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1 Introduction
This thesis is concerned with the following question raised by Zariski in
[Zar62]:

Question 1. Let D be an effective divisor on a nonsingular projective sur-
face S over an arbitrary field k. Is it true that there exists a polynomial
p ∈ Q[x] of degree ≤ 2 and a periodic function λ : N → Q such that for
n� 0:

h0(S,OS(nD)) = P (n) + λ(n)?

Zariski himself proved the answer to be “yes” in case κ(D) ≤ 1, where
κ(D) denotes the Kodaira–Iitaka dimension of D (i.e. κ(D) + 1 is the tran-
scendence degree of the algebra

⊕
n≥0H

0(S,OS(nD)) over k). The remain-
ing case κ(D) = 2 was treated by Cutkosky and Srinivas in [Cut93]. They
proved Zariski’s problem for fields k of characteristic 0 and for finite fields.

The aim of this thesis is to provide an easily accessible presentation of
Cutkowski and Srinivas’s results, assuming only basic knowledge of algebraic
geometry as treated in [Har77]. Nevertheless, in order to keep the presenta-
tion compact, we don’t prove every result needed. For instance, results on
the Picard scheme will be stated in detail, but we refer to the literature for
proofs.

Notations and Conventions: By variety we mean an integral sepa-
rated scheme of finite type over some field k (not necessarily algebraically
closed). Subvarieties will always be closed. Any inclusion morphism of a
subvariety will be denoted by j (it will always be clear from context, which
inclusion is meant). The term surface will be used exclusively for nonsin-
gular, projective varieties of dimension 2 over an algebraically closed field
k. The line bundle corresponding to a Cartier divisor D on a variety X
will be denoted OX(D). If C is an effective divisor on a surface S, then
the closed subscheme of S associated to C (with ideal sheaf OS(−C)) will
also be denoted by C and we write OC(D) := j∗OS(D) for any divisor D
on S. The intersection pairing on a surface S will be denoted by C ·D for
divisors C and D on S, and we write C2 := C · C. If C and D are divisors
on S, we say that C ≤ D if D − C is effective. For a coherent OX -module
L on a variety X we write hi(L) := hi(X,L) := dimkH

i(X,L). We write
hi(D) := hi(OS(D)) for a divisor D on a surface S. If X is a variety and
Y is a subvariety of X, then for any OY -moduleM we will also denote by
M the corresponding OX -module j∗M by abuse of notation. The canonical
divisor on a nonsingular projective variety X is denoted KX .
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2 Zariski decomposition
The aim of this section is to introduce the Zariski decomposition, which will
play an essential role in the investigation of Zariski’s problem. It states,
roughly speaking, that effective divisors on surfaces can be decomposed into
a positive and a negative part (in a sense to be defined below).

2.1 Basic facts about divisors

We begin by proving some basic results about divisors on surfaces. Most of
the results are true in much more general settings, but we concentrate on
the cases needed later on.

Lemma 2. Let C be an effective divisor on a surface S and let D be any
divisor on S. Then, as OS-modules: OC(D) = OC ⊗OS(D).

Proof. By definition, OC(D) = j∗OS(D) (as OC-modules), so this just fol-
lows from projection formula (see e.g. [Har77], (Ex. II.5.1), pp. 123–124).

Proposition 3. Let C and D be effective divisors on a surface S. Then
there is a short exact sequence of OS-modules:

0→ OD(−C)→ OC+D → OC → 0.

Proof. We consider the following diagram of OS-modules.

0

��

0

��

0

��
0 // OS(−C −D)

��

OS(−C −D) //

��

0 //

��

0

0 // OS(−C) //

��

OS //

��

OC // 0

OD ⊗OS(−C)

��

OC+D

��

OC

��
0 0 0

Here, the second row and the first two columns come from the standard
exact sequences for the effective divisors C, D and C + D. By Lemma
2: OD ⊗ OS(−C) = OD(−C). So by commutativity of the diagram the
statement follows from the nine lemma.

Proposition 4. Let C be an effective divisor on a surface S. Then for any
line bundle L on C and for all i ≥ 0: hi(S,L) = hi(C,L).
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Proof. Recall, that referring to the OS-module L, we mean j∗L. So the
result follows from [Har77], (Ex. III.8.2), p. 252, because j : C → S is an
affine morphism.

We will need a version of the one-dimensional Riemann–Roch theorem
on divisors of a surface, i.e. on certain curves that may be singular and
reducible.

Proposition 5. Let C be an effective divisor on a surface S. Then for any
divisor D on S:

χ(S,OC(D)) = χ(C,OC(D)) = C ·D + 1− pa(C),

where χ denotes the Euler characteristic and pa the arithmetic genus.

Proof. The first equality follows from Proposition 4. In case C is a nonsingu-
lar irreducible curve, the second equality follows from the usual Riemann–
Roch theorem for curves and the fact that degC(OC(D)) = (C · D) (see
[Har77], §V.1). If C is an arbitrary effective divisor, it is linearly equivalent
to a difference C1 − C2 of effective divisor, that are nonsingular irreducible
curves on S (loc. cit.). By Proposition 3 we get a short exact sequence of
OS-modules:

0→ OC(−C2)→ OC+C2 → OC2 → 0

We tensor with OS(D + C2) and use additivity of the Euler characteristic
to get

χ(OC(D)) = χ(OC+C2(D + C2))− χ(OC2(D + C2)). (2.1)

Applying additivity of the Euler characteristic to the short exact sequences

0→ OS(D + C2 − C1)→ OS(D + C2)→ OC1(D + C2)→ 0

and
0→ OS(D − C)→ OS(D + C2)→ OC+C2(D + C2)→ 0

we get χ(OC+C2(D+C2)) = χ(OS(D+C2))−χ(OS(D−C)) = χ(OC1(D+
C2)), so together with (2.1) we have:

χ(OC(D)) = χ(OC1(D + C2))− χ(OC2(D + C2))
= C1 · (D + C2) + 1− pa(C1)− (C2 ·D) + C2 − 1 + pa(C2),

where we have used the already shown case of nonsingular irreducible curves.
Now by [Har77], (Ex. V.1.3), pp. 366–367:

pa(C) = pa(C1 − C2) = pa(C1)− pa(C2) + (C2 − C1) · C2 + 1.

This finally shows χ(OC(D)) = C ·D + 1− pa(C).

4



Definition 6. Let S be a surface and D a divisor on S. If H0(S,OS(nD)) =
0 for all n > 0, then we define κ(D) := −∞. Otherwise we consider
the graded k-algebra R(S,D) :=

⊕
n≥0H

0(S,OS(nD)) and define κ(D) :=
tr.deg R(S,D)− 1.

We state the following characterizations of κ(D) without proof:

Theorem 7. Let S be a surface over k and D a divisor on S such that
κ(D) 6= −∞.

(i) For every n > 0 such that h0(nD) > 0 let ϕn : S → Ph
0(nD)

k be the
rational map associated to the linear system |nD| and let Xn be the
closure of the image of ϕn. Then κ(D) = max dimXn.

(ii) There exist integers α and β such that αnκ(D) ≤ h0(nD) ≤ βnκ(D)

for n sufficiently divisible. This property determines the integer κ(D)
uniquely.

Proof. [Iit82], §10, pp. 298–301.

Corollary 8. Let S be a surface and D a divisor on S. Then κ(D) ≤ 2.

Proof. This is immediate from Theorem 7, part (i).

2.2 Q-divisors

It turns out that for the existence of the Zariski decomposition it is necessary
to enlargen slightly our class of divisors.

Definition 9. Let S be a surface. Let Div(S) denote the group of divisors
on S. A Q-divisor is an element of the group Div(S) ⊗ Q. In contrast,
elements of Div(S) are referred to as integral divisors, or just divisors.

Remark 10. The relation ≤ and the intersection pairing on Div(S) extend
to Div(S)⊗Q. We observe that (Div(S)⊗Q)/Div(S) is a torsion group, i.e.
for any Q-divisor D on S some multiple nD (n ≥ 0) is an integral divisor.
So a Q-divisor D on S is just a formal sum

∑r
i=1 aiCi, where ai ∈ Q∗ and

Ci are integral curves on S. If all ai ≥ 0 (i.e. D ≥ 0), then D is effective
and the Ci are called components of D.

Definition 11. Let S be a surface. A Q-divisor D is ample, if nD is an
ample integral divisor for some integer n > 0.

Definition 12. Let S be a surface. To a Q-divisor D on S we associate an
OS-module OS(D) by defining

Γ(U,OS(D)) := {f ∈ K(S) | ((f) +D) |U ≥ 0} ∪ {0}.

5



Remark 13. For a Q-divisor D denote by bDc the maximal integral divisor
(w.r.t. ≤) such that D − [D] ≥ 0. Then OS(D) = OS(bDc). In particular,
OS(D) is a line bundle.

Definition 14. Let S be a surface. A Q-divisor P on S is nef, if P ·C ≥ 0
for every effective divisor C on S. We say, that D is pseudo-effective, if
D · P ≥ 0 for every nef divisor P on S.

Proposition 15. Let S be a surface and let P be a nef Q-divisor on S.
Then P 2 ≥ 0.

Proof. (We follow the proof in [Bad01], Thm. 1.25, pp. 11–12.)
Suppose that P 2 < 0. Let H be an ample divisor on S. Since H2 > 0,

there exists a positive real number ε0 ∈ R such that (P + αH)2 ≤ 0 for all
rational numbers α ∈ [0, ε0] and such that (P + αH)2 > 0 for all rational
numbers α > ε0. Since (P + αH) · C > 0 for all irreducible curves C and
all α > 0, the Nakai–Moishezon criterion ([Har77], Thm. V.1.10, p. 365)
implies that P +αH is ample for all rational α > ε0. In particular, we have
(P + αH) · P ≥ 0 in this case, because P is nef and some multiple of an
ample divisor is linearly equivalent to an effective divisor. By density of
Q in R, we conclude P 2 + ε0P · H ≥ 0. Therefore, there exists a positive
rational number α0 < ε0 such that P 2 + α0P ·H ≥ 0 (if ε0 is rational, take
α0 = ε0, otherwise P 2 + ε0P ·H > 0 by irrationality, in which case α0 exists
by density of Q in R). However, this implies (P +α0H)2 ≥ P ·H +H2 > 0,
a contradiction to α0 < ε0.

Proposition 16. Let D be an integral divisor on a surface S such that
κ(D) ≥ 1. Then D is pseudo-effective. Moreover, for any divisor D′ on S
and n sufficiently large: h0(OS(D′ − nD)) = 0.

Proof. Let C be a nef divisor on S. Since κ(D) ≥ 1, there is a positive
integer m such that h0(OS(mD)) > 1. Therefore mD is linearly equivalent
to some non-zero effective divisor. Thus C ·D ≥ 0, because C is nef. This
shows that D is pseudo-effective.

To prove the second statement we consider some ample divisor H. Then
mD · H > 0 implies D · H > 0, so for n � 0 we get (D′ − nD) · H < 0.
In particular D′ − nD is not linearly equivalent to an effective divisor, i.e.
h0(OS(D′ − nD)) = 0.

Theorem 17 (Fujita’s vanishing theorem). Let S be a surface, let D be an
arbitrary divisor on S and let H be an ample divisor on S. Then there exists
an integer n0 such that hi(nH +D + P ) = 0 for all i > 0, n ≥ n0 and any
nef divisor P on S.

Proof. [Fuj81], Thm. 5.1, p. 367.
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Proposition 18. Let S be a surface and let P be a nef divisor on S. Then
h0(nP ) = (P 2/2)n2 + O(n), i.e. h0(nP ) − (P 2/2)n2 is bounded by a linear
polynomial in n.

Proof. (We follow the proof in [Laz04], Cor. 1.4.41, p. 69.)
If κ(P ) ≤ 1 and P 2 = 0, then this follows from Theorem 7. Now we

suppose, that κ(P ) = 2 or P 2 > 0 (we have P 2 ≥ 0 by Proposition 15). We
claim, that in both cases h2(nP ) = 0 for n� 0.

By Serre duality, h2(nP ) = h0(KS − nP ) for all integers n > 0. In
the case P 2 > 0 we get (KS − nP ) · P < 0 for n � 0. Since P is nef, this
means, thatKS−nP cannot be linearly equivalent to an effective divisor, i.e.
h0(KS−nP ) = 0. In the other case κ(P ) = 2 and therefore h0(KS−nP ) = 0
for n� 0 by Proposition 16. This proves the claim.

The Riemann–Roch theorem on surfaces now shows that

h0(nP )− h1(nP ) = 1
2nP · (nP −K) + 1 + pa(S) = P 2

2 n2 +O(n),

so it suffices to show that h1(nP ) is bounded by a linear polynomial in n.
Let H be a very ample divisor on S. By Theorem 17 we can replace H

by a sufficiently large multiple such that h1(H +nP ) = h2(H +nP ) = 0 for
all n ≥ 0. The long exact cohomology sequence associated to

0→ OS(nP )→ OS(nP +H)→ OH(nP +H)→ 0

shows that h1(S,OS(nP )) ≤ h0(H,OH(nP+H)) and h1(H,OH(nP+H)) =
h2(S,OS(nP )) = 0. But h0(H,OH(nP + H)) = χ(H,OH(nP + H)) is a
linear polynomial in n by Proposition 5.

Proposition 19. Let P be an integral nef divisor on a surface S. Then
κ(P ) = 2 if and only if P 2 > 0.

Proof. This follows from Proposition 18 and Theorem 7.

2.3 Zariski decomposition

We now state the Zariski decomposition theorem.

Theorem 20. Let S be a surface, let D be a pseudo-effective Q-divisor on
S. Then there exists a unique decomposition

D = P +N

with Q-divisors P and N such that:

(i) P is nef and N is effective.

(ii) If C1, . . . , Cr are the components of N , then (P · Ci) = 0 for every i
and the r × r-matrix with entries (Ci · Cj) is negative definite.
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Conversely, if such a decomposition exists, then D is pseudo-effective. We
call D = P +N the Zariski decomposition of D.

Proof. A nice presentation can be found in [Bad01], Thm. 14.14, p. 220.

An easy consequence of the properties stated above is:

Proposition 21. Let S be a surface and let D be a pseudo-effective divisor
on S and let D = P+N be its Zariski decomposition. Then H0(S,OS(nD)) =
H0(S,OS(nP )) = H0(S,OS(bnP c)) for all positive integers n.

Proof. (We follow the proof in [Bad01], Lemma 14.15, p. 222)
The Zariski decomposition of nD is just nD = nP + nN , so it suffices

to show H0(S,OS(D)) = H0(S,OS(P )). One inclusion is trivial, because N
is effective. For the other inclusion, let f ∈ H0(S,OS(D)), i.e. (f) + D ≥
0. We write (f) + D = D1 + D2 with effective divisors D1 and D2 such
that Supp D1 ⊂ Supp (N) and D2 has no common component with N . In
particular, D2 ·Ci ≥ 0, where Ci are the components of N . In order to show
(f) + P ≥ 0, it suffices to prove D1 −N ≥ 0. We have

(D1 −N) · Ci ≤ ((f) +D −N) · Ci = P · Ci = 0.

We write D1 −N = A− B for effective divisors A and B without common
components. Then A ·B = 0 and (A−B) ·Ci = (D1−N) ·Ci ≤ 0. Since B
is effective, this implies −B2 = (A−B) ·B ≤ 0. But the intersection matrix
of N is negative definite, so B = 0. This concludes the proof.

Corollary 22. Let S be a surface. Let D be an integral divisor on S such
that κ(D) ≥ 1 and let D = P + N be its Zariski decomposition. Let s
be a positive integer such that sP is an integral divisor. Then there exist
polynomials q1, q2 ∈ Q[x] of degree ≤ 2 such that for every sufficiently large
integer n = as+ b, a ∈ N, 0 ≤ b < s:

(i) h0(OS(nD)) = h0(OS(asP + bD)).

(ii) h1(OS(nD)) = h1(OS(asP + bD)) + q1(n) + q2(b).

(iii) h2(OS(nD)) = h2(OS(asP + bD)) = 0.

Proof. (We follow the proof in [Cut93], Prop. 12, p. 538.)
The Zariski decomposition of D′ := asP + bD is just D′ = nP + bN ,

so H0(S,OS(nD)) = H0(S,OS(nP )) = H0(S,OS(D′)) by Proposition 21.
This shows (i).

Statement (iii) follows from Serre duality: For all integers n we have:
h2(OS(nD)) = h0(OS(KS − nD)) and h2(OS(asP + bD)) = h0(OS(KS −
asP − bD)). But Proposition 21 implies κ(P ) = κ(D) ≥ 1, so the claim
follows from Proposition 16.
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It remains to show (ii). By (i) and (iii) it suffices to relate the Euler
characteristic χ of nD and D′ := asP +bD. We note that asN = nD−D′ is
an effective integral divisor, so we can consider the standard exact sequence
of asN . After tensoring with OS(nD) we get:

0→ OS(D′)→ OS(nD)→ OasN (nD)→ 0.

By additivity of the Euler characteristic and Proposition 5 this implies:

χ(OS(nD))− χ(OS(D′)) = χ(OasN (nD)) = asN · nD + 1− pa(asN).

Now pa(asN) = 1 + asN · (asN + KS)/2. So for n sufficiently large we
obtain:

h1(OS(nD))− h1(OS(D′)) = χ(OS(nD))− χ(OS(D′))

= (n− b)nN ·D − (n− b)2

2 N2 − n− b
2 N ·K

= n2

2 N
2 − 2

2N ·K + b2

2 N
2 + b

2N ·K.

Here we used N ·D = N2 (by properties of the Zariski decomposition).

3 Group schemes
We introduce the notion of a group scheme and state existence theorems for
the Picard scheme.

3.1 Representable functors

Definition 23. Let C be a category. A contravariant functor F : C → (Sets)
from C to the category of sets is representable, if there exists an object
A ∈ C such that F and Hom(·, A) are naturally isomorphic as functors from
C to (Sets).

Lemma 24 (Yoneda lemma). Let C be a category. Let F : C → (Sets)
be a contravariant functor and let A be an object in C. Then the natural
transformations from Hom(·, A) to F are in bijection with elements in F (A).
Explicitly, a natural transformation ϕ : Hom(·, A)→ F is identified with the
element ϕA(id).

Proof. The proof is straightforward.

In particular, a representable functor F : C → (Sets) gives an object A
in C and an element u ∈ F (A). One easily checks, that they satisfy the
following universal property:
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Definition 25. Let C be a category and let F : C → (Sets) be a contravariant
functor. A universal element of F is a pair (A, u), where A is an object in
C and u ∈ F (A) with the following property: If (A′, u′) is another pair, then
there exists a unique morphism f : A′ → A such that F (f) : F (A)→ F (A′)
maps u to u′.

Proposition 26. Let C be a category and let F : C → (Sets) be a contravari-
ant functor. Then F is representable if and only if there exists a universal
element of F . Universal elements of F are the final objects in the category
of pairs (A, u) (defined in the obvious way) and are therefore unique up to
unique isomorphism.

Proof. Again, the proof is easy.

Lemma 27 (Yoneda embedding). Let C be a category. The embedding
C → [Cop, (Sets)] given by A 7→ Hom(·, A) is fully faithful.

Proof. Essentially, this follows from applying the Yoneda lemma to a functor
F = Hom(·, A).

Definition 28. A group scheme over a field k is a contravariant functor
G : (Sch/k)→ (Groups) such that considered as a functor to the category of
sets (via composition with a forgetful functor), G is representable.

By Proposition 26, a group scheme G has a universal element (G0, u),
whereG0 is a scheme over k and u ∈ G(G0) corresponds to id ∈ Hom(G0, G0).
Often we will denote G0 by G as well and for a k-scheme T we will iden-
tify G(T ) with the morphisms over k from T to G0. The group struc-
ture on G(T ) induces functorial morphisms mT : G(T ) × G(T ) → G(T ),
iT : G(T ) → G(T ) and eT : Spec k → G(T ) which behave with respect to
their composition like multiplication, inversion and the neutral element of
a group. By the Yoneda embedding (Lemma 27), this induces morphisms
m : G0×kG0 → G0, i : G0 → G0 and e : Spec k → G0 behaving in the same
way. We refer to [Vis05], §2.2, pp. 18–19 for details.

Remark 29. Let G be a group scheme over k, locally of finite type. Then
the group G(k) corresponds to k-morphisms from Spec k to G = G0, which
in turn can be identified with the closed points of G = G0. We also call these
points the k-valued points of G.

Definition 30. A group scheme G over k is an algebraic group, if the
representing scheme G0 is a variety over k.

Lemma 31. Let G be a connected commutative algebraic group over an
algebraically closed field k of characteristic zero. If the cyclic subgroup 〈x〉
is dense in G for some x ∈ G, then any infinite subset of 〈x〉 is dense in G
as well.

Proof. [Cut93], Thm. 7, p. 534.
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3.2 Picard scheme

Let X be a scheme over k. We want to introduce a group scheme resembling
the Picard group on X. However, the relative Picard functor (Sch/k) →
(Groups), T 7→ Pic(X ×k T ) is in general not a group scheme. We can see
this in the following way: If we let U vary over the open subsets of a scheme
T , then it is easy to show that for a group scheme G the groups G(U) form
a sheaf on T . But

U 7→ Pic(X × U) = H1(X ×k U,O∗X×U ) = H1(X × U,O∗X×T |X×U )

is in general only a presheaf. Its associated sheaf is R1fT∗O∗X×T , where
fT : X × T → T is the projection (see [Har77], Prop. III.8.1, p. 250). This
motivates the following definition.

Definition 32. Let X be a scheme over k. We define the contravariant
functor PicX : (Sch/k)→ (Groups) by PicX(T ) := H0(T,R1fT∗O∗X×T ).

Remark 33. From the above discussion we get that there is a natural trans-
formation from the functor Pic(X × ·) to the functor PicX , given by sheafi-
fication. Note, that this induces a natural isomorphism Pic(X)→ PicX(k),
because no sheafification is necessary over Spec k.

Theorem 34. Let X be a proper scheme over an algebraically closed field.
Then PicX is a representable functor and the representing scheme PicX is
locally of finite type. If the field has characteristic zero, then PicX is reduced.

Proof. [Mur64], II.15, p. 42.

Theorem 35. Let X be a proper scheme over an algebraically closed field.
Then there exists a subgroup scheme PicτX ⊂ PicX which is of finite type.
The natural isomorphism Pic(X)→ PicX(k) induces an isomorphism Picτ (X) ∼=
PicτX(k)

Proof. [Kle05], Prop. 9.6.12, p. 296.

4 The main theorem

4.1 Preliminary results

Here we state without proofs some results needed in the proof of the main
theorem.

Theorem 36. Let S be a surface and let D be a divisor on S such that
κ(D) = 0 or κ(D) = 1. Then the k-algebra R(S,D) =

⊕
n≥0H

0(S,OS(nD))
is finitely generated.

Proof. [Zar62], Prop. 11.5, p. 610.
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Theorem 37. Let S be a surface and let D ≥ 0 be an effective divisor on
S. Then there exists a polynomial p ∈ Q[x] of degree ≤ 2 and a bounded
function λ : N→ Q such that h0(nD) = p(n) + λ(n) for all n� 0.

Proof. [Zar62], § 12, p. 611.

Proposition 38. Let R =
⊕

n≥0Rn be a finitely generated graded k-algebra
of transcendence degree ≤ 3. Then there exists an integer s > 0 and poly-
nomials p0, . . . , ps−1 ∈ Q[x] of degree ≤ 2, such that for all sufficiently large
integers n = as+ b, a ∈ N, 0 ≤ b < s: dimkRn = pb(n).

Proof. [Eis95], Ex. 12.12, p. 280.

Proposition 39. Let S be a surface and let D be a nef divisor on S such
that κ(D) ≥ 0. Let E be an irreducible curve on S such that E ⊂ Fix |nD|
for infinitely many integers n > 0. Then D · E = 0.

Proof. [Zar62], Thm. 9.1, p. 596.

Proposition 40. Let S be a surface and let D be a divisor on S such that
the linear system |D| has no fixed component. Then the linear system |nD|
is base-point-free for all n� 0.

Proof. [Bad01], Thm. 9.17, p. 133.

Proposition 41. Let S be a surface over k and let D be a divisor on S
such that the linear system |D| is base-point-free. Then R(S,D) is a finitely
generated k-algebra.

Proof. [Bad01], Thm. 9.2, p. 125.

4.2 Reduction to a problem on curves

Proposition 42. Let S be a surface and let P be a nef divisor on S such
that κ(P ) = 2. Let D0, . . . , Ds−1 be arbitrary divisors on S. Then there
exists an effective divisor C on S such that:

(i) The restriction map H1(S,OS(nP + Di)) → H1(C,OC(nP + Di)) is
an isomorphism for all n� 0, 0 ≤ i < s.

(ii) C ′ · P = 0 for each component C ′ of C.

(iii) If C ′ ·P = 0 for some irreducible curve C ′ on S, then C ′ is a component
of C.

Proof. (We follow the proof in [Cut93], Prop. 13, pp. 538–539.)
We proceed in several steps:

Step 1: There exists an ample divisor H on S such that h1(H+nP +Di) =
h2(H + nP +Di) = 0 for all j > 0, 0 ≤ i < s and n ≥ 0.
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Choose some ample divisor H. By Theorem 17 we can replace H by
some multiple which has the property stated above.
Step 2: There exists some m > 0 such that h0(OS(mP −H)) > 0.

Proposition 16 implies that h0(OS(K + H −mP )) = 0 for m � 0. So
h2(OS(mP − H)) = 0 for m � 0 by Serre duality. So the Riemann–Roch
theorem on surfaces shows:

h0(OS(mP −H)) ≥ 1/2(mP −H ·mP −H −K) + 1 + pa(S),

which is > 0 for m sufficiently large, because (P 2) > 0 by Proposition 19.
Step 3: There exists an effective divisor C0 on S satisfying (i) and (iii).

By Step 2 there exists an effective divisor C0 linearly equivalent to mP −
H. Let 0 ≤ i < s. We consider the standard exact sequence of C0 tensored
with OS(nP +Di):

0→ OS(nP +Di − C0)→ OS(nP +Di)→ OC0(nP +Di)→ 0.

Since OS(nP+Di−C0) = OS((n−m)P+Di+H) and by the choice of H we
get for n sufficiently large: h1(S, nP +Di−C0) = h2(S, nP +Di−C0) = 0.
Therefore the long exact cohomology sequence corresponding to the short
exact sequence from above implies that the restriction map H1(S, nP +
Di) → H1(C0, nP + Di) is an isomorphism. To show (iii), let C ′ be an
irreducible curve on S such that C ′ ·P = 0. Then C ′ ·C0 = C ′ · (mP −H) =
−C ′ ·H < 0 and since C0 is effective, C ′ must be a component of C0.
Step 4: There exists an effective divisor C on S satisfying (i), (ii) and (iii).

For each component C ′ of C0 we have (C ′ · P ) ≥ 0 because P is nef. So
we can decompose C0 = C + C1 into effective divisors C and C1, such that
(C ′ ·P ) = 0 for each component C ′ of C and (C ′ ·P ) > 0 for each component
C ′ of C1. If C1 = 0, we are done by Step 3. Otherwise degC1(OC1(P )) =
C1·P > 0, soOC1(P ) is ample on C ′. We consider the short exact sequence of
OS-modules corresponding to the decomposition C0 = C+C1 by Proposition
3, tensored with OS(nP +Di):

0→ OC1(nP +Di − C)→ OC0(nP +Di)→ OC(nP +Di)→ 0.

Now OC1(P ) is ample, so by Proposition 4 we get h1(C1, nP+Di−C) = 0 for
n� 0. Considering the long exact cohomology sequence of the short exact
sequence from above this implies h1(OC0(nP + Di)) = h1(OC(nP + Di))
(applying Proposition 4 once more). By step 3 we are done.

4.3 A periodicity result on curves

Proposition 43. Let X be a proper scheme over an algebraically closed field
k of characteristic zero. Let M and N be line bundles on X and assume
that M is numerically trivial. Then n 7→ hj(X,M⊗n ⊗ N ) is a periodic
function in n for all j > 0, n� 0.
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Proof. (We follow the proof in [Cut93], Thm. 8, pp. 540–541.)
We proceed in several steps:

Step 1: The function PicτX(k) → N, L 7→ h1(X,L ⊗ N ) is upper semicon-
tinuous.

Since the characteristic of k is zero, PicX is reduced by Proposition
34 and PicτX is an algebraic group over k. Let s ∈ PicX(PicX) be the
universal element of PicX . Let s′ ∈ PicX(PicτX) be the image of s under
the map PicX(PicX) → PicX(PicτX) induced by the inclusion of PicτX into
PicX . Since the natural transformation Pic(X × ·) → PicX(·) is given by
sheafification (see the discussion in 33), we can cover PicτX by open subsets
Ui such that there exists Li ∈ Pic(X×Ui), that map to s′|Ui under Pic(X×
Ui) → PicX(Ui). Let ϕ : k → Ui correspond to an element y ∈ Ui(k) ⊂
PicX(k). On Spec k, the map Pic(X) → PicX(k) is an isomorphism (by
remark 33) which restricts to an isomorphism Picτ (X) → PicτX(k). By
naturality of the transformation Pic(X × ·) → PicX(·), the line bundle Ly
corresponding to y under this isomorphism is (id×ϕ)∗Li, where id×ϕ : X =
X × Spec k → X × Ui. Now with respect to gi : Ui ×X → X there exists
an isomorphism ψi : X → (Ui × X)y such that ψ∗i (Li ⊗ g∗iN )y = Ly ⊗ N
(obtain ψi by the morphism id × ϕ : X → X × Ui and the structure map
X → Spec k. So, by the semicontinuity theorem we obtain that

y ≈ Ly 7→ hj(X,Ly ⊗N ) = hj((Ui ×X)y, (Li ⊗ g∗iN )y)

is upper semicontinuous on Ui(k). Semicontinuity is a local property, so this
concludes Step 1.
Step 2: Let G be the closure in PicτX of the subgroup of PicτX(k) = Picτ (X)
generated byM (with the induced reduced subscheme structure). Then G
is a commutative algebraic group. Let G0, G1, . . . , Gs−1 be the connected
components of G. We may assume, that they are numerated such that for
each 0 ≤ i < s, the component Gi containsM⊗as+i (note, that the group of
connected components is G/G0, if G0 is the connnected component of the
neutral element, and is therefore generated by the component ofM). Note,
that G0(k) is the closure of the cyclic subgroup 〈Ms〉.

For 0 ≤ i < s and k ≥ 0 let

Aik := {Mrs | hj(X,M⊗rs+i ⊗N ) ≥ k} ⊂ 〈Ms〉 ⊂ G0(k).

By Lemma 31, Aik is a finite set or dense in G0. We know by Step 1 that
Aik is relatively closed in 〈Ms〉, so we conclude that Aik is a finite set or
Aik = 〈Ms〉. For each i let

λ(i) := max{k ≥ 0 | Aik = 〈Ms〉}.

Then hj(X,M⊗rs+i⊗N ) = λ(i) for r � 0. In particular, hj(X,M⊗n⊗N )
is periodic in n for n� 0.
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Corollary 44. Let C be an effective divisor on a surface S over an (alge-
braically closed) field of characteristic zero. Let D be a divisor on S such
that (C ′ ·D) = 0 for each component C ′ of C. Then for any divisor D′ on
S, n 7→ h1(C,OC(nD +D′)) is periodic in n for n sufficiently large.

4.4 The case of characteristic 0

Theorem 45. Let S be a nonsingular projective variety of dimension 2 over
a field k of characteristic zero. Let D be a divisor on S. Then there exists an
integer s > 0 and polynomials p0, . . . , ps−1 ∈ Q[x] of degree ≤ 2, such that for
all sufficiently large integers n = as+ b, a ∈ N, 0 ≤ b < s: h0(nD) = pb(n).
Moreover, if κ(D) 6= 1 or if D is effective, then the polynomials pi only differ
in their constant terms.

Corollary 46. Let S be a nonsingular projective variety of dimension 2 over
a field k of characteristic zero. Let D be a divisor on S satisfying κ(D) 6= 1
or D ≥ 0. Then there exists a polynomial p ∈ Q[x] of degree ≤ 2 and a
periodic function λ : N→ Q, such that:

h0(OS(nD)) = p(n) + λ(n).

Proof. Let p0, . . . , ps−1 be as in the theorem above. They only differ in their
constant terms. So we can define λ(i) := pi − p0 for 0 ≤ i < s and extend
λ to an s-periodic function. Then for sufficiently large n = as + b, a ∈ N,
0 ≤ b < s we get

h0(OS(nD)) = pb(n) = p0(n) + λ(b) = p0(n) + λ(n).

Proof of Theorem 45. (We follow the proof in [Cut93], Thm. 4, p. 542.)
We consider the possible cases for κ(D):

Case 1: κ(D) = −∞
Then h0(OS(nD)) = 0 for all n > 0, so this case is trivial.

Case 2: κ(D) = 0
At first we note that in this case h0(OS(nD)) ≤ 1 for all n > 0: If

x, y ∈ An := H0(S,OS(nD)) for some n > 0, then tr.deg R(S,D) = 1
implies that f(x, y) = 0 for some non-zero polynomial f ∈ k[x1, x2]. We can
assume that f is homogeneous. Then the fact that k is algebraically closed
shows that x, y are linearly dependent. This shows dimkAn ≤ 1.

Now let s := min{n > 0 | An 6= 0} and let 0 6= f ∈ As. For any
a > 0, fa is a non-zero element of Aas, so dimkAas = 1. We now show
Aas+b = 0 for all a > 0, 0 < b < s, which proves the claim. Suppose there
is a non-zero element g ∈ Am for some m = as + b, 0 < b < s. Then gs

and fm are both elements of Asm and therefore linearly dependent. Thus
m(f) = s(g) as principal divisors. This implies (g/fa)+bD = b/m(g)+bD =
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b/m((g) +mD) ≥ 0, because g ∈ Am = H0(S,OS(mD)). So g/fa is a non-
zero element of H0(S,OS(bD)), which contradicts the minimality of a.
Case 3: κ(D) = 1

By Theorem 36, R(S,D) =
⊕

n≥0H
0(S,OS(nD)) is finitely generated.

Therefore, we can apply Proposition 38. Moreover, Theorem 37 implies that
the polynomials given by Proposition 38 can only differ in their constant
terms in case D is an effective divisor.
Case 4: κ(D) = 2

Then D is pseudo-effective by Proposition 16, so we can consider its
Zariski decomposition D = P + N . Let s > 0 be such that sP is an
integral divisor. By Proposition 21 we have κ(sP ) = κ(sD) = 2. Applying
Proposition 42 to the divisors Di := iD (0 ≤ i < s) and combining this with
Corollary 44 we know that for each 0 ≤ b < s the function a 7→ h1(OS(asP+
bD)) is periodic for a� 0. Therefore the function n 7→ h1(OS(asP + bD)),
where n = as+ b, a ≥ 0, 0 ≤ b < s, is periodic in n with period rs (r some
positive integer) for n� 0. By corollary 22 for n = as+ b suficiently large:

h0(OS(nD)) = χ(OS(nD)) + h1(nD)
= χ(OS(nD)) + h1(OS(asP + bD)) + q1(n) + q2(b)

for polynomials q1, q2 ∈ Q[x] of degree ≤ 2. Since n 7→ χ(S, nD) is also
given by a polynomial (for n suficiently large) this proves the claim.

4.5 The case of finite fields

Theorem 47. Let S be a nonsingular projective variety of dimension 2 over
a field k that is an algebraic extension of Fp. Let D be a divisor on S. Then
there exists an integer s > 0 and polynomials p0, . . . , ps−1 ∈ Q[x] of degree
≤ 2, such that for all sufficiently large integers n = as+b, a ∈ N, 0 ≤ b < s:

h0(nD) = pb(n).

Moreover, if D is effective, then the polynomials pi only differ in their con-
stant terms, i.e.

h0(nD) = p(n) + λ(n)

for a polynomial p ∈ Q[x] and a periodic function λ : N→ Q.

Proof. (We follow the proof in [Cut93], Thm. 3, pp. 544–545.)
By considering Sk := S ×Spec k Spec k we may assume, that k = F̄p.
We show that R(S,D) =

⊕
n≥0H

0(S,OS(nD)) is finitely generated.
Then the statement follows from Proposition 38 and Theorem 37. The case
κ(D) = −∞ is trivial. If κ(D) = 0 or κ(D) = 1, then the finite generation
follows from Theorem 36 (the case κ(D) = 0 could more easily be treated
as in the proof of Theorem 45).
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So it remains to consider the case κ(D) = 2. Then D is pseudo-effective
by Proposition 16, so we can consider its Zariski decomposition D = P +N .
Let s > 0 be such that sP is an integral divisor. By Proposition 21 we have
κ(sP ) = κ(sD) = 2. We apply Proposition 42 to the nef divisor sP (and
Di = 0). Let C be the effective divisor given by the Proposition. Since C
is a projective variety over F̄p, the group Pic0(C) is a torsion group. So
the fact that OC(sP ) is numerically trivial, implies that we can replace s
by some multiple such that sP |C is linearly equivalent to the trivial divisor
0 ∈ Pic(C). Thus, the trivial divisor on C corresponds to a section f ∈
H0(C,OC(sP )) such that (f) + sP |C = 0. By the long exact cohomology
sequence associated to

0→ OS(asP − C)→ OS(asP )→ OC(asP )→ 0

(for an integer a > 0) and by property (i) of Proposition 42 we obtain, that
after replacing s by a suitable multiple the restriction map

H0(S,OS(sP ))→ H0(C,OC(sP ))

is surjective. In particular, f lifts to a section f ′ ∈ H0(S,OS(sP )). Then
D′ := sP + (f ′) is in the linear system |sP | and Supp D′ ∩ Supp C = ∅,
because D′ restricts to the trivial divisor on C. This implies that Bs |sP | ∩
Supp C = ∅. By property (iii) of Proposition 42, we see that Proposition
39 implies that, after replacing s by a sufficiently large multiple, |sP | has
no fixed component. By Proposition 40, |sP | is base-point-free for a larger
multiple of s. This implies, by Proposition 41, that R(S, sP ) is finitely
generated. We conclude, that the Veronese subring R(S,D)(s) = R(S, sD) =
R(S, sP ) (by Proposition 21) is finitely generated and R(S,D) is an integral
extension of R(S, sD), so R(S,D) is finitely generated.
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