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I will mostly base my discussion on Refs. [1] and [2]. Of the latter I have, however, only
found a preprint version on the web, so there may be some differences from the published
paper. Finally, I will have a very brief look at the application of the theory to the Mössbauer
experiment.

The first thing to note when looking at the YARK theory is that it is not a complete theory
of gravity, contrary to general relativity (GR). The YARK theory never produces any field
equations that would allow to calculate the gravitational field for arbitrary mass distributions.
Instead, its consideration of gravity is restricted to the case of a point mass or to the field
outside a spherically symmetric mass distribution (anticipating that a variant of Birkhoff’s
theorem also holds under the assumptions of the YARK theory). The title of [1] exaggerates,
because only two results of general relativity are reproduced,1 i.e., the weak-field results for
light deflection and the perihelion precession. The Shapiro effect is not considered nor is there
any discussion of geodetic precession (de Sitter effect) or rotating systems with their frame
dragging effects (Lense-Thirring effect). These predictions of GR have been confirmed as well
as some strong-field effects – gravitational waves from the Hulse-Taylor binary (and a new one
where both neutron stars are pulsars) or gravitational waves from the merger of black holes or
neutron stars. If the YARK theory makes deviating predictions for these cases, it is falsified.
But the predictions apparently have not been worked out in the more than 10 years since the
inception of the theory. Nor have the authors come up with field equations so far.

Energy conservation

The title of the paper [1] seems strange, insinuating that there is no energy conservation in
GR, which is clearly wrong. The field equations satisfy energy conservation locally, but this
is not the kind of energy conservation considered by Yarman anyway. He considers energy
conservation of a test mass in a static gravitational field. This kind of energy conservation is
also satisfied in GR. I will later comment on the use of “quantum mechanics” (QM), appearing
in the title as well.

Yarman starts from the obsolete concept of rest mass. Had he ever switched to the modern
language, in which this is called invariant mass, he might have avoided some conceptual
pitfalls. Invariant mass means that the mass does not change under a change of the frame of
reference. It does not mean that the mass of a combined system cannot be smaller than the
sum of its constituent masses. Invariant mass is not a conserved quantity, so it can change
dynamically. But it is a scalar in special relativity, so it is the same in all inertial systems. It
remains a scalar in general relativity, thus it does not change in a gravitational field either.
The rest energy, which sometimes still is a useful concept, does change in a gravitational field.

Here are the mathematical details in GR, because I want to compare points of view a bit: the
four-momentum of a particle may be written

P ≡ (pµ) =

(

−E

c
, p1, p2, p3

)

, (1)

1And with so little detail that it is difficult to verify whether the calculation is correct or not.
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where E is the energy of the particle and p1, p2, p3 are the components of its (ordinary)
momentum along the three coordinate directions. This is a four vector, i.e., its length is
unchanged under a change of reference system, and this holds also if the change is to an
accelerating or gravitating system. But that length is imc,2 where m is the invariant mass.
Using the standard formula for the scalar product of P with itself, we have

P 2 = −m2c2 = pµg
µνpν = g00

E2

c2
+ g11p21 + g22p22 + g33p23 , (2)

where Einstein’s summation convention has been used after the second equal sign. To obtain
the last equality, I have assumed that the metric is diagonal (which is the case for the standard
form of the Schwarzschild metric). Assume now that the particle is coordinate stationary, i.e.,
its spatial coordinates do not change. Then the pi, i = 1 . . . 3, are zero and E becomes the
rest energy:

E2 = −g00m
2c4 ⇒ E =

√

|g00|mc2 =

√

1− rs
r
mc2 , (3)

where I first use that, in the case of a diagonal (or just time-orthogonal) metric, 1/g00 = g00
and have set g00 equal to the value it has in the Schwarzschild metric in the last formula.
rs = 2GM

c2
is the Schwarzschild radius. What equation (3) tells us is that E = mc2 does not

hold in gravitational fields, which should not come as a surprise, given that it does not hold
for moving particles either.

We may then – sometimes – interpret the difference EB = mc2
(

1−
√

|g00|
)

as the binding

energy of the particle in the gravitational field. When can we do so? Whenever we make
sure that the particle does not accelerate, otherwise energy conservation from GR tells us that
the total energy of a particle dropped from rest at infinity will remain E = mc2, with the
difference between that energy and the rest energy being now kinetic energy (and the particle
will remain unbound if it does not get close to the event horizon, i.e., it will escape back to
infinity). One way to avoid the accumulation of kinetic energy is to slowly lower the particle
in the gravitational field at the end of a tether. Then it will exert a force on the other end of
the tether and lowering it in the field will release work that might be stored in a spring. This
way it can get rid of its binding energy and its total energy will be mc2 − EB.

3

Let us return to the YARK theory. I have not found the “derivation” of Newton’s law from
special relativity (SR) that the author claims to have achieved. This claim can only be false in
my opinion, because on the one hand, SR is compatible with other forms of static fields, e.g.,
the Yukawa potential, and because, on the other hand, I know where the form of Newton’s law
comes from and this has nothing to do with SR. Both Newton’s universal law of gravitation for
a point mass and Coulomb’s law for the electrical force exerted by a point charge have a 1/r2

dependency. This is easy to explain as a consequence of Gauss’s theorem. If we assume that
the gravitational (electric) field has no sources in vacuum, i.e., field lines of a static field can
end only in masses (charges), then the divergence of the force field must be zero there. A static
spherically symmetric field has necessarily vanishing curl and if we require the field to vanish
at infinity (sufficiently fast) then Helmholtz’s theorem tells us that the only possibility is the
1/r2 dependence outside the central mass (charge).4 Nowhere does this argument require SR.

2We take the signature of the metric to be (−,+,+,+), so spatial components of four vectors have positive sign
with respect to their 3D counterparts.

3Note that a local observer will still assess its energy to be mc2, due to the slower rate of his proper time,
compared with that of an observer at infinity.

4That is, we have a one-parameter set of solutions, with the parameter determining the mass or charge.
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Helmholtz’s theorem implicitly assumes Euclidean space. So deviations from the flatness of
space allow deviations from Newton’s law. But an appropriately defined divergence in the
curved space still vanishes, because in a static field, there are no sources of gravitation in
vacuum. Contrary to the Newtonian case, this observation is not quite sufficient to derive the
full Schwarzschild metric [3], but is nevertheless helpful.

My conclusion is that Newton’s law, corrected by a binding energy modification, is not really
derived in Yarman’s development. It is an assumption. That assumption is justified in the
weak-field limit, but it will miss higher-order corrections (1/r3, 1/r4 etc.) [4]. Not necessarily
all of them, because the binding-energy argument gives a deviation from 1/r2, but it is not
guaranteed to get the exact deviation. In fact, given what we know from GR, we can do an
exact calculation on the basis of energy conservation. We know that the exact potential of the
Schwarzschild gravitational field is given by

Φ(r) =
c2

2
ln

(

1− 2GM

rc2

)

⇒ −dΦ

dr
= −GM

r2
1

1− 2GM/rc2
. (4)

Note that for large r, the first expression reduces to the Newtonian potential and the second
to the magnitude of the Newtonian force per mass unit. Assuming then that the energy of the
particle in the field is mc2 − EB, we get in the same style as Yarman:

EB(r) =

∫

∞

r

(

mc2 − EB

) 1

c2
dΦ

dr
dr (5)

dEB

dr
− EB

c2
dΦ

dr
= −m

dΦ

dr
, (6)

which is a first-order differential equation for EB that can be solved easily, noting that the left
hand side is just eΦ/c

2 d
dr e

−Φ/c2EB and that after multiplication with e−Φ/c2 both sides of the
equation are total derivatives:

EB = mc2
(

1− eΦ/c
2
)

= mc2

(

1−
√

1− 2GM

rc2

)

, (7)

where we have set EB = 0 at infinity, as a boundary condition. So we do obtain the correct
value for g00 here, if we use the exact potential. Yarman’s result is an approximation valid
in the limit where the potential can be replaced by its Newtonian value. To this order, the
coefficient g00 can, in fact, be obtained from the equivalence principle [5]. There is no need to
invoke the field equations, and that is, of course, the reason why the simple considerations of
Yarman give the correct approximate result here.

A few words on the equivalence principle may be in order. Yarman asserts in different places
that the gravitational mass and the inertial mass are different in his formalism, thus violating
the weak principle of equivalence. He does not care too much, because he thinks he has
something better. However, there are theorems that make such an attitude careless.

First, there is a theorem saying that any metric theory of gravitation5 must obey the equiva-
lence principle. Since Yarman essentially constructs the approximate g00 from energy conser-
vation and “derives” a first-order approximation to g11 from QM, as we shall see, he should
obtain agreement with GR to that order, unless he seriously blunders in the equations of
motion. Therefore, his theory must satisfy the equivalence principle. I have rederived his

5I.e., a theory where the equations of motion of test particles are derived from a metric using the standard
Lagrangian obtainable from it.
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equations of motion and compared them with those from GR. At lowest, i.e., Newtonian or-
der, there is agreement; the first post-Newtonian order does not seem to agree, but I would
have to check that in more detail and this would be a lot of work. That he gets light deflec-
tion and the perihelion precession right would suggest agreement. But then his theory must
satisfy the equivalence principle. What he overlooks in denying its validity is, in my opinion,
that with his introduction of a new definition of rest mass there are two rest masses now –
the rest mass “according to the observer at infinity” and the rest mass according to a local
observer, obtained by dividing the former quantity by the time dilation factor

√

|g00|. The
equivalence principle is a local statement for inhomogeneous gravitational fields, therefore it is
the latter mass that figures in the equivalence principle, not the former one. With this taken
into account, presumably the equivalence principle will continue to hold in his theory.

Second, the converse is also true, i.e., if the equivalence principle holds6 and we can find a set
of global coordinates for the system, then the theory can be expressed as a metric theory of
gravitation, because the equivalence principle is sufficient to derive the equations of motion
locally and all we then have to do is to transform them to the global coordinates. Thence, of
the two problems in a theory of gravitation which are to find equations that determine the
gravitational field given the mass-energy distribution and to find equations of motion for test
masses in the field, the second is solved by applying the equivalence principle.7

Quantum mechanics

Let us next discuss the use of quantum mechanics for the evaluation of the “stretching of
lengths”. Basically, the argument suggests that time dilation lowers the energy of a quantum
mechanical system (because of the energy-frequency relationship E = hν). This must then
change the size of atoms, because their radii are inversely proportional to their energy. Instead
of using an atom, it is easier to argue with a photon, where we get the de Broglie wavelength
λ = h/p = hc/E = c/ν, which goes up as the frequency decreases.

Now the idea that this may be used to explain a “size increase” predicted by the metric is
based on a misconception that roughly corresponds to assuming that Greenland is about one
third the size of Africa, because it looks so large on maps.

Inspecting the map on a globe instead, we note that Greenland is much smaller and we realize
that the size distortion on the flat map arises due to the fact that meridians (lines of constant
azimuthal angle ϕ) are piling up towards the pole, so when they are drawn as constant-distance
lines on a flat map, size distortions necessarily must occur.

The proper radial length element in the Schwarzschild metric is dℓ =
√
g11 dr =

(

1− rs
r

)

−1/2
dr.

If a ruler of this length is moved towards the center of the coordinate system, then dℓ does not
change. But the density of constant r coordinate surfaces changes. As dr becomes smaller,
fewer surfaces fit into a length dℓ, i.e., the (proper) distance of constant r surfaces separated
by equal intervals ∆r increases. Note that basically the same thing happens in SR with a
ruler that is set in motion. Its proper length does not change. The length with respect to an
observer at rest in the original inertial system contracts, and this can be easily measured by

6But this should be the Einstein equivalence principle, which is a little stronger than the weak equivalence
principle and says that special relativity applies locally in freely falling frames.

7SR and the equivalence principle imply local energy conservation for the test masses. If the global coordinate
system is stationary, this also implies global energy conservation. So Yarman’s energy conservation postulate
cannot give more than the equivalence principle.
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comparing the end points of the ruler with marks on a measuring rod next to it and at rest in
the original inertial system. So there is a meaning to saying the length has been contracted.
But we cannot compare the length of a ruler that has been moved into the gravitational field
with that of a rod next to it and outside the field. The nearby rod cannot avoid getting into
the field, too. Moreover, it would be wrong to state that the length for the “distant observer”
is dr and therefore, the size decreases. That would be similar to saying that Greenland really
has a bigger area for an observer at the equator than for a local observer.8

Our considerations suggests that a possible size change of atoms or photons in a gravitational
field cannot be discussed in these simple terms. We must think a little more carefully. If we
wanted to apply quantum mechanics directly, we might have to solve the Schrödinger equation
in a gravitational field. That looks difficult. Can we proceed in a simpler way? Let us see.

However, the first point that I would like to debunk here is that the proportionality between
energy and frequency is of quantum mechanical origin. Actually, the relationship E = hν
was first derived9 theoretically using the correspondence principle, i.e., as a requirement on
quantum mechanics to make it agree with classical physics in the limit of large quantum
numbers! In fact, a relationship between energy and time or frequency follows from the
classical Hamilton-Jacobi equation. If energy is conserved (i.e. the Hamiltonian is constant in
time), the action function solving the Hamilton-Jacobi equation can be obtained by separation
of variables and has the form S(q, t) = −Et + f(q). If we assume that the action between
two points on the world line of a particle is a relativistic invariant (there are good reasons
to assume this), then we get, for fixed spatial coordinates infinitesimally apart, that Edt is
invariant. Therefore, if we have time dilation between two frames, then the ratio of energies
E1/E2 of the same object observed in the two of them should be inversely proportional to the
ratio of their temporal rates dt1/dt2. Another approach would be to look at the phase space
trajectory of a classical harmonic oscillator. We find

∮

pdq = E/ν and the integral represents
the action for a full oscillation. Requiring it to be invariant, we have E ∝ ν, without ever
invoking quantum mechanics.

Second, if instead of atoms we just consider photons and treat them as electromagnetic waves
with wavelength λ = cph/ν, where cph is the phase velocity, there is no need to invoke quantum
mechanics either to obtain length relationships. What I would like to say with these remarks
is not that I object to using quantum mechanics in making statements about size relationships
but that I would like to avoid the “mystic” impression that these follow basically from quantum
mechanics. They are obtainable from classical mechanics alone but they must of course hold
in QM, too, for consistency reasons.

Let me then discuss the statements made by GR about frequency and wavelength changes in
the metric, to contrast this with the YARK theory. Consider a photon sent from radius r0 to
infinity and arriving there with frequency ν. What was the frequency it had when leaving its
sender, as described in the global coordinate system? We have energy conservation. Gravity
is just the curvature of spacetime, so there is no extra potential describing it. Therefore, the
frequency of the photon will be ν along its entire trajectory. That is the point of view of the
“observer at infinity”.

Actually, one has to be careful describing things this way, because it is not uniquely determined
what will be the results of the observer at infinity when we are referring to events far from that

8For lines of constant ϕ on the sphere, the opposite happens as a ruler oriented parallel to circles of latitude is
moved towards the north pole: their density gets higher.

9It was first used by Planck as a postulate, and that was of course a quantum mechanical approach. But derivation
is not the same as postulating.
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observer. It is better to speak of the description in terms of a certain global coordinate system,
because that gives cleaner definitions. For example, when we describe events in terms of the
Schwarzschild coordinates on the one hand and in terms of Painlevé-Gullstrand coordinates
on the other hand, then both coordinate systems become Minkowskian at infinity and both
have the same rate for the global time at any set of fixed spatial coordinates. Nevertheless,
the foliations of spacetime are different for the two sets, meaning their notions of simultaneity
differ. As a consequence, an infalling particle will cross the event horizon of a Schwarzschild
black hole only after infinite time for an observer at infinity describing the course of events in
Schwarzschild coordinates, but after a finite time for the same observer, if he chooses Painlevé-
Gullstrand coordinates instead. Therefore, the statement that something happens this or that
way for an “observer at infinity” is less precise than the statement that it happens this or that
way in these particular coordinates. Anyway, I will refer to Schwarzschild coordinates here
only, and this should clarify what is meant by the views of an observer at infinity.

Given that the frequency of our photon is ν everywhere in terms of the global time coordinate,
we can easily calculate its frequency at finite r as observed by a local observer. Such an
observer has a proper time that is slowed down by a factor of

√

|g00| with respect to the
observer at infinity, so the emission frequency at r0 was

νL0 =
ν

√

|g00(r0)|
=

ν
√

1− rs
r0

, (8)

and a local observer at r will see the photon at the frequency νL = ν/
√

|g00(r)|. In order to
have energy conservation with this varying frequency, a potential is needed. That is Φ(r) from
Eq. (4), and the energy of the photon along its course is given as the sum of its “kinetic energy”

Eν = hν (1− rs/r)
−1/2 and its potential energy Epot = hν

[

1− (1− rs/r)
−1/2

]

.10 So the local

frequency of the outgoing photon decreases and we have a redshift. The local wavelengths are
then given by

λ =
c

ν
(9)

at infinity and by

λ0L =
c

νL0
=
√

|g00(r0)|
c

ν
=

√

1− rs
r0
λ (10)

at r0. Suppose now we measure, at infinity, the spectrum of a hydrogen atom that emits light
at r0. We will receive all the spectral lines redshifted by some factor 1 + z, meaning their
frequency is lowered by a factor 1/(1 + z) by comparison with the corresponding frequency of
a local hydrogen atom. The wavelength is increased by a factor 1 + z. From Eq. (8), we read

off that 1 + z = 1/
√

1− rs
r0
. The lowered frequency would correspond to the size of an atom

that is larger by a factor 1 + z (energy ∝ 1/aB, where aB is the Bohr radius). But lengths at

the emission point are smaller by a factor
√

1− rs
r0

= 1/(1+z) – if all lengths behave the same

way as the wavelength of a photon. So the atom at the emission site actually has precisely the
same size as an atom at infinity.

Hence, we cannot argue with a size change due to quantum mechanics to obtain the factor
g11 or grr of the metric. In fact, this kind of argument is similar to that of Schiff [6], in

10It is easy to calculate Epot from an integral similar to Eq. (6).
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which he tried to derive the metric factor for the radial-radial component from the length
change of rods dropped in the metric. This kind of argument typically gives the inverse of the
time-time component of the metric as the radial-radial component. That it does not work,
can be seen from a counterargument given by Rindler [7], in which he demonstrates that
the same kind of argument applied to the parallel gravitational field (arising in an elevator
accelerating uniformly with Born rigid motion) gives the wrong metric, i.e., the argument does
not reproduce the Rindler metric, in which all spatial metric coefficients are one (whereas the
argument would suggest the one of them corresponding to the direction of acceleration to
depend on the time-time component).11

Now, the Yarman paper does not argue with metric coefficients, but it changes radial and,
apparently, also azimuthal lengths “as assessed by the distant observer”. While this, if trans-
ferred to a description in terms of a metric might give a reasonable result for the grr component,
an additional change of the gϑϑ and gϕϕ components would be wrong. Neither of the changes
would have been well justified.

To summarize, the “derivation” of the spatial part of the metric in the YARK theory is flawed.
It is an argument without a sound basis, but since the author knew what the solution of the
field equations in GR looks like, he was able to fabricate a description that seems to agree
to first order in the Schwarzschild radius with the known exact solution.12 Therefore, the
YARK theory should reproduce GR results at lowest post-Newtonian order, if the equations
of motion are correctly derived. According to the author, it reproduces light deflection and the
perihelion precession, which would not be surprising given the way it was constructed with an
approximation that is correct for the piece of the metric that can be derived via the Einstein
equivalence principle and an alternative version of the Schiff argument, known to be wrong
but giving the right answer.

Then the application of the YARK theory to the Mössbauer experiment should reproduce
the GR result (k = 1

2
), because that is definitely a weak-field situation. Since it does not,

according to [8], the theory must have been incorrectly applied. I will briefly look at this in
the next section.

Application of the YARK theory to the Mössbauer experiment

The calculation given by the authors of [8] is lengthy, so rather than trying to redo every step,
I glanced through it attempting to spot blatant errors immediately. And I found one that I will
report here. Whether that will destroy the result, I do not know. I suspect it does, because it
happens in the middle of the calculation and anything that follows cannot be trusted.

The authors here work with a metric explicitly and transform it in a number of ways. They
have expressions in Eq. (23) of [8] which I suspect to be already wrong, because the metric is
conformally flat instead of flat as it should, but that is not my point. What is definitely wrong
is the transformation from (23) to (24). In fact, it is difficult to understand how the authors
could produce such a beginner’s error.

11The size-stretching argument from quantum mechanics would also give a spatial metric component different
from one in the Rindler metric. So that metric works as a counterexample for the YARK theory as well.

12Since he does not give a metric, it is not clear whether he effectively changed more than the radial coefficients,
in which case his result would disagree with GR even at lowest nontrivial order. But then he would not get the
correct results for light deflection etc., unless a second error compensated the first.
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I consider only the transformation of the time variable and the spatial variable in the local
direction of motion. These are called dt and dx for a disk observer and dtL and dxL for an
(inertial) observer located outside the rotating system. The authors then state that “involving
the known relativistic effects of time dilation and contraction of a moving scale along the
direction of motion, we obtain”

dtL = dt/γ ,

dxL = dx/γ ,

γ = 1/

√

1− u2

c2
⇒ 1

γ
≈ 1− u2

2c2
(11)

and they plug this into the metric and peacefully continue their calculation.

This strongly suggests that they do not understand time dilation nor length contraction!

What is the problem? The coordinate differentials in the line element of a metric are inde-
pendent. We may plug in total differentials to get the line element for arbitrary coordinate
increments. However, the differentials for time dilation and length contraction are not total
differentials. In fact, they are derived from the Lorentz transformations, say

dt′ = γ
(

dtL − u

c2
dxL

)

dx′ = γ (dxL − udtL) . (12)

Time dilation is then obtained by considering a clock at fixed spatial coordinate in the primed
system, i.e., we set dx′ = 0 and get first dxL = udtL and, on inserting this in the equation for
dt′, we find

dt′ = γ
(

dtL − u

c2
udtL

)

= dtL/γ . (13)

We could identify this with dt and insert it in the metric,13 but then we would be obliged
to replace dx by zero and would not have any dxL dependence left in the metric. Because
the time dilation formula requires a certain relationship between dxL and dtL, they are not
independent.

Length contraction is obtained from (12) by setting dtL = 0 (the length must be measured at
a fixed time in the system where it is moving). This gives immediately

dx′ = γdxL , (14)

which corresponds to the relationship between dxL and dx given by the authors. In principle,
it is possible to use dxL in the line element, but then the dependency dt′ = − u

c2
γdxL = − u

c2
dx′

following from the condition on dtL must be used and again we would not have four independent
differentials.

Even if the differentials are not inserted into a metric, we are not allowed to use the formulas
dtL = γdt and dxL = dx/γ together in the same expression, because they hold under different
conditions. When the second formula holds, we must have dtL = 0, so the first does not hold!

13Note that this result differs from dtL = dt/γ obtained by the authors. Clearly, time must run more slowly
on the rotating disk than in the laboratory, so the authors are wrong here regarding the “direction” of time
dilation. We must have dtL > dt.
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The correct transformation automatically including time dilation and Lorentz contraction
effects is of course the Lorentz transformation itself. But using that will most likely not lead
to the desired result k = 2

3
.

In any case, given that the YARK theory should, in the weak-field limit, reproduce the pre-
dictions of GR,14 a correct calculation would yield k = 1

2
, which is the GR result.

That leaves us with not having any correct calculation predicting k = 2
3
. Given that many

early experiments indeed gave k = 1
2
with precisions excluding k = 2

3
, it would perhaps be

good to reconsider the re-analysis [9] of Kündig’s experiment [10] by the authors.

I have read both papers and may read some of the other accounts of similar experiments
(e.g. Champeney). What I noted is that the authors of [9] base their criticism of [10] largely
on a calibration curve (Fig. 5 in [10]) that, as they say, does not describe the data. They then
recalculate the calibration curve from the digitized data and obtain a different result.

I would like to point out that Kündig does not really say that the calibration curve given
in Fig. 5 was used to analyse the data from Figs. 3 and 4. Rather he says that calibration
measurements were done every few days. Certainly, it would not be good scientific practice to
publish a calibration curve that was actually not the one used to generate the measurement
data. But it is not impossible that this happened and that the data used for the calculation
of k were evaluated using another one of the several calibration curves produced.

Moreover, it should be noted that the re-analysis of Kündig’s results gave k ≈ 0.6 rather than
k = 2/3 and that the later experiment, in which the extra energy shift was confirmed [11]
gave a k value between 0.68 and 0.69. So the Kündig result is almost midway between k = 1

2

and k = 0.68. Moreover, it is not clear that the newer experiment was better. Kündig had
a nifty way of eliminating the effect of vibrations, whereas apparently all other experiments
had to somehow remove their influence on the result by appropriate processing of the data.
This presumably meant modeling of the vibrations. If that modeling was not quite correct, it
might systematically affect the final result.

If we take together the high quality of the original data of Kündig, the possibility that the
calibration curve that he published was not the one used and the fact that a number of
different authors also got k = 1

2
in different setups, it does not seem unconceivable that this

is the correct result.

However, I agree that the experiment should be repeated more carefully to see whether the
deviation of k towards higher values does persist. I understand that most experimentalists are
reluctant to do so. It is difficult to gain reputation from this kind of experiment – if the result
from fifty years back is reinforced, it is not new, moreover there are more accurate experiments
than the Mössbauer method that give k = 1

2
and it is difficult to beat their accuracy with

Mössbauer. Of course, it would be important, if k > 1
2
turned out to be true. Apparently, not

many experimentalists believe this will happen (and make them famous).
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