
Light deflection by the sun

Klaus Kassner 2 January 2015

After my discussion with Charles Francis about the two “contributions” to light deflection
in the gravitational field of the sun following from the equivalence principle – one by
refraction and one by acceleration – I decided to check whether I cannot show that these
two contributions correspond in fact to the same physics. This turned out to be relatively
simple, but to my surprise, it yielded a method to compute, via Fermat’s principle, the
full contribution to the deflection, including both the equivalence principle and the spatial
curvature contribution, without ever encountering a Christoffel symbol!

Charles’s refraction calculation is based on Fermat’s principle of geometric optics. The
variation of the local speed of light due to time dilation leads to an effective refractive
index different from 1 of the vacuum. While Charles’s calculation is straightforward, I will
start from the general principle, because I want a pretty general proof.

Fermat’s principle requires

δF = 0 for F =

∫

ds

c(s)
, (1)

where ds is the length element of the geometrical path of the light ray, and c(s) is the
local speed of light. The endpoints of the path are supposed to be given. In the following,
I will slightly abuse notation, in taking c for the universal speed of light and c(x) for the
coordinate speed of light corresponding to some point x.

If, instead of using geometrical optics to describe light, we take a Newtonian point of view
that light consists of particles governed by some energy-conserving equations of motion,
we have, instead of Fermat’s principle, the Hamiltonian principle of least action:1

δS = 0 for S =

∫

Ldt , (2)

where L is the Lagrangian of the problem.

To make these principles work, we need to specify the speed of light in the first and the
Lagrangian in the second case.

The speed of light in a gravitational potential Φ that we assume to be weak, varies due
to time dilation at different potential heights. That dilation can be calculated using the
equivalence principle. The result is:

c(r) = c

(

1 +
Φ

c2

)

. (3)

It is easy to check that this agrees with Charles’s result, if we take for Φ the potential of
a spherical mass distribution:

Φ = −
GM

r
. (4)

1Actually, we only require the action to be stationary.
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The acceleration a at radius r with Charles’s sign convention will then be a = Φ′(r) = GM
r2

,
and we obtain for the the speeds of light at two close-by radii R+ δR and R

c(R+ δR) = c

(

1 +
Φ(R+ δR)

c2

)

= c

(

1 +
Φ(R)

c2
+

Φ′(R)

c2
δR

)

= c(R)

(

1 +
Φ′(R)

c2(1 + Φ(R)/c2)
δR

)

≈ c(R)

(

1 +
aδR

c2

)

, (5)

where we have used the weak-field assumption to neglect the Φ(R) in the denominator
(it gives only a second-order contribution in terms of the potential) and the identity
with Charles’s expression on http://rqgravity.net/Gravitation#BendingFromEEP becomes
clear, if we remember that there c = 1. Of course, I will not repeat the calculation given
there, which would be boring. All we have to discuss at this point is that Fermat’s principle
takes the form:

δ

∫

ds

c
(

1 + Φ
c2

) = 0 . (6)

Let us now consider Hamilton’s principle. To obtain the Lagrangian L = T − V , we need
the kinetic and the potential energies T and V of the photon. The kinetic energy is hν,
the potential energy (hν/c2)Φ (for weak fields). Hence,

L = hν

(

1−
Φ

c2

)

, (7)

so the action becomes:

S =

∫

hν

(

1−
Φ

c2

)

dt . (8)

Now we know that there will be time dilation, so both dt and ν vary along the path, if the
photon changes its distance r to the sun’s center. But the product νdt is relativistically
invariant and may be replaced by ν0dt0, where the subscript refers to a distant observer
(at whose position time dilation effects have become negligible already). Moreover, we can
write dt0 = ds/c. Then the action may be written

S = hν0

∫
(

1−
Φ

c2

)

ds

c
= hν0

∫

ds

c
(

1 + Φ
c2

) (9)

and Hamilton’s principle becomes

hν0 δ

∫

ds

c
(

1 + Φ
c2

) = 0 , (10)

which obviously is identical to (6). So at least in the weak-field limit both principles will
always produce the same trajectories. I presume that this remains true for strong fields,
but then the Lagrangian will be more difficult to formulate. (I took a form, in which the
only relativistic element was the formula hν/c2 for the “inertial mass” of the photon.)

Because it is fun, let us calculate the deviation from a straight line of the photon’s path
using Fermat’s principle. Before embarking on this, let me point out, that the formula
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c(s) = c
(

1 + Φ
c2

)

coming from the equivalence principle is not right in the Schwarzschild
metric. The isotropic form of the latter reads

ds2 = k21c
2 dt2 − k22

(

dx2 + dy2 + dz2
)

,

with

k1 =
1− GM

2rc2

1 + GM
2rc2

,

k2 =

(

1 +
GM

2rc2

)2

, (11)

from which we deduce a speed of light

c(r) =
k1
k2

c ≈ c

(

1−
2GM

rc2

)

= c

(

1 +
2Φ

c2

)

. (12)

I have taken the isotropic line element in order not to have to discuss any possible direction
dependence of c(r). It is obvious that in the approximation from the equivalence principle,
where all of the change of the light speed is due to time dilation, such an anisotropy cannot
arise, but in order to avoid any speculations about locally anisotropic speeds of light when
I will later go beyond the equivalence principle, I prefer to use the isotropic form of the
line element.

Two remarks are in order. The speed of light predicted by general relativity is obtained by
that from the equivalence principle simply by doubling the potential (rather, squaring the
factor 1+Φ/c2). Hence, the speed of light is not only determined by time dilation in the full
theory. This is what caused a lot of confusion to Robert Shuler and made him present his
tower puzzle. Had he done a small calculation using the line element, no confusion would
have had to come up. (When the usual form of the Schwarzschild line element is taken,
the calculation gives the same result in the radial direction as obtained here isotropically.)

Furthermore, once we have calculated the result using the equivalence principle, we can
also obtain the full result, simply by doubling Φ. Because our calculation is weak field,
the result will be linear in Φ, so doubling Φ means also doubling the deflection angle.
Therefore, Fermat’s principle is able to give the full deflection angle, if only the correct
speed of light is inserted! This should settle once and for all that there is no room of
interpretation allowing to add the results from Fermat’s and from Hamilton’s principle.

With these preliminaries, let us proceed to the calculation. It is slightly more complicated
than that of Charles, but the approach seems more fundamental to me.

We can write the functional F to be minimized in several ways:

F =

∫

√

1 + y′(x)2

c
(

1 + Φ(r)
c2

) dx =

∫

√

r′(ϕ)2 + r(ϕ)2

c
(

1 + Φ(r)
c2

) dϕ =

∫

√

1 + r2ϕ′(r)2

c
(

1 + Φ(r)
c2

) dr , (13)

corresponding to Cartesian and polar coordinates, respectively (x = r cosϕ, y = r sinϕ).
Which of these three forms is the most advantageous one? I think, the last, because in
it the integrand depends on ϕ′(r) but not on ϕ, i.e., ϕ is a cyclic coordinate, and the
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Euler-Lagrange equations of the variational problem simplify considerably. Let us call the
integrand f(ϕ′(r), ϕ(r), r), then we have, because of ∂f/∂ϕ = 0:

d

dr

∂f

∂ϕ′
= 0

∂f

∂ϕ′
= const. (14)

Naming the constant b/c, we find

ϕ′(r)r2
√

1 + r2ϕ′(r)2
= b

(

1 +
Φ(r)

c2

)

. (15)

This looks like a pretty complicated differential equation for the polar angle ϕ(r) of the
photon’s trajectory. Fortunately, we know that Φ/c2 ≪ 1, and we know that the solution
for Φ(r) = 0 must give straight lines. So, we first determine the solution for that case and
then treat Φ(r) perturbatively.

Setting Φ(r) = 0, we can solve algebraically for ϕ′(r)

ϕ′(r)2 =
b2/r4

1− b2/r2
. (16)

We want our solution to start at r = ∞ with ϕ = ϕ0 = 0 and pass the origin above the
axis, which means that ϕ increases for decreasing r, so we take the square root with the
negative sign:

dϕ = −
b/r2

√

1− b2/r2
dr . (17)

This can be solved easily with the substitution u = b/r ⇒ du = −b/r2 dr, and the solution
reads ϕ = ϕ0 + arcsinu, giving

r sin(ϕ− ϕ0) = b . (18)

As expected, this is a straight line. It makes an angle ϕ0 with the x axis and passes the
origin at the minimal distance b. Setting ϕ0 = 0, we have a parallel to the x axis at a
distance b (taken > 0) above it. A less familiar form of (18) would be

ϕ = ϕ0 + arcsin
b

r
. (19)

This also has the disadvantage that ϕ(r) is not a unique function, there are two walues of
ϕ for each r. Therefore, while it is easiest to set up and solve the differential equation for
ϕ, we should always look for the inverse function r(ϕ).

Now we return to the full equation (15). It can be cast in the form

ϕ′(r) = −

b
r2

(

1 + Φ(r)
c2

)

√

1− b2

r2

(

1 + Φ(r)
c2

)2
. (20)
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Introducing the variable u = b/r again and expanding all expressions in powers of Φ/c2,
we end up with

dϕ = du

(

1

(1− u2)1/2
−

GM

bc2
u

(1− u2)3/2

)

, (21)

which can be immediately integrated

ϕ− ϕ0 = arcsin
b

r
−

GM

bc2
1

√

1− b2

r2

. (22)

We set ϕ0 = 0 again, which this time however does not mean setting ϕ(r = ∞) equal to
zero; instead the ray starts at an angle −

GM
bc2

. To invert (22), we set b/r = sinϕ in the
small term (containing the factor GM/bc2), where it does not hurt, and solve for b/r:

b

r
= sin

(

ϕ+
GM

bc2
1

cosϕ

)

. (23)

From this equation, we can read off the bending angle. For r → ∞, the argument of the
sine must go to zero in one direction and to π in the other. Since we fixed the ray to start at
large x which corresponds to a starting angle ϕ1 ≈ 0, we obtain cosϕ1 ≈ 1 and ϕ1 = −

GM
bc2

(as noted before). For the escape of the ray to infinity, we must have ϕ = ϕ2 ≈ π, hence
cosϕ2 ≈ −1, hence ϕ2 = π + GM

bc2
. The deflection angle then is

α̃ = ϕ2 − π − ϕ1 =
2GM

bc2
=

2Φ(b)

c2
. (24)

Using G = 6.674 × 10−11 m3

kg s2
, M = 1.989 × 1030 kg, b = 7 × 108 m (the radius of the

sun, rounded, as I found only the equatorial diameter, and the difference between that
and the radius to the poles is not really small), c = 3× 108 m

s , I find α̃ = 4.414× 10−6 in
radians, which has to be divided by π and multiplied by 180×3600 to obtain its value in
arcseconds. This gives

α̃ = 0.869′′ ,

which is a decent result for the contribution by the equivalence principle.

If we now take the speed of light as obtained from the Schwarzschild metric, i.e., we use
(12) instead of (3) as the speed of light in Fermat’s principle, the calculation is the same
except that Φ is replaced by 2Φ everywhere. Therefore, we obtain for the full deflection
angle

α = 1.738′′ ,

which is close enough to Einstein’s result to be satisfactory (my sun radius is probably
not very precise).

Note that the effect of spatial curvature is included in this second result, due to the fact
that we did not take the speed of light as predicted by the equivalence principle but the
correct value from the Schwarzschild metric.
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Does this work more generally, i.e., can we predict the result that alternative theories of
gravitation give? Apparently, yes. As an example, consider the (weak-field limit of the)
Brans-Dicke theory, which gives the following metric for a spherically symmetric mass
distribution:

ds2 =

(

1−
2GM

ρc2

)

c2 dt2 −
1

1− 2γGM
ρc2

dρ2 − ρ2
(

dϑ2 + sin2 ϑ dϕ2
)

, (25)

where

γ =
ω + 1

ω + 2
(26)

is smaller than one for the admissible positive values of the parameter ω from the Brans-
Dicke theory. (The Brans-Dicke theory turns into general relativity for ω → ∞.)

As I said before, we want isotropic light speeds, so we transform this to an isotropic spatial
part of the metric first. Using

ρ = r

(

1 +
γGM

2rc2

)2

, r2 = x2 + y2 + z2 , (27)

we can transform the line element into

ds2 = k21c
2 dt2 − k22

(

dx2 + dy2 + dz2
)

,

with

k1 =







(

1− γGM
2rc2

1 + γGM
2rc2

)2

+
2GM(γ − 1)
(

1 + γGM
2rc2

)2
rc2







1/2

,

k2 =

(

1 +
γGM

2rc2

)2

. (28)

The calculation of the speed of light from this gives, for GM/rc2 ≪ 1:

c(r) = c

(

1−
(1 + γ)GM

rc2

)

, (29)

from which we can immediately obtain the deflection angle

αBD = (1 + γ)
2GM

bc2
= (1 + γ)× 0.869′′ . (30)

Since γ can be determined from this to be close to 1 experimentally, a lower limit is
obtained for the value of ω. In fact, by the year 2003, the lower bound for ω had been
driven up to 40000 according to Wikipedia2 – which supports general relativity rather
than the BD theory.

2But not from light-bending measurements.
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