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There have been recent claims, in Research Gate question threads, that the Sagnac effect is not
reconcilable with a uniform speed of light and that it requires a notion of absolute simultaneity.
This would then suggest the existence of a preferred frame of reference, undermining the basic
philosophy of special relativity. Such claims have been put forward, for example, by Stefano
Quattrini on various occasions.

The purpose of this small essay is to refute these claims and, hopefully, to clarify things a bit,
replacing prejudice with knowledge. While I have written a paper [1] touching on the topic
more than 10 years ago, a less prosaic exposition may be useful.

Before discussing the effect itself, I would like to tell a little story. It will connect with the
physics later.

When I was a postdoc, I worked at the Massachusetts Institute of Technology, for a little more
than a year. So I had to go to Boston. Suppose, I wanted to visit this place again to have
some nice scientific discussions.

Nowadays, I would fly from Berlin to Boston. The distance between the two cities is 6075 km.
Looking up a possible flight, I find take-off to be possible at Berlin Brandenburg airport at
12:10 o’clock and arrival in Boston at 17:30. A return flight would by available a few days later
with departure at 19:15 from Boston Logan International airport and touchdown in Berlin at
11:20 the following morning.

Of course, I am interested in how fast my airplane will go. For the outgoing flight, a quick cal-
culation gives a time of flight of 5:20 hours, corresponding to an average velocity of 1139 km/h.
That is fast! Not much below the speed of sound! Well, something must be wrong here, be-
cause the Concorde is not flying anymore, and other planes simply will not cruise at such
speeds. Immediately, I recognize my error; Boston is in a different time zone from Berlin, its
local time being six hours earlier. My velocity calculation was done with two different time
coordinates that were not synchronized. To obtain the correct speed, I would have to add six
hours to the nominal time difference between departure and arrival, giving a total duration of
11:20 h and an average velocity of the plane of only 536 km/h. Now, the pilot would agree...

Incidentally, I would also have obtained these 11:20 h as flight time by using my own watch to
measure it, before readjusting it to the local time on arrival. Similarly, taking the local times of
the cities to determine the duration of the return flight, I would obtain 16:05 h, corresponding
to a measly average velocity of 378 km/h. Subtracting the 6 hours that I lost in switching
time zones, the duration becomes 10:05 hours, and the average speed increases to 602 km/h.

I invite the readers to ponder which method of velocity determination is the correct one –
putting the difference of local times in the denominator of the velocity expression or correcting
(by addition or subtraction) for the difference between the local times in Berlin and Boston,
resulting from a sum of (six one-hour) time gaps, appearing at the border of each of the time
zones traversed.

The Sagnac effect

Let us now consider the Sagnac effec on a rotating disk. Say, the disk has a radius of R,
the angular frequency of its rotation is ω, and we assume ω to be positive, corresponding to
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counterclockwise rotation. Light rays are sent around the disk, guided along its circumference,
so they will travel at a distance R from its center.1

To actually measure the Sagnac effect, the two rays are made to interfere on return to the
emitter and the phase shift of the interference pattern with respect to that for the same
experiment on the stationary, i.e. non-rotating, disk is determined. We will consider the
difference in time of flight of the two rays and not focus too much on ensuing phase shift,
although that is also interesting. A non-rotating disk will give the same time of flight 2πR/c
for the two light rays, and this defines the interference pattern with phase shift zero.

It is easy to calculate the times of flight in the laboratory frame, an inertial system, in which
the disk center is at rest. The ray in the corotating direction will blast off, go around the
disk and catch up with the moving emitter/observer. It has to cover a distance 2πR plus the
distance by which the observer has moved during the entire trip of the ray. This gives rise to
the following equation, from which the round-trip time t+ can be evaluated:

ct+ = 2πR+ ωRt+ ⇒ t+ =
2πR

c(1− ωR/c)
(1)

The ray in the counterrotating direction will not have to cover the full circumference, as the
emitter moves towards it on return, so it takes a smaller time:

ct− = 2πR− ωRt− ⇒ t− =
2πR

c(1 + ωR/c)
(2)

The time difference is

∆t = t+ − t− =
2πR

c

2ωR/c

1− ω2R2/c2
= γ2

4πR2ω

c2
= γ2

4Aω

c2
, (3)

where γ =
(

1− ω2R2

c2

)−1/2
is the standard Lorentz factor (the velocity of the disk rim is

v = ωR) and A is the area of the disk. Since the difference in optical paths of the two rays is
c∆t, the phase shift ∆ϑ of the interference pattern is, given that the wavelength of the light
is λ (assuming both rays to have the same frequency ν = c/λ):

∆ϑ = 2π
c∆t

λ
= γ2

8π

λc
Aω . (4)

In the literature, you will often find that formula without the prefactor γ2, because in practical
applications of earth-bound gyroscopes based on the Sagnac effect, it is close to one (v ≪ c).

These are the predictions of special relativity for what a laboratory observer would measure
and they are borne out by experiment. Their derivation uses the independence of the speed
of light of the source velocity plus Einstein synchronization for laboratory clocks.2

What are the predictions for observations by an observer sitting on the disk who is emitting
the light rays? For easy reference, let us call her Dorothy. Well, the inertial observer at the
disk center, whom we will call Inga, notes that the emitter moves at a velocity v = ωR with

1The refractive index at the center of the guiding fiber should be one, so we effectively have light traveling in
vacuum. Of course, the effect is also present, if the light moves through a medium. There would only be very
minor modifications to the discussion given here.

2Since the emission and reception of the light rays does not happen at the same positions in the lab – due to
the rotation of the disk the emitter has moved to new positions at the times of reception – time measurements
are not carried out with the same local clocks, so synchronization does play a role for the time intervals. The
shift of the interference pattern is, however, independent of synchronization.
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respect to herself at all times, so there should be time dilation by a factor 1/γ. Hence, Dorothy
should measure the following times:

τ+ =
t+
γ

=
2πR

c(1− ωR/c)

(

1−
ω2R2

c2

)1/2

=
2πR

c

(

1 + ωR/c

1− ωR/c

)1/2

, (5)

τ− =
t−
γ

=
2πR

c(1 + ωR/c)

(

1−
ω2R2

c2

)1/2

=
2πR

c

(

1− ωR/c

1 + ωR/c

)1/2

, (6)

∆τ = τ+ − τ− =
t+ − t−

γ
= γ

4πR2ω

c2
, (7)

where the last result can be simply read off from (3).3

To obtain the phase shift found by the disk observer Dorothy, we have to take into account
that for her the wavelength of the light is different from λ. Due to her time being slowed
down by a factor of 1/γ with respect to the proper time of the center observer, she must emit
light of the frequency ν ′ = γν, in order for it to have the frequency ν for Inga. But then the
wavelength in Dorothy’s frame is λ′ = c/ν ′ = λ/γ which leads to a phase shift of

∆ϑ′ = 2π
c∆τ

λ′
= 2πγ

4πR2ω

c

γ

λ
= γ2

8π2R2

λc
ω = γ2

8π

λc
Aω , (8)

which is the same as Eq. (4). This was to be expected, as phase shifts are scalars, so they
must be the same for all observers. So far, there are no problems with a special relativistic
description of the effect.

Given the times of flight from Eqs. (5,6), we may calculate the average velocities c̄± of the
two light rays according to Dorothy. To do so, we need the path length covered by the light,
which is the same in both directions. Its value is not L = 2πR but L′ = 2πRγ, due to the
non-Euclidean geometry of the rotating disk [2].4 Therefore, we obtain

c̄+ =
L′

τ+
= γc

(

1 + ωR/c

1− ωR/c

)−1/2

= c

[

1− ωR/c

(1 + ωR/c) (1− ω2R2/c2)

]1/2

=
c

1 + ωR/c
, (9)

c̄− =
L′

τ−
= γc

(

1− ωR/c

1 + ωR/c

)−1/2

= c

[

1 + ωR/c

(1− ωR/c) (1− ω2R2/c2)

]1/2

=
c

1− ωR/c
. (10)

Detailed local considerations

Is this a problem for special relativity?5 Not really. In an accelerated system, the speed of
light can vary, and so the average speed along a loop may well be different from the speed at
the position of a single observer on that loop. All that special relativity requires is that this
observer will measure the speed of light to be c at her own position, if she uses standard rulers
and standard clocks to do so.6

3The direct algebraic evaluation from the results for τ+ and τ− is not difficult either.
4A simple way to rationalize this is that if we cover the circumference with standard rulers (at rest with respect
to the disk), the lengths of these have to add up to 2πR in the laboratory frame. But these are Lorentz
contracted rods as they are moving with respect to the lab frame at velocity v and are oriented parallel to their
velocity. So their rest length on the rotating disk is larger by a factor of γ which then must be true for the disk
circumference as well. In footnote 12, an explicit calculation within the non-Euclidean geometry of the disk is
given.

5And in particular, is it a problem that c̄− exceeds the vacuum speed of light?
6If the one-way speed is measured, then an additional condition for the measurement to give c is that the clocks
are Poincaré-Einstein synchronized, i.e., their synchronization must be equivalent to the one obtained by the
procedure Einstein suggested in his 1905 paper on special relativity (and Poincaré somewhat earlier).
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Indeed, if Dorothy chooses a comoving frame of reference, the axes of which remain parallel
to an inertial frame, she will find the speed of light to vary along the circumference of the
disk. In such a frame, every distant point of the disk would revolve about her position with
an angular frequency γω.7 If the orientation of her line of sight is towards the center from the
easternmost point of the disk at time τ0, that orientation will be westward at τ0, southward
at time τ0 + π/(2γω), eastward at τ0 + π/(γω) and westward again at τ0 + 2π/(γω), as long
as Dorothy does not move. She could realize this by spinning up a gyroscope at time τ0 so
that it points westward, parallel to her line of sight. At time τ0 + π/(γω), it would then be
antiparallel to her line of sight.

While Dorothy would then measure c for the speed of light at her own position, she would
“measure” values different from c at other points of the circumference of the disk. A “mea-
surement” might consist of a measurement by a local observer, whose positions and times
would have to be transformed to the frame of Dorothy, and since the transformations involve
rotating coordinates, they would not be the Lorentz transformations. As a result, the speed of
light, which would be c according to the local observer, would be different from c in Dorothy’s
frame. And it might well depend on the orientation of the light path with respect to the sense
of rotation. We will not pursue this scenario any further, because the maths could be hairy.
Rather let us be satisfied with the recognition that it is unlikely to uncover a problem with
relativity, as the different coordinate velocities of light along the circumference might well lead
to the averages c̄± for a full loop.

Constructing a locally Einstein synchronized frame

There are nicer frames of reference for Dorothy. She may consider all fixed disk points as non-
moving with respect to herself (meaning that her coordinate axes are “glued to” and will rotate
along with, the disk). Looking at a fixed point on the disk then means that she is not rotating
about herself but keeps not only her position but also her orientation.8 All observers that are
stationary like her at the same radius should see the same local geometry, i.e., a measurement
of a piece of arc length by a distant observer can be immediately related to that of a similar
local piece of arc by a simple symmetry operation (a rotation about the disk center). So local
length measurements at radius R by a distant observer can be immediately taken as results
for a “measurement at a distance” by our global observer (Dorothy). If it is possible for her
to establish a common time with those local observers, their velocity measurements are hers.
Establishing a common time means synchronizing clocks at distant places. If the time is to
be measured locally with a standard clock, meaning that it is a local proper time, then it is
clear that synchronization is not possible for different radial positions on the disk, as clocks
at these will tick at different rates. They move at different velocities around the disk center,
so their time dilation factors w.r.t. the center are different. But clocks at the same radius can
be synchronized according to Inga, our center observer,9 so there is hope for Dorothy that she
can achieve a common time with all the observers on the disk that live at her radius (R).

A standard way to synchronize clocks (à la Einstein) is by slow clock transport. So Dorothy
sends two cousins, Colleen and Cleo, counterclockwise and clockwise around the disk, each

7Hence, the transverse velocity of such a point is the larger the farther it is away from Dorothy’s position.
8Getting rid of rotation this way is a purely kinematic approach. Physically speaking, rotation is as absolute in
special relativity as in Newtonian mechanics. Even in general relativity, Mach’s principle – i.e., motion is only
defined relative to objects, motion with respect to empty space is meaningless – is not fully realized. There is
no change of frame of reference by which a rotating black hole can be transformed into a non-rotating one.

9Clocks at different radii can also be synchronized, if we allow them to tick faster or more slowly than a standard
clock, to compensate for time dilation effects. The GPS clocks on satellites are examples for such non-standard
clocks.
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carrying a high precision clock that has been set to coincide with Dorothy’s clock at the
beginning of the journey (at time τi). They both move very slowly, but at constant velocity
u(≪ c) and −u, respectively. All three clocks are constructed identically; moreover, the cousins
will meet many other people on their journey (along r = R) that have identical clocks and are
eager to set them to the time displayed by the clock of the respective cousin, anticipating the
value of establishing a common time at least on their ring-shaped subset of the disk-world.

A number of notable events will happen on the two cousins’ journey, which I will describe
first and explain immediately afterwards. Initially, everything goes as anticipated and clocks
along the sector already covered by each cousin will be synchronized with their own clocks.
However, when the cousins meet, it will unexpectedly not be midway along the circumference,
that is not at the angular position π (if we denote Dorothy’s angular coordinate as zero and
let the angle increase counterclockwise to 2π). Rather, Colleen will have covered an angle
α < π and Cleo an angle β = 2π − α > π. Their clocks will show different times, Colleen’s
reading τi + αRγ/u and Cleo’s τi + βRγ/u, with Cleo’s clock being ahead of Colleen’s by a
time interval ∆τg = ∆τ/2, where ∆τ is given by Eq. (7). (From this information, the angles α
and β can be calculated.10) Hence, the synchronization procedure did not succeed completely,
because disk inhabitants on both sides of the angular position α will have clocks that differ by
∆τg when compared directly across the separating line. The cousins conclude that it seems
still possible to establish a local notion of simultaneity11 across the time zone boundary by
considering two events on different sides to be simultaneous, if the concerned clock on the β
side shows a time that is by ∆τg larger than that shown by the relevant clock on the α side.

They then continue their journey (without ever having changed their velocities), to complete
the loops and report back to Dorothy. The next notable event is Cleo’s arrival at Dorothy’s
position. Cleo’s clock reads, as expected τ = τf = τi+2πRγ/u, which is what a trip of length
2πRγ at speed u should take. But to her surprise, Dorothy’s clock shows a smaller time

τ = τf −∆τg = τi +
2πRγ

u
−

2πR2γω

c2
= τi + 2πRγ

1− uωR/c2

u
, (11)

corresponding to an average velocity u/(1 − uωR/c2). Finally, Colleen arrives at Dorothy’s
position. Her own clock also shows τ = τf on arrival, but Dorothy’s clock now shows a larger
time

τ = τf +∆τg = τi +
2πRγ

u
+

2πR2γω

c2
= τi + 2πRγ

1 + uωR/c2

u
, (12)

corresponding to an average velocity u/(1 + uωR/c2). (And Cleo’s clock displays τ = τf +
2∆τg = τf +∆τ , assuming she has stayed with Dorothy and not readjusted her clock.) It may
also be interesting to note that Cleo’s or Colleen’s “two-way velocity” utw, if either of them
decided to retrace their path in the opposite direction (which means that Cleo would follow
up her clockwise path with a counterclockwise one mimicking Colleen’s original trip and vice
versa for Colleen) would be given by

2

utw
≡

1− uωR/c2

u
+

1 + uωR/c2

u
=

2

u
, (13)

i.e., it would just be u.

To explain these facts in the rotating frame directly, one has to do special relativity in an ac-
celerated frame of reference, which means working with the appropriate metric. Some would

10The result is α = π(1− uRω/c2), β = π(1 + uRω/c2).
11For the definition of local velocities we do not need more than a local notion of simultaneity, because in the
limit of an instantaneous velocity, the two times as well as positions needed to evaluate the defining difference
quotient are to be taken arbitrarily close to each other.
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consider this doing “general relativity”, because the maths were developed during the con-
struction of the generalized theory. However, the modern view is that special relativity is the
theory of flat spacetime, regardless what mathematical tools we use in the description, while
general relativity deals, beyond comprising special relativity, with the additional phenomena
due to spacetime curvature. Hence, we are doing special relativity when we use metric ten-
sors to describe accelerated systems. Nevertheless, I will relegate the metric description to a
footnote that readers not familiar (or willing to deal) with the manipulation of line elements
may skip.12 In the main text, I will simply explain what happens from the point of view of
our inertial observer Inga. Most people will find that physically more transparent.

First, we note that for Inga the velocities of Colleen and Cleo are given by

uCo =
u+ v

1 + uv/c2
=

u+ ωR

1 + uωR/c2
, (14)

−uCl =
−u+ v

1− uv/c2
=

−u+ ωR

1− uωR/c2
, (15)

with a little help from the relativistic velocity addition theorem. This immediately allows to
calculate the round trip times of the cousins:

uCo t
+
Co = 2πR+ v t+Co ⇒ t+Co =

2πR

uCo − v
, (16)

uCl t
−

Cl = 2πR− v t−Cl ⇒ t−Cl =
2πR

uCl + v
, (17)

and the velocity differences in the denominators are given by

uCo − v =
u+ v

1 + uv/c2
− v = u

1− v2/c2

1 + uv/c2
=

u

γ2
1

1 + uv/c2
, (18)

uCl + v =
u− v

1− uv/c2
+ v = u

1− v2/c2

1− uv/c2
=

u

γ2
1

1− uv/c2
, (19)

12Written in cylindrical coordinates, the Minkowski line element takes the form: ds2 = −c2dt2I+dr2+r2dϕ2
I+dz2,

where the subscript I refers to the fact, that tI is a proper time for Inga and the angular coordinate ϕI measured
with respect to her nonrotating coordinate system. ϕI will typically vary (linearly) in time for fixed points on
the rotating disk. To obtain a disk stationary coordinate frame, set ϕ = ϕI − ωtI , i.e. dϕI = dϕ+ ωdtI , which
produces a metric that is not time orthogonal. We have: ds2 = −

(

1− ω2r2/c2
)

c2dt2I + 2ωr2dtIdϕ + dr2 +
r2dϕ2+dz2. The presence of the mixed term ∝ dtIdϕ shows that the time coordinate tI is not orthogonal to all
spatial coordinates, which means that if we set the line element equal to zero, which describes the propagation
of light, the resulting quadratic equation for dtI will have two significantly different solutions rather than one
solution and its negative; this means that light takes different times in the forward and backward directions
along the spatial element (0, rdϕ, 0). The metric can be made time orthogonal via completion of squares:

ds2 = −
(

1− ω2r2/c2
)

c2
(

dtI − ((ωr2/c2)/(1− ω2r2/c2)) dϕ
)2
+dr2+(1/(1−ω2r2/c2))r2dϕ2+dz2. This shows

that dt̃ =
(

1− ω2r2/c2
)1/2 (

dtI − ((ωr2/c2)/(1− ω2r2/c2)) dϕ
)

is a time differential that is orthogonal to all
spatial coordinates. It is not a total differential, however, so integrating it from one spacetime event to another
along different paths may give different results. Nevertheless, its integral may serve as a “local time coordinate”
(Langevin). From the dϕ term of the line element, we can find the circumference of the disk, demonstrating
the non-Euclidean nature of the geometry: L′ =

∫

2π

0
r/(1 − ω2r2/c2)1/2

∣

∣

r=R
dϕ = 2πRγ. Dorothy’s proper

time increment is given by dτD =
(

1− ω2r2/c2
)1/2

dtI , which allows us to rewrite the differential of the local
time at r = R as dt̃ = dτD − γ(ωR2/c2) dϕ. The time t̃, which runs at the same rate as Dorothy’s proper
time τD for circumference stationary observers, is the time that the cousins are trying to establish by Einstein
synchronization via slow clock transport (because with that time the metric becomes time orthogonal). Their
speed is u = ±γRdϕ/dt̃, which allows us to express dt̃ by dϕ along their trajectories and hence to determine
the time interval that passes during one trip around the disk. Along Colleen’s trajectory, dt̃ = (γR/u)dϕ, hence
dτD = (γR/u)dϕ+ γ(ωR2/c2)dϕ. Integrating over the full circle, we get τ+

f − τi = 2πRγ(1 + uωR/c2)/u. For

Cleo, who arrives earlier, we have dt̃ = −(γR/u)dϕ, hence dτD = −(γR/u)dϕ + γ(ωR2/c2)dϕ. Integration is
now from 2π to zero, and we obtain τ−

f −τi = 2πRγ(1−uωR/c2)/u. The difference τ+

f −τ−

f = 4πγR2ω/c2 = ∆τ
is independent of u.
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hence

t+Co =
2πRγ2

u

(

1 +
uωR

c2

)

, (20)

t−Cl =
2πRγ2

u

(

1−
uωR

c2

)

. (21)

Multiplying this with the time dilation factor 1/γ that applies to stationary disk observers
(and adding the start time τi), we recover (12) and (11). Since the velocity differences (18,19)
describe, how fast Colleen and Cleo move away from Dorothy, it is obvious that their meeting
point must be at an angle that divides the full angle of 2π in the proportion corresponding to
their ratio:

α

2π − α
=

uCo − v

uCl + v
=

1− uv/c2

1 + uv/c2
⇒ α = π

(

1−
uv

c2

)

, (22)

and here no corrections are necessary to transform the result to the disk frame.

Why do the clocks of Colleen and Cleo differ from each other and from that of Dorothy, despite
the explicit intent to synchronize clocks? From Inga’s point of view that is pretty simple: all
three of them move at different velocities, so their clocks must tick at different rates, as the
time dilation factor relative to Inga will be different for each of them. In the following, I will
denote by γ, as before, the Lorentz factor for the velocity v = ωR. If a factor referring to a
different velocity is to be given, I will write γ(u), etc., i.e. the argument indicates the relevant
velocity. We have

γ(uCo) =

(

1−
(u+ v)2

(1 + uv/c2)2 c2

)−1/2

=

(

c4 +✘✘✘
2uvc2 + u2v2 − u2c2 −✘✘✘

2uvc2 − v2c2

c4 + 2uvc2 + u2v2

)−1/2

=

(

(c2 − u2)(c2 − v2)

(c2 + uv)2

)−1/2

=
(

1 +
uv

c2

)

γ(u)γ(v) , (23)

γ(uCl) =

(

1−
(u− v)2

(1− uv/c2)2 c2

)−1/2

=

(

(c2 − u2)(c2 − v2)

(c2 − uv)2

)−1/2

=
(

1−
uv

c2

)

γ(u)γ(v) . (24)

Knowing the time dilation factors for Colleen and Cleo, we may use Eqs. (20,21) to obtain the
amount of time that has passed according to their clocks, until they rejoin Dorothy:

τ+Co =
1

γ(uCo)

2πRγ2

u

(

1 +
uωR

c2

)

=
1

1 + uωR/c2
1

γ(u)γ(v)

2πRγ(v)2

u

(

1 +
uωR

c2

)

=
2πRγ(v)

γ(u)u
≈

2πRγ

u
= τf − τi , (25)

τ−Cl =
1

γ(uCl)

2πRγ2

u

(

1−
uωR

c2

)

=
1

1− uωR/c2
1

γ(u)γ(v)

2πRγ(v)2

u

(

1−
uωR

c2

)

=
2πRγ(v)

γ(u)u
≈

2πRγ

u
= τf − τi . (26)

Note that the results before the ≈ sign are exact, including the time dilation factor 1/γ(u) by
which the cousins’ clocks are slowed down with respect to Dorothy’s. But if their journey has
to serve the purpose of clock synchronization for clocks at rest on the disk rim, their speed u
must be so small that γ(u) can be replaced by one.
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Finally, to obtain the time difference between the cousins’ clocks at their meeting point, we
simply have to replace the angle 2π in Eq. (25) by α and in Eq. (26) by 2π − α:

τ−Cl(2π − α)− τ+Co(α) =
(2π − α)Rγ

u
−

αRγ

u
=

(2π − 2α)Rγ

u
=
(22)

2πuvRγ

c2u

=
2πR2γω

c2
= ∆τg . (27)

Simultaneity issues

So what has been achieved by the attempt to establish Einstein synchronization along the
disk circumference? A time coordinate has been introduced that has a discontinuity at one
point (ϕ = α) of the rim. We could consider this a common time between Dorothy and all the
stationary circumference observers. Using this time in the denominator of a velocity definition,
we would get a coordinate velocity. However, coordinate velocities obtained from different co-
ordinates are not easy to compare; moreover, the second postulate of special relativity does not
apply to arbitrary coordinate velocities. Rather, when developing special relativity, Einstein
always tried to use spatial coordinates that directly translated into measurable distances and
temporal coordinates that directly translated into measurable time differences, in short, he
used inertial coordinates. Only later, when he generalized the theory to turn it into a theory
of gravitation, became it necessary to admit arbitrary coordinates, which required the use of a
translation tool from these coordinates to measurable lengths and time intervals, which is the
metric. Since the definition of a “measurable” velocity requires, in general, the difference of
two time readings (at different positions) in its denominator which must belong to a common
time to define a meaningful time interval, we need an operational definition of common time
rather than a purely coordinate based one (which need not care about discontinuities). What
we require is that the time at the two positions runs at the same rate and that it takes the same
value for two events that are simultaneous. Therefore, we need a definition of simultaneity.13

What should such a definition be based on? Well, a causal theory of time [3] would, after having
defined causal connectibility of events,14 establish as a necessary condition for simultaneity
of two events that, if they are not identical,15 they must not be causally connectible. For
Newtonian mechanics, in which any two events are causally connectible, because gravitational
influences travel at infinite speed, one could modify this as follows: first define a before and an
after relation, saying that A is before B, if A can causally influence B but B cannot causally
influence A, and that A is after B, if B can causally influence A but A cannot causally influence
B. Then, a necessary condition for simultaneity of A and B would be that A is neither before
nor after B. In Newtonian mechanics, this is sufficient to define an equivalence relation,
in special relativity, it only means that A and B are spacelike, which is not an equivalence
relation.16 So a second requirement for simultaneity would be that it constitutes an equivalence
relation, i.e., any event A is simultaneous with itself; if A is simultaneous with B, so is B with
A, and if A is simultaneous with B and B simultaneous with C, then A is simultaneous
with C. It should then immediately be clear that if we can construct a time coordinate so
that two non-identical events having the same time coordinate are always spacelike, this is a
valid simultaneity relation, because the fact of two events having the same time coordinate

13And one that can be used before we have an explicit time coordinate.
14Events A and B are causally connectible, if A could in principle exert a causal influence on B or vice versa.
15Meaning they do not correspond to the same point of spacetime.
16It is easy to construct examples of events A, B, and C, where A and B as well as B and C are spacelike, but
A and C are timelike, hence the relation spacelike is not transitive.
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establishes an equivalence relation.17 Since it is possible, in general, to construct many such
time coordinates, simultaneity based on a causal theory of time is not uniquely defined, there
is some choice, meaning that simultaneity at a distance is conventional.

There was an influential paper in 1977 by Malament [4], in which he showed that the only
equivalence relation between events on the world line O of an inertial observer and events out-
side of O that was definable using only O and the causal structure of spacetime, is the standard
simultaneity relation, called SimO, obtained by Einstein synchronization. This was hailed as a
milestone by many, in particular in the philosophical community, who believed the controversy
about the conventionality of simultaneity decided in favor of the anti-conventionalists.18 On
the other hand, the physical community remained largely skeptical, because Malament turned
the obvious non-uniqueness of simultaneity relations compatible with the causal structure of
spacetime, allowing the requirement of additional conditions in order to pick out one of the
many possible simultaneity relations, into a criterion for excluding most of them by the re-
quirement that no additional condition in the form of parameters describing the respective
simultaneity relation must be added. He couched this in terms of requiring simultaneity to
be given by an equivalence relation that is invariant under causal automorphisms leaving the
worldline O invariant. The only relationship that satisfies this is SimO.

Unfortunately, this construction works for straight world lines only, i.e., in inertial systems.
In geometrical language, it essentially says that the only foliation of spacetime (giving as
equivalence classes 3D sheets of constant time) that is definable using only the world line
and the causal structure given by light cones consists of the hyperplanes orthogonal to the
world line.19 However, if the world line is not straight (and the world lines of stationary
disk observers aren’t, they are helices), then orthogonal hyperplanes on it will not divide the
spacetime into equivalence classes, rather they will intersect each other. That means that if
Malament’s argument had decided the question in favor of Einstein synchronization for inertial
systems, it would also lead to the conclusion that no simultaneity is possible at all in rotating
systems. As I said before, the physics community remained largely unconvinced: why should
one require a simultaneity relation to be invariant under the class of causal automorphisms
that leave a given inertial world line invariant?

Getting back to the time coordinate that was established by the cousins, the fact that it has
a discontinuity at one point shows that it cannot satisfy the conditions that we have for a
simultaneity relation globally, i.e., around the full circumference. This is easy to see: if we
send a light signal from the β side of the gap, where the time shown by clocks is later than
on the α side, towards the latter, then that light ray will first cover a region where the time is
smaller than at its starting point and will, as time passes, eventually arrive at a position where
it has exactly the same value as at the starting point, thus connecting two positions with the
same time on local clocks, which means these two events cannot be spacelike. Therefore, across
the gap equal time coordinates do not mean simultaneity. The situation would be very much
like in the story I told in the introduction: if my plane to Boston really had gone at a little
more than 1000 km/h, so that it arrived exactly after six hours time of flight, the local time
on arrival would be the same as the local time at departure, but arrival and departure would
definitely not be simultaneous. The time discontinuity on the disk behaves, in all essential

17A has the same time coordinate as itself; if A and B have the same time coordinate, then B and A have the
same time coordinate; if A and B have the same time coordinate and B and C have the same time coordinate,
then A and C have the same time coordinate.

18But in a way that Quattrini who himself is an anti-conventionalist would not like: Malament’s proof also
excludes Quattrini’s favorite “absolute” synchronization.

19That is so because orthogonality, i.e., a right angle, between a line and a hypersurface of codimension one is
definable without any additional parameters, whereas for any other angle we need direction cosines or other
trigonometic parameters.
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aspects, exactly like the border of a time zone. So working with such a time coordinate does
not pose a major problem. We know how to do it, as we do it on a regular basis on our planet.
It just cannot serve as a globally synchronous time coordinate.

However, locally, i.e., for sufficiently short segments on the circumference, this time is Einstein
synchronized by construction, that is close-by points, not separated by the discontinuity on
the shortest arc connecting them along the rim, have a definite notion of simultaneity: if
their synchronized clocks read the same time, the events of these readings are simultaneous.20

Hence, we can meaningfully define a velocity measurable with standard rulers and standard
clocks, using arc lengths along the circumference and the Einstein synchronized clocks of local
observers everywhere except at the discontinuity point. Moreover, at this point, we can also

define operational velocities by subtracting, for signals moving from the α to the β sector of
the disk, the time gap ∆τg from local clock readings there, and by adding, for signals moving
from the β to the α sector, the time gap to clock readings in the latter. That this is the
correct procedure, is obvious from the fact that the discontinuity of the time gap could have
been shifted from its position at ϕ = α to larger values, if Colleen had insisted, after meeting
with Cleo, that people in the β sector that had already synchronized their clocks with Cleo’s,
would now reset them to the reading on Colleen’s clock. Which would mean that they would
have to turn their clocks back by an amount ∆tg. Conversely, if Cleo had instead insisted that
people on the α side of the boundary would reset their clocks to the setting of her own one,
meaning they would set them ahead by ∆tg, this would have shifted the discontinuity towards
smaller ϕ values.

Using the frame

Let us discuss a number of local velocity measurements by Dorothy based on this local Einstein
simultaneity. To perform such a measurement, local clocks synchronized before by the passage
of the cousins, should now be everywhere along the circumference, dividing it into many
short segments. Each segment is occupied by a local observer who notes, when an object or
a signal to be studied enters their segment, the time on the clock at the entry point, and
when it leaves the segment, the time on the clock at the exit point. The observers then
send the information about the length of their supervised segment as well as about the time
interval the object/signal took between entry and exit, to Dorothy, who may then calculate
the local velocity. In general, the time interval they send will be the difference between the exit
and entry times of the object/signal; however, being intelligent observers, the one in whose
segment the time gap is located (i.e., whose segment is cut by the angular coordinate ϕ = α)
will calculate the time needed by the signal by adding ∆tg to that time difference, if the signal
was crossing the discontinuity point in the clockwise direction, and subtracting ∆tg, if the
signal was crossing the discontinuity in the counterclockwise direction.21 That is, she would
apply the same kind of procedure that I would use on my flights to and from Boston, in order
to obtain a realistic velocity of my plane.

What velocities would Dorothy measure for the journey of the two cousins? For the first part
of Colleen’s journey, the time intervals reported would be the same as those on Colleen’s clock,
obviously. The arc length intervals would also be the same, because all of them are measured

20That the condition of two events of the same time being spacelike is satisfied (in addition to the equivalence
relation property guaranteed by the existence of a time coordinate), can be easily established for infinitesimally
separated events from the metric description given in footnote 12.

21The local observers could also send the raw data, i.e., the arc length positions of the entry and exit points plus
the time readings of the respective clocks. In that case, the observer on the segment containing the “border of
the time zone” would send the information on that fact as well and on the size of the time gap to be added or
subtracted to the relevant time interval. The calculations would then all be done by Dorothy.
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using standard rulers, so any position passed by Colleen could already have been marked by an
arc length coordinate even before she started her journey. During the part of Colleen’s journey
that is in the β region, the times read off by the local observers would be ∆tg larger than the
time on Colleen’s own clock, but the time intervals would again be the same as for Colleen. In
the segment with the discontinuity, the entry time would be the same as on Colleen’s clock,
the exit time would be ∆tg larger, but the local observer would subtract the time gap, so
she would report precisely the time interval that passed on Colleen’s clock in the segment.
Dorothy would find Colleen’s velocity to be the same in all segments and to be equal to u.
Moreover, she could sum up all the time intervals reported to calculate an average velocity for
Colleen and would find that sum to be smaller by ∆τg than the round trip time she measured
with ther own clock (Eq. (12)), because of the subtraction of that time from one (and only
one) of the reported time intervals. So she finds that the time actually taken by Colleen22 is

2πRγ
1 + uωR/c2

u
−

2πR2γω

c2
=

2πγR

u
, (28)

which makes the actual average velocity of Colleen equal to u, as it should be, given that her
momentary velocity was u during the whole journey. Dorothy also realizes the reason why she
got a different average velocity by simply using the time that passed on her own clock during
Colleen’s trip. While this is her proper time, therefore a time as real as any time can be,
it is not the proper time of all observers along Colleen’s path.23 But by the synchronization
procedure it has been extended to a valid coordinate time along Colleen’s path (with the
small disadvantage of having a discontinuity). So the average velocity she measured is a valid
coordinate average velocity. The coordinate velocity, of which it is the average, is obtained
by not making the correction for the gap at the segment containing the angle α. That is, the
coordinate velocity of Colleen will be u everywhere except in that segment, where it will be
reduced by a factor of ∆τseg/(∆τseg +∆τg), ∆τseg being the time actually needed by Colleen
to traverse the segment. This then leads to an overall average velocity of u/(1 + uωR/c2).

Obviously, a very similar discussion can be given for the velocity of Cleo, with the time gap
∆τg to be added by the local observer, in whose segment she crosses the discontinuity, leading
to a local velocity of u in the clockwise direction, whereas the average coordinate velocity
without that correction becomes u/(1− uωR/c2).

Since the time gap is independent of u, the same relationships between true local velocities
and average coordinate velocities will be observed for observers or particles that move in
counterclockwise and clockwise directions at a large velocity u. The only difference is that
these will not measure the same time intervals as local disk observers with their carry-along
clocks, because the latter will be retarded by time dilation. Slow clock transport is peculiar
in that a one-way velocity can be measured with a single clock, taken from the first to the
second position at which times are measured. This is possible, because we have a theory that
tells us that the clock rate will not be affected by the transport, if it is slow enough.

After these lengthy preliminaries, we are now in a position to discuss local vacuum light
speeds on the disk circumference and their relationship to the global average measured by
Dorothy. First, it should be clear that due to the local Einstein synchronization, these light
speeds must be the same in the counterrotating and the corotating directions. To obtain
the actual value, I will not invoke Einstein’s second postulate, although arguments can be
easily advanced why it must hold locally in the accelerated system, too. Rather, I will invoke
rotational symmetry: the local speed of light should be the same for all disk observers on the
circumference. Let us assume its value to be w. Then we know from our considerations so far

22In both Colleen’s and the circumference observers’ view.
23I.e., it is not synchronous with all of those.
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that the average speed measured by Dorothy for a full circle of a signal moving at speed w
must be w̄+ = w/(1+wωR/c2) for counterclockwise and w̄− = w/(1−wωR/c2) for clockwise
motion. We may then calculate the total time of flight around the disk, which must be equal
to the one given by Eq. (5) or (6), respectively. Then we can solve for w, and a countercheck
for the correctness of our result would be that we must get the same value for w from both
equations. Let us see:

2πRγ

w

(

1 +
wωR

c2

)

= τ+ =
2πR

c

(

1 + ωR/c

1− ωR/c

)1/2

=
2πRγ

c

(

1 +
ωR

c

)

⇒
1

w
+

✓
✓✓

ωR

c2
=

1

c
+

✓
✓✓

ωR

c2
⇒ w = c , (29)

2πRγ

w

(

1−
wωR

c2

)

= τ− =
2πR

c

(

1− ωR/c

1 + ωR/c

)1/2

=
2πRγ

c

(

1−
ωR

c

)

⇒
1

w
−

✓
✓✓

ωR

c2
=

1

c
−

✓
✓✓

ωR

c2
⇒ w = c . (30)

Hence, we conclude that the only value of the local speed of light compatible with Dorothy’s
measured average coordinate speed of light in either direction is the vacuum speed of light!

To summarize, we have seen that a local description of physics in the accelerating (non-
Euclidean) frame of reference set up by stationary disk observers24 can explain the Sagnac
effect based on a locally Einstein synchronized time, and that such a description requires the
local vacuum speed of light to be c everywhere on the disk circumference. This is in stark
contrast to the claim by Quattrini and others that such an explanation requires absolute
synchronization and that the local speed of light could not be c, as it had to be different in
the counter- and corotating directions.

I will briefly discuss the description of the Sagnac effect in terms of a centrally synchronized
time, which agrees with the so-called absolute synchronization, if the disk center happens to
be at rest in the absolute frame.25

Central synchronization

What we discussed in the last section, was an operational procedure that provided us with a
locally Einstein synchronized time coordinate on the disk circumference allowing us to give
a flawless description of the Sagnac effect with a universal one-way speed of light for disk
observers on the circumference. The time coordinate was not globally synchronized, due to
the appearance of the time gap ∆τg.

However, given this time coordinate, it is easy to construct a new one that is even globally
synchronized (the synchrony is just not Einstein). Here is how. Our time coordinate τ , taken
as a function of the azimuthal angle ϕ on the disk, has the property τ(α+) = τ(α−) + ∆τg,
where α− is an angle that is infinitesimally smaller than α and α+ is one that is infinitesimally
larger. Otherwise, τ(ϕ) is continuous. Now let us require our circumference observers to reset

24A coordinate independent notion of a frame of reference defines it as a timelike congruence of world lines
(of test particles or observers). The world lines of our stationary disk observers constitute such a congruence.
Reference [5] explains how then a local splitting into time and a local space platform can be made and admissible
coordinates may be introduced.

25I give it a different name as it is different from absolute synchronization whenever the disk center is at rest in a
frame of reference that is moving with respect to the “absolute frame”. In that case, absolute synchronization
would not lead to a constant speed of light in either direction on the circumference of the disk.
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their clocks to

τ̃ =

{

τ + ϕ∆τg/(2π) for ϕ < α

τ + (ϕ− 2π)∆τg/(2π) for ϕ > α
, (31)

assuming they all know their own angular positions. Then we obviously have

τ̃(α−) = τ(α−) + α∆τg/(2π) = τ(α+)−∆τg + α∆τg/(2π)

= τ(α+) + (α− 2π)∆τg/(2π) = τ̃(α+) , (32)

meaning that the time coordinate τ̃ is continuous on the whole circumference (and if there is
an observer at ϕ = α, she should set her clock to τ̃(α−) = τ̃(α+)). Moreover, it is easy to
show that equality of this time coordinate for two different events means they are spacelike.
Therefore, τ̃ is a time coordinate that produces a globally valid simultaneity relation on the
disk circumference. In fact, this synchrony can be operationally established without the detour
via a locally Einstein synchronized time simply by Inga sending a light signal from the disk
center to all circumference observers, on reception of which they all set their clocks to a
predefined time value τp. If the goal rather is to synchronize all clocks with that of Dorothy
without changing hers, that can be achieved by a two-step procedure. First, all circumference
observers except for Dorothy set their clocks to τp on reception of Inga’s signal. Dorothy
calculates the offset τ − τp between her local time and the predefined time and broadcasts the
result to all the other observers, who then advance their clocks by τ − τp. After the – finite
– time it takes for all observers to have received Dorothy’s message (plus a small delay), all
clocks will be centrally synchronized with Dorothy’s.26

Let us calculate the velocity of light in terms of the central synchronization. For the Einstein
synchronized case, we have ds/dτ = ±c for counterclockwise and clockwise motion, respec-
tively. ds is shorthand for the arc length element Rγdϕ. With central synchronization, the
velocity then becomes:

ds

dτ̃
=

ds

dτ +∆τgdϕ/(2π)
=

ds

dτ +∆τgds/(2πRγ)
=

ds/dτ

1 + (2πR2γω/c2)(ds/dτ)/(2πRγ)

=
ds/dτ

1 + (ωR/c2) ds/dτ
=

{

c
1+ωR/c = c̄+ for counterclockwise motion

−c
1−ωR/c = −c̄− for clockwise motion

. (33)

So here we find the very satisfactory result that the speed of light is constant along the
circumference in either direction (but not the same for both directions) and that its value is
equal to the average speed (Eqs. 9,10) measured by Dorothy with a single clock (her own), a
result that is obtainable without any synchronization.

With central synchronization, we do not have to explain, how it is possible that the average
of a constant velocity can give a result different from the constant (which was due to the
discontinuity of the time coordinate with local Einstein synchronization). So the description
in terms of a centrally synchronized time coordinate is definitely simpler than that in terms
of a locally Einstein synchronized one. It leads to a one-way speed of light that is different in

26That this gives the same synchrony as the resetting procedure based on the locally Einstein synchronized time,

can be derived from its differential dt̃ =
(

1− ω2R2/c2
)1/2 (

dtI − ((ωR2/c2)/(1− ω2R2/c2)) dϕ
)

, given in foot-

note 12. Here, dtI is Inga’s time differential. Because of ∆τg = 2πR2γω/c2 = 2π(ωR2/c2)
(

1− ω2R2/c2
)

−1/2
,

we have dt̃ =
(

1− ω2R2/c2
)1/2

dtI − (∆τg/2π) dϕ and dτ̃ = dt̃ + (∆τg/2π) dϕ =
(

1− ω2R2/c2
)1/2

dtI , which
means that dτ̃ = 0 implies dtI = 0. That is, Inga’s time and the time τ̃ share the same simultaneity relation.
They are not synchronous, because they run at different rates, but events that are simultaneous according to
the time coordinate τ̃ are simultaneous according to Inga’s time. Clearly, the same effect is obtained by central
synchronization, employing a signal by Inga that takes the same time to reach all the circumference observers.
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the clockwise and counterclockwise directions. Since this is solely due to the chosen synchro-
nization,27 the two-way speed of light must still conform to Einstein’s second postulate, and
it does, as we have seen.

Does this mean that central synchronization is generally to be favored for the description
of physics on a rotating disk? Or even, as Selleri might have put it (and Quattrini seems to
believe) that “Nature prefers absolute synchronization”.28 Such a conclusion would be rash. As
it turns out, the explanation of the Sagnac effect becomes simpler with central synchronization,
but the description of many other physical phenomena becomes more difficult. This is the last
topic that I would like to briefly touch upon.

With non-Einsteinian synchronization, the laws of Newtonian mechanics lose their familiar
form. As has been shown by Ohanian [6], new kinds of pseudoforces then have to be introduced.

I give an example of a simple experiment performed on the circumference of the disk, the
explanatory description of which is simple with (local) Einstein synchronization, but where
central synchronization gives results that are difficult to interpret.

We take a metal tube, open at both ends, in the middle of which we have an anchoring peg
to which two identical springs are attached, both of which are compressed to the same length
by identical spherical balls (with a diameter slightly smaller than the inner diameter of the
tube), held in place by two further pegs placed symmetrically with respect to the center of
the tube. A trigger mechanism allows to retract these pegs outside of our tube through their
boreholes in the tube walls. So the device we have constructed essentially is spring operated
shotgun with the peculiarity that it shoots off two “bullets” at the same time but in opposite
directions. Well, we have no desires to use it for warfare... We orient the tube tangentially to
the disk circumference and shoot off our balls in the counterclockwise and clockwise directions
(we may want to introduce guiding railings to keep them from leaving the disk, let these be
friction free). What will the velocities of our two balls be? We can use the law of energy
conservation to evaluate that. If the spring constants are k and the initial compression of
the springs was ∆x, then the potential energy of each spring before pulling the trigger was
k∆x2/2. Suppose that losses due to overshooting of the springs and oscillations are negligible
and each spring transfers its complete potential energy to its respective ball. The balls have
mass m each, so they will acquire the speed u given by mu2/2 = k∆x2/2, i.e., the potential
energy of the springs has been turned into kinetic energy of the balls.

Now this description is valid in a frame with Einstein synchronization, as this particular form
of the law of energy conservation can be derived within Newtonian mechanics in its standard
form. But we know the outcome of the experiment in a centrally synchronized frame as
well, because we know how to calculate velocities with central synchronization from velocities
given with Einstein synchronization. In a centrally synchronized frame, our two balls will have
different velocities. The one moving counterclockwise has a velocity ucc = u/(1+uωR/c2), the
other one ucl = u/(1− uωR/c2). Now here is a problem: the potential energies of the springs
do not depend on time explicitly and are, therefore, independent of the synchronization; but
the kinetic energies of the balls after they have been set in motion are different, because they
have different speeds! From this one would conclude that either the law of energy conservation
does not hold anymore or there must be forces acting on the balls in addition to those of the
springs, one increasing the kinetic energy of the ball moving clockwise, the other decreasing
that of the one moving counterclockwise.29 Both options would mean that the description

27That is, it is not a consequence of acceleration.
28Or even imposes it upon us? (Forgetting for the moment that central synchronization and absolute synchro-
nization are not quite the same thing.)

29These are pseudoforces, because their presence or absence depends on the choice of synchronization.
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of the experiment using central synchronization is more complicated than that using (local)
Einstein synchronization, with even the formulation of energy conservation not obvious in the
former.

Ohanian has taken the fact that Newton’s laws change their form with non-standard synchro-
nization as evidence that Nature prefers, at least in inertial frames, Einstein synchronization.
So there is another “proof” that only Einstein synchronization is the correct way of estab-
lishing simultaneity at a distance. Malament based his on mathematical and philosophical
considerations, Ohanian on the idea that the familiar form of Newton’s laws was deduced
from the analysis of experiments.

Again, one does not have to subscribe to this. Apparently, when formulating mathematical
descriptions of experiments, we automatically attribute properties to the time parameter that
make it rather Einstein synchronized than synchronized in a more asymmetric way.30 If we had
a covariant description of Newton’s laws in spacetime,31 then we could of course automatically
formulate the laws in arbitrary coordinates, which would include differently synchronized time
coordinates. However, the fact that Einstein synchronization will give the simplest form of
these laws, should not be mistaken as a compelling argument that this provides the only
“physical simultaneity relation”.

Neither should the increased simplicity of a description of light propagation around a rotating
platform in terms of central synchronization be taken as an argument in favor of a “physical
simultaneity” provided only by this or by some “absolute synchronization”.

Rather, the correct view seems to be that simultaneity at a distance is not (entirely) physical
but contains a conventional element. And of course, it is Einstein synchronization that makes
the discussion of most physical situations and phenomena simplest in practice, with a few
exceptions to be found in certain accelerating systems.
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