinates describing spacetime.

If considered from this general relativistic viewpoint, there can be no doubt about the question
of conventionality of simultaneity. Presumably, most if not all experts on general relativity
will agree that simultaneity at a distance is not a matter of physical fact but a matter of
convention.

Arguments against the conventionality of simultaneity have been given by persons who typi-
cally know the special theory of relativity well and insist on Einstein synchronization having
more than conventional significance in inertial systems. The question of simultaneity in accel-
erated or gravitating systems is often disregarded, although it seems a bit unsatisfactory to
answer the question of conventionality of simultaneity only for inertial systems.

There are also adherents of the idea that simultaneity is not conventional and that Einstein
synchronization is not the “correct” way to establish simultaneity, advocating for example
the existence of a hidden preferred synchronization that reestablishes absolute simultaneity
(which would make Lorentzian ether theory a theory representing truth more closely than
special relativity). Usually, followers of these ideas do not have a comprehensive grasp of
special relativity. In particular, they are unaware of the (covariant) formulation of special
relativity in arbitrary coordinates. Their supporting arguments are often based on incorrect
application of the theory (purporting to show its “absurd consequences”).
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