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Abstract

This thesis is centered around the following question:

Question. When do two polynomial functions f, g : Rn → R agree up
to an orthogonal transformation, i.e. f = g ◦ ϕ for some ϕ ∈ O(n)?

In this thesis, we restrict our treatment to the case of homogeneous
polynomials of even degree.

From a perspective of Invariant Theory, the above question can be
answered by evaluating certain algebraic expressions in terms of the
coefficients of a polynomial (called invariants) which describe the po-
lynomial function up to orthogonal transformations. Classically, these
algebraic expressions are polynomial expressions in terms of the coeffi-
cients, and the problems of determining them, algorithmically evalua-
ting them and further connected questions quickly become computati-
onally infeasible as the degree of the polynomial function increases.

We study this problem, but allowing the invariants to be rational
expressions instead of only polynomial expressions. This additional
flexibility – coming at the expense of excluding cases where certain
denominators vanish – allows us to describe a minimal complete set of
rational invariants in the geometrically most important cases of dimen-
sion n = 2 and n = 3. Furthermore, we describe algorithmic solutions
for related questions of evaluation, rewriting and reconstruction.

The results of this thesis can find applications in describing and ana-
lyzing the geometric shape of curves and surfaces in a coordinate-free
manner. Specifically, this study was motivated by possible applications
in Neuroimaging, where invariants may provide an important prepro-
cessing step for analyzing Diffusion Magnetic Resonance measurements
by methods of Machine Learning and Statistical Testing.
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CHAPTER 1

Introduction

We start out in Section 1.1 by giving a motivation from a geometric
viewpoint for the underlying problem of this thesis. In Section 1.2 we
describe how the problem naturally occurs in a Neuroimaging context.
Formal definitions and a precise problem statement will be delayed to
Chapter 2.

1.1. Geometric motivation

Describing, encoding and manipulating geometric objects such as
curves or surfaces is the basis for many algorithmic approaches from
different fields in Computer Science. A fundamental question in this
context is: When do two geometric objects have the same shape? De-
pending on the geometric objects under consideration and the inter-
pretation of what it means to have the “same shape”, this leads to
different algorithmic problems. This thesis is concerned with one of
those possible viewpoints.

Say, we are interested in closed curves in the two-dimensional plane.
These may be described in different ways, e.g. by sampling points on
the curve and interpolating (with some convention for the interpolation
scheme). The description we are interested in in this thesis, is modeling
a closed curve as a deformation of a circle in the following sense: For
any continuous function f : S1 → R (where S1 := {p = (x, y) ∈ R2 |
x2 + y2 = 1} is the unit circle), we consider the curve

C := {f(p) · p ∈ R2 | p ∈ S1} ⊂ R2,

i.e. for each point on the unit circle we rescale its distance to the origin
according to the function f . For example, the curve described by a
constant function f ≡ r (for some r ∈ R) is the circle with radius |r|
centered at the origin. As f takes on more general functions, a large
variety of different curves can be described.

We will focus on curves which are symmetric with respect to the
origin – this corresponds to imposing the property

(1.1.1) f(p) = f(−p) ∀p ∈ S1

on the describing function f : S1 → R.
3



1.1. GEOMETRIC MOTIVATION 4

Since the unit circle S1 ⊂ R2 is a compact set, the Stone–Weierstraß
Theorem implies that an arbitrary continuous functions S1 → R can
be approximated arbitrarily well by a polynomial function, i.e. by a
function f : S1 → R of the form

f(x, y) =
∑
i+j≤k

ai,jx
iyj.

Because of this approximation property, we restrict to the case that
f : S1 → R is such a polynomial function. Note that the symmetry
assumption (1.1.1) is fullfilled if and only ai,j = 0 whenever i + j is
odd, in other words, f must only consist of even-degree terms. We
can rewrite f in such a way that all its monomials are of the same
degree, by multiplying monomials of smaller degree with a suitable
power of x2 +y2 (which of course does not change the values of f , since
x2 + y2 = 1 for all points (x, y) on the circle).

To conclude, we model curves which are symmetric with respect to
the origin by a function f : S1 → R given by

f(x, y) =
2d∑
i=0

aix
2d−iyi,

where the degree 2d is an even number.
Note that the description of such a modeled curve can then be

encoded exactly by simply storing the 2d+ 1 numbers a0, a1, . . . , a2d ∈
R.

However, from such a numerical encoding of a curve as 2d+ 1 coef-
ficients ai of the defining polynomial, it is not immediately apparent
when two curves have equal geometric shapes, only differing by their
embedding in the coordinate system. As an example, Figure 1.1 depicts
the two curves C1 and C2 defined by

f1(x, y) := 1250x4 + 1250x3y − 625x2y2 + 1875y4 and
f2(x, y) := 1002x4 + 906x3y + 5063x2y2 − 56xy3 + 227y4,

respectively, whose numerical description in terms of coefficients look
very distinct, but whose shapes look very similar. Indeed, it can be
checked that C2 arises from C1 by applying the rotation matrix(

3/5 4/5
−4/5 3/5

)
.

In general, we want to consider curves to be of the same shape if
they differ by an orthogonal transformation.

The question which arises is: How can we (algorithmically) decide
whether two curves only differ by an orthogonal transformation, only
by looking at the coefficients of their defining polynomial?
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Figure 1.1. The curves C1 and C2 only differ by a rotation.

Regarding this question, we should be aware that each curve has two
defining polynomials: If f : S1 → R describes C ⊂ R2, then its negative
−f describes the same set C ⊂ R2. With the intuition of describing
the curve by deforming the unit circle, this ambiguity corresponds to
turning the closed curve C inside out. With this in mind, we typically
want to think of the curves defined by f and by −f as two distinct
objects (even though they are equal as subsets of R2). For example,
the curve defined by the constant function f ≡ 1 is the unit circle,
while the curve defined by f ≡ −1 should be considered as the unit
circle turned inside out.

With this comment, it makes now sense to speak of “the” defining
polynomial for a curve. Then the question from above corresponds to
the following algebraic question:

Question 1.1. Given two polynomials f = ∑2d
i=0 aix

2d−iyi and g =∑2d
i=0 bix

2d−iyi, how can we decide in terms of their coefficients ai and
bi whether or not there exists an orthogonal transformation ϕ : R2 → R2

such that f = g ◦ ϕ as functions R2 → R?

Once we can decide whether two polynomials define equally shaped
curves, a natural question is how to uniquely encode the shape of a
curve, i.e. an equivalence class of curves up to orthogonal transforma-
tions. The corresponding question for polynomials is:

Question 1.2. How can we encode in a unique way equivalence classes
of polynomials up to orthogonal transformations?

In the following Section, we will describe the mathematical setup
for addressing Questions 1.1 and 1.2.

Note that we can formulate the entire setup for surfaces instead of
curves by considering functions f : S2 → R on the unit sphere S2 ⊂ R3,
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given by a polynomial expression
f(x, y, z) =

∑
i+j+k=2d

ai,j,kx
iyjzk

in three variables instead of only two, and by considering orthogonal
transformations of the three-dimensional space R3. Similarly, we can
generalize this to arbitrary higher dimensions, but in this thesis we
will restrict the treatment to the geometrically most important cases
of curves and surfaces.

1.2. Application in Neuroimaging

A specific application motivating the investigation in this Thesis
comes from the active field of Neuroimaging. We may briefly summa-
rize the background for this application as follows: In Neuroimaging, we
are interested in understanding the structure of the brain by measuring
electromagnetic responses of water molecules in the human brain under
the influence of external electromagnetic fields and gradients. Specifi-
cally, techniques from Diffusion Magnetic Resonance Imaging (dMRI)
extract information about directional restrictions of the random heat
motion of water molecules – and these directional restrictions correlate
to the the geometry of neuron fibers in the brain.

Roughly speaking, the brain is being discretized into small volume
blocks (“voxels”) and for each of these volume blocks the measurements
produce a (discretized) function f : S2 → R≥0 on the unit sphere S2 :=
{v ∈ R3 : ‖v‖ = 1}, such that the value e−f(v) ∈ [0, 1] for v ∈ S2

describes the obstruction of the random heat motion in the direction v.1
Typically, it is assumed that the diffusion obstruction in the directions
v and −v is equal, meaning that f is an even function on the sphere.

The diffusivity function f can therefore be approximated with ho-
mogeneous polynomials of even degree. In the simplest model, the
function f may be assumed to be a homogeneous quadratic polyno-
mial

f(x, y, z) = a200x
2 + a020y

2 + a002z
2 + a110xy + a101xz + a011yz.

In more advanced models, f is approximated by a homogeneous poly-
nomal of degree 2d ≥ 4.

With the aim of understanding the local structure of the brain at a
given voxel, we want to extract more reasonable information than just
the coefficients aijk of the polynomial function f = ∑

aijkx
iyjzk. We

are interested in characteristics of the function f which are independent
of the specific orientation in the brain.

1Here, a value of 1 for e−f(v) means no obstruction at all, and a value of 0
would mean total obstruction.
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This corresponds to the task of computing invariants of homogene-
ous polynomial functions of even degree up to orthogonal transforma-
tions.



CHAPTER 2

Invariant Theory and algorithmic challenges

2.1. Notations

In order to make the following treatment mathematically precise,
we start out with a few notational conventions. We assume some basic
familiarity with algebraic language (group actions, rings, fields etc).

Throughout we will fix n ≥ 2. We denote by R[x1, . . . , xn] the set
of polynomials

f =
∑

i1,...,in

ai1,...,inx
i1
1 · . . . · xinn

in the n variables x1, . . . , xn with real coefficients (i.e. ai1,...,in ∈ R).
In the above notation, the sum ranges over all n-tuples (i1, . . . , in)
of non-negative integers and it is understood that only finitely many
coefficients ai1,...,in are non-zero, so that the sum is finite.

We will focus on the cases n = 2 and n = 3 (and we introduce the
notation for arbitrary n mainly in order to unify the treatment of those
two cases). For these cases, we will without further notice replace the
variables x1 and x2 (and x3) by x and y (and z) wherever notationally
more convenient.

For a polynomial f as above, the expressions xi11 · . . . · xinn such that
ai1,...,in 6= 0 are called the monomials of f and its degree is defined to
be i1 + . . . + in. The degree of a non-zero polynomial is defined to be
the maximum among the degrees of all its monomials. We will focus on
homogeneous polynomials, i.e. the case where all monomials have the
same degree. Homogeneous polynomials in two resp. three variables
are also called binary forms resp. ternary forms.

We denote by R[x1, . . . , xn]2d the set of homogeneous polynomials
of degree 2d.1 A simple counting argument shows that there are N :=(
n−1+2d

2d

)
monomials of degree 2d, so we may identify a polynomial f =∑

i1...in ai1...inx
i1
1 . . . x

in
n with the N -tuple consisting of the coefficients

ai1...in for i1+. . .+in = 2d (for any fixed convention on how to order the
entries of this N -tuple). Formally, R[x1, . . . , xn]2d is an N -dimensional
vector space over R and identifying a polynomial with the tuple of its

1By convention, the zero-polynomial (i.e. where all ai1...in
= 0) is also a homo-

geneous polynomial of degree 2d (for any d).

8
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coefficients corresponds to an explicit isomorphism between the vector
spaces R[x1, . . . , xn]2d and RN . In order to stress this point of view, we
denote

V2d := R[x1, . . . , xn]2d
and, accordingly, we will from now on typically denote elements of V2d
by letters like v or w to stress that we view them as elements in a vector
space (and may think of them simply as N -tuples).

By O(n) ⊂ Rn×n we denote the group of orthogonal matrices, i.e.
matrices g ∈ Rn×n such that gTg = id. We consider the linear group
action of O(n) on the vector space V2d given by

O(n)× V2d → V2d, (g, v) 7→ gv := v ◦ g−1.

Here, by v◦g−1, we mean the composition of the orthogonal transforma-
tion g−1 : Rn → Rn with the polynomial function v : Rn → R, resulting
in a different polynomial function which we denote by gv (and which
is still homogeneous of degree 2d). The use of the inverse g−1 instead
of g in the above composition is only of notational importance, gua-
ranteeing g1(g2v) = (g1g2)v. It is worth noting that g−1 = gT for any
g ∈ O(n) by definition.

We say that v ∈ V2d and w ∈ V2d are orthogonally equivalent if
there exists an orthogonal transformation g ∈ O(n) such that w = gv.

On a formal level, this group action is given as follows: Let g =
(gij) ∈ O(n) be an orthogonal n × n-matrix with entries gij and let
v = ∑

i1...in ai1...inx
i1
1 . . . x

in
n ∈ V2d. Applying the substitutions

xk 7→ g1kx1 + g2kx2 + . . .+ gnkxn

to the homogeneous polynomial v and expanding the resulting expres-
sion gives the new homogeneous polynomial gv ∈ V2d.

Example 2.1. For n = 2 and d = 4 let g =
(

3/5 −4/5
4/5 3/5

)
∈ O(2) and

v = x4 + 3x3y + 2x2y2 ∈ V4. Then

gv =
(3

5x+ 4
5y
)4

+ 3
(3

5x+ 4
5y
)3
·
(
−4

5x+ 3
5y
)

+ 2
(3

5x+ 4
5y
)2
·
(
−4

5x+ 3
5y
)2

= 9
125x

4 − 57
125x

3y − 1018
625 x

2y2 + 192
125xy

3 + 224
125y

4.

Analogously, we can check the example from Figure 1.1 as claimed in
Section 1.1.

From the definition of the group action of O(n) on V2d (with the
viewpoint of composing functions, or with the formal viewpoint of va-
riable substitutions), it is immediate that g(v + w) = gv + gw and
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g(λ · v) = λ · gv holds for all g ∈ O(n), v, w ∈ V2d and λ ∈ R, i.e. the
action of O(n) on V2d is a linear group action.

2.2. The Invariant Theory approach

With the notations established in Section 2.1, Question 1.1 can be
reformulated as follows:

Question 2.2. Given v, w ∈ V2d, does there exist g ∈ O(n) such that
w = gv?

Invariant Theory provides a general setup for studying such ques-
tions. We start out with an example motivating the further approach.

Example 2.3. We consider n = 2 and 2d = 2, i.e. the case of binary
quadratic forms: Let v = ax2 + bxy + cy2 ∈ V2. Any 2 × 2 rotation

matrix is given as g =
(
s −t
t s

)
, where s2 + t2 = 1. Then

gv = a(sx+ ty)2 + b(sx+ ty)(−tx+ sy) + c(−tx+ sy)2

= ãx2 + b̃xy + c̃y2,

where

ã = as2 − bst+ ct2, b̃ = 2ast+ bs2 − bt2 − 2cst, c̃ = at2 + bst+ cs2.

Regarding Question 2.2, we conclude that another w = âx2+b̂xy+ĉy2 ∈
V2 only differs from v by an orthogonal transformation if the following
system of four equations in two variables s, t has a real solution:

as2 − bst+ ct2 = â,

2ast+ bs2 − bt2 − 2cst = b̂,

at2 + bst+ cs2 = ĉ,

s2 + t2 = 1.

Note that this is a non-linear system of equations. In this particular
case (n = 2d = 2) determining whether such a system of equations has
a real solution is feasible, but for higher values of d or n, the number
of equations and variables as well as the degree of the equations incre-
ase and with these, the complexity of solving the system of equations
quickly becomes infeasible.

Instead, we take a different approach: Note that

ã+ c̃ = (as2 − bst+ ct2) + (at2 + bst+ cs2) = a+ c
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(using s2 + t2 = 1) and similarly, one can check

ã2 + 1
2 b̃

2 + c̃2 = (as2 − bst+ ct2)2 + 1
2(2ast+ bs2 − bt2 − 2cst)2

+ (at2 + bst+ cs2)2

= (a2 + 1
2b

2 + c2)(s2 + t2)2 = a2 + 1
2b

2 + c2.

Hence, if we are interested in comparing v = ax2 + bxy + cy2 and
w = âx2 + b̂xy + ĉy2, we conclude: If a+ b 6= â+ b̂ or a2 + 1

2b
2 + c2 6=

â2 + 1
2 b̂

2 + ĉ2, then there does not exist any g ∈ O(n) such that w = gv.
In fact, we will see later in Theorem 3.13 that the converse is also

true in this case, i.e. if a+ b = â+ b̂ and a2 + 1
2b

2 + c2 = â2 + 1
2 b̂

2 + ĉ2,
then v and w only differ by an orthogonal transformation. Therefore,
instead of solving a non-linear system of equations as above, we can
simply calculate the two values a + b and a2 + 1

2b
2 + c2 to answer

Question 2.2. This also gives an answer to Question 1.2: Elements of
V2 can be encoded up to orthogonal transformations by only storing
their values a+ b and a2 + 1

2b
2 + c2.

Motivated by this example, our approach is to find polynomial ex-
pressions (like a2 + 1

2b
2 + c2 from above) – or, more generally, rational

expressions – which remain unchanged under the action by any ortho-
gonal transformation. To make this formal, we define:

Definition 2.4. We denote by O(V2d) the set of polynomial functions
P : V2d → R. Explicitly, if we denote elements of V2d as∑

i1+...+in=2d
ai1...inx

i1
1 . . . x

in
n

(and in this way identify them with N -tuples (ai1...in) ∈ RN), then
O(V2d) is the set of polynomial expressions in the variables ai1...in . We
then define the set of polynomial invariants as
O(V2d)O(n) := {P ∈ O(V2d) | P (v) = P (gv) ∀v ∈ V2d, g ∈ O(n)}.

Note that the fact that we consider the space V2d does not mean that
the degree of a polynomial invariant P ∈ O(V2d)O(n) (as polynomial
expression in the variables ai1...in) is bounded by 2d. In fact, O(V2d)O(n)

contains polynomial invariants of arbitrarily high degree in general.

Example 2.5. Coming back to the Example 2.3, we denoted elements
of V2 as ax2 + bxy + cy2, so we may consider them as points (a, b, c) in
R3. With this notation, O(V2) is the set of polynomials in the variables
a, b and c, i.e. O(V2) = R[a, b, c]. We have seen in Example 2.3 that

a+ c ∈ O(V2)O(2) and a2 + 1
2b

2 + c2 ∈ O(V2)O(2).
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How many polynomial invariants are there? Of course, the answer
is in general: infinitely many. The reason is that adding or multiplying
any two polynomial invariants as well as multiplying a polynomial in-
variant with a real number results again in a polynomial invariant. (In
algebraic language, O(V2d)O(n) is an R-algebra.) However, the following
deep theorem states that up to this observation, there are only finitely
many invariants.

Theorem 2.6. For any d and n there exists a finite set {p1, . . . , pm} ⊂
O(V2d)O(n) of polynomial invariants which generate O(V2d)O(n) as R-
algebra. This means that any other polynomial invariant q ∈ O(V2d)O(n)

can be written as

q =
∑

i1,...,im

µi1,...,imp
i1
1 · . . . · pimm ,

i.e. as a polynomial expression in terms of p1, . . . , pm. We call such a
finite set {p1, . . . , pm} a set of generating polynomial invariants.

This is a fundamental result which can be traced back to Hilbert
and we refer to [DK02, Theorem 2.2.10] for one of many textbook
references. In fact, this theorem is not specific to our context, but holds
more generally for any linear action of a group G (in our case O(n))
on a finite-dimensional vector space (in our case V2d), as long as G is a
reductive algebraic group (which is the case for O(n), see e.g. [GW09,
Theorem 3.3.11]). Theorem 2.6 is a very important result and forms
the basis of Invariant Theory. It is important to note that the finite
set {p1, . . . , pm} is not unique. Furthermore, the proof of this Theorem
only establishes the existence of such p1, . . . , pm in a non-constructive
way, leaving the question how to determine such generating polynomial
invariants as an algorithmic challenge.

Example 2.7. In Example 2.3, we saw that p1 := a + c and p2 :=
a2 + 1

2b
2 + c2 are polynomial invariants in the case of V2. It can equally

be checked that q := 4ac− b2 is a polynomial invariant. However, this
is not a “new” invariant, as it can be written as: q = 2p2

1 − 2p2. In
fact, we will see later in Theorem 3.13 and Remark 3.16 that p1 and
p2 are generating polynomial invariants as stated in Theorem 2.6. An
alternative choice for generating polynomial invariants would be p1 and
q.

Another important fact is the following theorem:

Theorem 2.8. Let p1, . . . , pm ∈ O(V2d)O(n) be generating polynomial
invariants. Then v, w ∈ V2d are orthogonally equivalent (i.e. there
exists g ∈ O(n) such that w = gv) if and only if pi(v) = pi(w) holds
for all i ∈ {1, . . . ,m}.
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For a proof, we refer to [Oli14, Proposition 2.3.31]. In general, this
theorem holds for a linear action of any compact group on an R-vector
space.

Theorem 2.8 gives a crucial justification for approaching Ques-
tion 1.1 by methods of polynomial invariants. It further addresses
Question 1.2 of how to encode polynomials up to orthogonal transfor-
mations: We may encode v ∈ V2d as the m-tuple (p1(v), . . . , pm(v)).
Then the m-tuples of v ∈ V2d and w ∈ V2d are equal if and only if v
and w are orthogonally equivalent.

This raises some further questions, for example: Is a given m-tuple
(µ1, . . . , µm) ∈ Rm such an encoding of a polynomial v ∈ V2d? And if
so, can we reconstruct one v (unique only up to orthogonal transforma-
tions) such that pi(v) = µi? We call this the Reconstuction Problem.

In any case, the first crucial question is: How do we find a set of ge-
nerating polynomial invariants? General algorithms for determining a
set of generating polynomial invariants (for the action of any reductive
algebraic group on a vector space) based on Gröbner basis algorithms
exist (see for example [DK02, Section 4.1]), but their complexity incre-
ases drastically with the dimension of V2d, which in turn grows quickly
with d – recall dim V2d =

(
n−1+2d

2d

)
. Already for n = 3 and 2d = 4,

these general methods are very far from a feasible computation.
Instead, it is necessary to exploit mathematically the setting of

the specific action of O(n) on V2d. In [AKO16], a set of generating
polynomial invariants for n = 3, 2d = 4 has been determined. Howe-
ver, the number of these generating polynomial invariants is m = 64,
while dim V4 = 15. This means that with the above approach to Que-
stion 1.2, we would encode elements of V4 (which we can think of as
15-tuples of coefficients) up to orthogonal transformations as a 64-
tuple. In [AKO16], it has further been shown in that 64 is in fact the
minimal number of generating polynomial invariants.

With increasing degree 2d, the number of generating polynomial
invariants grows very large and determining them becomes more and
more difficult. Furthermore, it is unclear how to feasibly approach the
reconstruction problem mentioned above as well as similar algorithmic
questions for a high number of invariants like 64.

For this reason, in the following section we will slightly relax the
approach motivated here, in order to obtain results that are more com-
pact.
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2.3. From polynomial invariants to rational invariants

We now extend the viewpoint from invariants which are polynomial
expressions to invariants which are rational expressions, i.e. fractions of
two polynomial expressions. We start out fixing a notation analogous
to Definition 2.4.

Definition 2.9. We denote by K(V2d) the set of rational functions
p : V2d 99K R. Explicitly, if we denote elements of V2d as∑

i1+...+in=2d
ai1...inx

i1
1 . . . x

in
n ,

then K(V2d) is the set of rational expressions (i.e. a fraction of poly-
nomial expressions) in the variables ai1...in . In the same way as before,
we then define the set of rational invariants as

K(V2d)O(n) := {p ∈ K(V2d) | p(v) = p(gv) ∀v ∈ V2d, g ∈ O(n) 2}.

Remark 2.10. When working with rational expressions p = p1
p0
∈

K(V2d) (where p1 and p2 6= 0 are polynomial expressions), there is
always an issue of division by zero. In particular, note that p = p1

p0

defines a function only on the set {v ∈ V2d | p0(v) 6= 0} and the value
p(v) is undefined whenever p0(v) = 0. We say that the function p is
only defined on a general point, and to keep this in mind, the function
is typically denoted by a dashed arrow p : V2d 99K R. We follow that
convention.

In general, when working with rational functions, the following de-
finition is a useful notational convention:

Convention 2.11. Let P be a statement about points v ∈ V in a given
R-vector space V (e.g. V = V2d). We say that P holds for a general
point if there exists a non-zero3 polynomial function p0 : V → R such
that P holds for all points v ∈ V where p0(v) 6= 0.

The idea behind this convention is that the vanishing set {v ∈
V | p0(v) = 0} of a polynomial p0 can be thought of as a very small,
neglectable subset of the vector space V . Of course, the above is not a
very precise and formal definition, since we leave vague what we mean
by a “statement about points”. Typically, this is a property which
can be formulated by some logical expression or algebraic identity, but
instead of trying to make this precise, we leave the above convention
in its informal formulation. It should be always clear in the contexts
where we use the term general point in this thesis.

2wherever p(v) and p(gv) are defined, i.e. where the denominator is non-zero
3Recall that a non-zero polynomial is a polynomial function which is not ever-

ywhere zero, but it typically still has points where it takes the value 0.
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Observation 2.12. Let p, q : V2d → R be polynomial functions. If
p(v) = q(v) holds for a general point v ∈ V , then the polynomials p
and q already agree everywhere. This follows from continuity of the
polynomial functions p and q. A similar observation holds for rational
functions.

While with polynomial invariants we could speak about scalar mul-
tiplication as well as multiplying and adding two polynomial invariants,
for rational invariants we can now also speak about dividing two ra-
tional functions by each other. (In algebraic language, K(V2d)O(n) is
a field extension of R.) The following finiteness result is therefore the
analogue to Theorem 2.6 for rational invariants.
Theorem 2.13. For any d and n there exists a finite set {p1, . . . , pm} ⊂
K(V2d)O(n) of rational invariants which generate K(V2d)O(n) as a field
extension of R. This means that any other rational invariant q ∈
K(V2d)O(n) can be written as a rational expression in terms of p1, . . . , pm.
We call such a finite set {p1, . . . , pm} a set of generating rational
invariants.

In contrast to Theorem 2.6 this is not a very deep theorem, but
follows from basic facts in Field Theory (see for example [Isa09, The-
orem 24.9]). The analogue to Theorem 2.8 is the following result from
[VP94, Lemma 2.1, Theorem 2.3]:

Theorem 2.14. Rational invariants p1, . . . , pm ∈ K(V2d)O(n) form a
set of generating rational invariants if and only if for general points
v, w ∈ V2d the following holds:

w = gv for some g ∈ O(n) ⇔ pi(v) = pi(w) ∀i ∈ {1, . . . ,m}.

Note that Theorem 2.14 is more than just an analogue of Theo-
rem 2.8, as it additionally contains a reverse implication. This is a
difference between polynomial and rational invariants: It is in general
not true that the property

w = gv for some g ∈ O(n) ⇔ pi(v) = pi(w) ∀i ∈ {1, . . . ,m}
would imply that polynomial invariants p1, . . . , pm form a set of gene-
rating polynomial invariants.

Considering rational invariants instead of polynomial invariants will
greatly decrease the minimal number of generating invariants needed.
In fact, the main result of this thesis will be the construction of a set
of dim V2d − dimO(n) =

(
n−1+2d

2d

)
−
(
n
2

)
generating rational invariants

for n = 2, 3. For example, for V4 this means 12 generating rational
invariants instead of 64 generating polynomial invariants. In fact, this
is the minimal cardinality of a set of generating rational invariants by
the following result, following from [VP94, Corollary of Theorem 2.3]:
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Theorem 2.15. For n, d ≥ 2 any set of generating rational invariants
for the action of O(n) on V2d consists of at least dim V2d− dimO(n) =(
n−1+d

d

)
−
(
n
2

)
elements.

2.4. Algorithmic challenges

From the above discussions, the following algorithmic challenges
arise:

1. Compute a set of generating rational invariants p1, . . . , pm ∈ K(V2d)O(n).
2. Evaluation Problem: Evaluate p1(v), . . . , pm(v) for a given point
v ∈ V2d in an efficient and robust way.

3. Reconstruction Problem: Which m-tuples µ = (µ1, . . . , µm) ∈
Rm lie in the image of the map

π : V2d 99K Rm, v 7→ (p1(v), . . . , pm(v))?
If µ lies in the image of π, find a representative v ∈ V2d such that
π(v) = µ.

4. Rewriting Problem: Given a rational invariant q ∈ K(V2d)O(n),
rewrite q as a rational expression in terms of p1, . . . , pm.

We will of course start out with the first algorithmic challenge. How
to address the remaining challenges will become more apparent from
our construction of the generating rational invariants.



CHAPTER 3

Main technique: The slice method

Our aim is to determine generating rational invariants for the linear
action of the orthogonal group O(n) on the vector space V2d. The group
O(n) is infinite, in fact it is of dimension dimO(n) =

(
n
2

)
as an algebraic

group. We reduce the problem to the simpler question of determining
rational invariants for the linear action of a finite group Bn (contained
in O(n) as a subgroup) on a smaller vector space Λ (contained in V2d).

In Section 3.1, we introduce the general technique for this reduction,
called the slice method. Then, we illustrate this method in Section 3.2
for V2, i.e. we determine generating rational invariants for the case of
homogeneous quadratic polynomials (also called quadratic forms). This
quadratic case will also serve as motivation and as a starting point for
the treatment of the general case of V2d. We will finish this chapter by
specifying a slice for V2d in Section 3.3.

3.1. The Slice Lemma

In order to formulate the main technique, we need to slightly ab-
stract from our setting: We consider a linear action of an algebraic
group G on a finite-dimensional R-vector space V , denoted

G× V → V, (g, v) 7→ gv.

In our case, we have G = O(n) and V = V2d, and the action is given as
defined in Section 2.1. We define K(V ) and K(V )G completely analo-
gous to Definition 2.9 and call elements of K(V )G rational invariants
for the action of G on V . Theorems 2.13 and 2.14 generalize to K(V )G
in the straightforward way.

We introduce this more general notion, because we reduce the study
of rational invariants K(V2d)O(n) to the study of rational invariants
K(Λ2d)Bn for a simpler action of a finite group Bn ⊂ O(n) on a smaller
vector space Λ2d ⊂ V2d.

The main technique is a theorem known as the Slice Lemma. It is
based on the following definition (recall Convention 2.11).

Definition 3.1. Consider a linear group action of an algebraic group
G on a finite-dimensional R-vector space V . A subspace Λ ⊂ V is

17
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called a slice for the group action, and the subgroup

B := {g ∈ G | gs ∈ Λ ∀s ∈ Λ} ⊂ G

is called its stabilizer, if the following two properties hold:

(i) For a general point v ∈ V there exists g ∈ G such that gv ∈ Λ.
(ii) For a general point s ∈ Λ the following holds: If g ∈ G is such

that gs ∈ Λ, then g ∈ B.

The Slice Lemma then states that rational invariants of the action
of G on V are in one-to-one correspondence with rational invariants of
the smaller group B ⊂ G on the slice Λ ⊂ V :

Theorem 3.2 (Slice Lemma). Let Λ be a slice of a linear action of an
algebraic group G on a finite-dimensional R-vector space V , and let B
be its stabilizer. Then there is a one-to-one correspondence1 between
rational invariants

% : K(V )G
∼=−→ K(Λ)B, p 7→ p|Λ

which restricts a rational invariant p : V 99K R to p|Λ : Λ 99K R.

We will apply this theorem for G = O(n), V = V2d and a suita-
ble choice for the slice Λ. Since this theorem is at the heart of our
construction of generating rational invariants, we will give the most
relevant ideas of the argument. For a complete proof with full details,
we refer to [CTS07, Theorem 3.1].

Proof (Outline). First, it has to be checked that restricting a
rational invariant p = p1

p0
∈ K(V )G to Λ gives a rational invariant

for the action of B on Λ. It is not hard to show that property (i)
of Definition 3.1 implies that p0 does not simultaneously vanish at all
points s ∈ Λ, so p|Λ is in fact a well-defined rational function. To show
that p|Λ is a rational invariant, consider g ∈ B ⊂ G and s ∈ Λ ⊂ V .
Then gs ∈ Λ and p|Λ(gs) = p(gs) = p(s), because p is a rational
invariant (for the action of G on V ).

From the definition it is immediate that this map % : K(V )G →
K(Λ)B is a field homomorphism over R, i.e. it is compatible with ad-
dition and multiplication of invariants, and constant invariants corre-
spond to the same constant invariants. It is a general fact that being
a field homomorphism implies injectivity (see e.g. [AM69, Proposi-
tion 1.2]), hence we deduce that p|Λ = p̃|Λ for p, p̃ ∈ K(V )G already
implies p = p̃.

1More exactly, % is a field isomorphism over R, i.e. this one-to-one correspon-
dence satisfies: %(p + p̃) = %(p) + %(p̃), %(p · p̃) = %(p) · %(p̃) and %(λ) = λ for all
constant rational functions given by a scalar λ ∈ R.
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It remains to show that % is surjective, i.e. that given a rational
invariant q : Λ 99K R for the action of B on Λ, there must exist a
rational invariant p : V 99K R such that p|Λ = q. To show this, we have
to define the value p(v) for a general point v ∈ V . This is done as
follows: Let g ∈ G be a such that gv ∈ Λ – such g exists for general v
by property (i) of Definition 3.1. For a sufficiently general point v ∈ V
we can also assume that q : Λ 99K R is defined at the point g0v ∈ Λ.
Then we define p(v) := q(g0v).

For a general point v, this definition does not depend on the choice
of g0 ∈ G such that g0v ∈ Λ. Indeed, if g′0 ∈ G is a different choice
such that g′0v ∈ Λ, then g′0g

−1
0 ∈ G maps g0v ∈ Λ to g′0v ∈ Λ, so

by property (ii) of Definition 3.1, we have g′0g−1
0 ∈ B (if v ∈ V is

a sufficiently general point). Therefore, q(g′0v) = q((g′0g−1
0 )(g0v)) =

q(g0v), since q ∈ K(Λ)B is a rational invariant for the action of B on
Λ. Hence, the above construction defines a map p : V 99K R. It can be
shown that this p is in fact given by a rational expression.

Finally, we have to check that this constructed p : V 99K R lies in
K(V )G, i.e. p(v) = p(gv) for any g ∈ G and a general point v ∈ V . For
that, note that g0g

−1 is an element of G such that (g0g
−1)(gv) ∈ Λ.

Hence, the value p(gv) is defined as q((g0g
−1)(gv)) = q(g0v), which is

p(v) by construction. �

Remark 3.3. We included the idea of the proof in order to provide
insight to the main technique exploited in our approach. Worth re-
membering from the proof is that the inverse to the map

% : K(V )G
∼=−→ K(Λ)B, p 7→ p|Λ

is given by
%−1 : K(Λ)B → K(V )B,

q 7→
(
V 99K R, v 7→ q(gv), where g ∈ G such that gv ∈ Λ

)
.

For the construction of generating rational invariants we deduce
from Theorem 3.2 the following:

Corollary 3.4. Let Λ be a slice of a linear action of an algebraic group
G on a finite-dimensional R-vector space V , and let B be its stabilizer.
If {p1, . . . , pm} is a set of generating rational invariants for the action
of B on Λ, then {%−1(p1), . . . , %−1(pm)} is a set of generating rational
invariants for the action of G on V (where % is given as above).

Proof. This is a formal consequence of the fact that % : K(V )G
∼=−→

K(Λ)B is a field isomorphism. Indeed, if q ∈ K(V )G, then %(q) can
by assumption be written as a rational expression in the generators
p1, . . . , pm. Then the fact that %−1 is compatible with addition and
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multiplication implies that q = %−1(%(q)) is the same rational expres-
sion in %−1(p1), . . . , %−1(pm). �

Remark 3.5. It should be noted that this result does not hold for
polynomial invariants (or at least a corresponding statement for poly-
nomial invariants requires stronger hypotheses on the slice). In parti-
cular, even if p1, . . . , pm ∈ K(Λ)B are polynomial expressions, the con-
struction described above typically introduces denominators, so that
%−1(p1), . . . , %−1(pm) ∈ K(V )G are rational expressions.

3.2. Invariants for quadratic forms

In this section, we apply the method from Section 3.1 to the case
for d = 1, i.e. we study rational invariants for the action of O(n) on V2.
None of the results in this section are new, but we give a presentation
of these facts which illustrates the use of the Slice Method and which
serves as a starting point for investigating the case d ≥ 2.

Elements of V2 are called quadratic forms and can be written in the
form v = ∑n

i=1
∑n
j=1 aijxixj ∈ V2, where aij = aji for i 6= j. Note that in

this notation the coefficient of xixj (= xjxi) for i 6= j is aij +aji = 2aij.
This allows to write

v = xT · A · x,

where we define the vector of variables x :=
( x1

...
xn

)
and where A =

(aij) ∈ Rn×n is the symmetric n×n-matrix with entries aij. We call A
the Gramian matrix of v ∈ V2. We may therefore consider V2 as the
set of symmetric n× n-matrices.

Example 3.6. For n = 3 the quadratic form2 v = 3x2 + 2xy + 8y2 −
14yz ∈ V2 can be written as

v =
(
x y z

)
·

3 1 0
1 8 −7
0 −7 0

 ·
xy
z

 .
Hence, we identify v with its Gramian matrix

(
3 1 0
1 8 −7
0 −7 0

)
.

The following observation shows how the action of O(n) on V2 is
given in terms of Gramian matrices:

Proposition 3.7. Let g ∈ O(n) ⊂ Rn×n and let v ∈ V2 with Gramian
matrix A ∈ Rn×n. Then the Gramian matrix of gv ∈ V2 is the matrix
product gAgT (which is equal to gAg−1).

2Recall that we replace the variables x1, x2, x3 with x, y, z for a more convenient
notation.
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Proof. The quadratic form v ∈ V2 is the function v : Rn → R
given by

v(x) = xTAx

(where x =
( x1

...
xn

)
∈ Rn). By definition, gv ∈ V2 is the function

gv : Rn → R mapping x ∈ Rn to v(g−1x). Hence,
(gv)(x) = v(g−1x) = (g−1x)TA(g−1x) = xTgAgTx,

where we used g−1 = gT in the last step (which holds because g ∈
O(n)). Hence, gAgT = gAg−1 is the Gramian matrix of the quadratic
form gv. �

In particular, two quadratic forms associated to symmetric matrices
A,B ∈ Rn×n are orthogonally equivalent if and only if there exists an
orthogonal matrix g such that B = gAgT . In order to apply the Slice
Lemma, we define the following subspace of V2:
Definition 3.8. Let Λ2 ⊂ V2 denote the subspace of quadratic forms
whose Gramian matrix is a diagonal matrix. Explicitly,

Λ2 = {
∑
i=1

λix
2
i ∈ V2 | λ1, . . . , λn ∈ R}.

We will henceforth denote by diag(λ1, . . . , λn) the diagonal n×n-matrix
with entries λ1, . . . , λn ∈ Rn .

Then the following is essentially a reformulation the Spectral The-
orem for symmetric matrices.
Proposition 3.9. The subspace Λ2 ⊂ V2 is a slice for the action of
O(n) on V2. Its stabilizer Bn ⊂ O(n) is the subgroup of O(n) of signed
permutation matrices, i.e. matrices for which each row and each column
contain only one non-zero entry and this entry is either 1 or -1.

Proof. To check that Λ2 satisfies property (i) of Definition 3.1, let
v ∈ V2 and let A = (aij) ∈ Rn×n be its Gramian matrix. The Spectral
Theorem for symmetric matrices states that the eigenvalues of A are
real numbers, which we denote λ1, . . . , λn ∈ R, and that we can choose
an orthonormal set of corresponding eigenvectors u1, . . . , un ∈ Rn. Let
g ∈ Rn×n be the matrix whose i-th row is the vector uTi . Then g ∈
O(n), since an n× n-matrix is an element of O(n) if and only if it has
orthonormal rows. The fact that Aui = λiui for all i ∈ {1, . . . , n} can
be written as

AgT = gT diag(λ1, . . . , λn),
in other words gAgT is a diagonal matrix. By Proposition 3.7, this
means gv ∈ Λ2, confirming property (i) of Definition 3.1.3

3Note that here we checked the property for all v ∈ V2 and did not need to
restrict to a general point, as would be allowed by Definition 3.1.
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If g is an element of the stabilizer Bn := {g ∈ O(n) | gs ∈ Λ2 ∀s ∈
Λ2}, then the matrix product g diag(λ1, . . . , λn)gT is by Proposition 3.7
again a diagonal matrix for all values of λ1, . . . , λn ∈ R. In particular,
this holds when λ1, . . . , λn ∈ R are distinct. If A := diag(λ1, . . . , λn),
then the fact that gAgT is a diagonal matrix implies that the rows
of g are orthonormal eigenvectors of the matrix A (by reversing the
argument from above). The only unit-length eigenvectors of A are
±ei (here we use the fact that the eigenvalues λ1, . . . , λn are distinct),
where ei is the i-th canonical basis vector. Hence, g ∈ Bn is a signed
permutation matrix. Conversely, it is immediately checked that for any
signed permutation matrix g, the matrix product g diag(λ1, . . . , λn)gT
is always a diagonal matrix. This establishes the description of the
stablizer Bn.

Finally, we show property (ii) of Definition 3.1. By Proposition 3.7,
this property is: If g ∈ O(n) is such that for a general point (λ1, . . . , λn) ∈
Rn, the matrix product g diag(λ1, . . . , λn)gT is again a diagonal matrix,
then g ∈ Bn. Indeed, we have just seen that this property holds whe-
never λ1, . . . , λn ∈ R are n distinct values. It therefore only remains to
remark that a general point (λ1, . . . , λn) ∈ Rn has distinct entries, be-
cause this is the case for all points in Rn where the polynomial function
Rn → R given by the polynomial expression ∏i<j(xi−xj) does not va-
nish. �

Then Theorem 3.2 implies
Corollary 3.10. There is a one-to-one correspondence between ratio-
nal invariants

ρ : K(V2)O(n) ∼=−→ K(Λ2)Bn
which is given by restriction of rational functions.

Above, we described the group Bn ⊂ O(n) as the set of signed
permutation matrices. Note that this group has 2n · n! elements. An
alternative description is that Bn is the smallest group containing all
permutation matrices and all sign-change matrices (i.e. diagonal ma-
trices whose diagonal entries are ±1). This follows from the following
remark:
Remark 3.11. Each element g ∈ Bn can uniquely be written as g =
τ · σ where τ ∈ Rn×n is a sign-change matrix and σ ∈ Rn×n is a
permutation matrix. Indeed, τ must then be the diagonal matrix whose
i-th diagonal entry is 1 or -1 corresponding to the sign of the unique
non-zero entry in the i-th row of g. For this choice of τ , the σ := τ−1 ·g
is a permutation matrix. Analogously, we can also write each g ∈ Bn

uniquely as a product g = σ · τ with σ a permutation matrix and τ a
sign-change matrix (but these σ, τ are in general different from the σ, τ
before).



3.2. INVARIANTS FOR QUADRATIC FORMS 23

Theorem 3.12. The following n polynomials p1, . . . , pn ∈ K(Λ2) form
a set of generating rational invariants for the action of Bn on Λ2 =
{∑n

i=1 λix
2
i }:

pk := λk1 + . . .+ λkn
for k ∈ {1, . . . , n}.

Proof. By definition, a rational function P ∈ K(Λ2) = R(λ1, . . . , λn)
is a rational invariant for the action of Bn, i.e. P ∈ K(Λ2)Bn , if
P (v) = P (gv) for all v ∈ Λ2 and g ∈ Bn. By Remark 3.11, this holds
if and only if P (v) = P (gv) ∀v ∈ Λ2 holds for permutation matrices g
as well as for sign-change matrices g.

For a sign-change matrix g this is in fact always the case, since
gv = v for all v ∈ Λ2. To see this, note that by Proposition 3.7 we
only have to see that g diag(λ1, . . . , λn)gT = diag(λ1, . . . , λn) holds for
all diagonal matrices g whose diagonal entries are ±1. This is clear.

On the other hand, permutation matrices act on quadratic forms of
the type v = ∑n

i=1 λix
2
i simply by permuting the coefficients λi. Hence,

a rational function P ∈ K(Λ2) = R(λ1, . . . , λn) is a rational invariant if
and only if it is symmetric in the variables λ1, . . . , λn. A version of the
Fundamental Theorem of symmetric functions (see e.g. [Stu08, Pro-
position 1.1.2]) states that a rational function in n variables λ1, . . . , λn
which is symmetric with respect to those variables, can always be writ-
ten as a rational expression in terms of the power sum polynomials
p1, . . . , pn as defined above.4 This shows the claim. �

We now know generating rational invariants {p1, . . . , pn} forK(Λ2)Bn ,
so by Corollary 3.4 the set {ρ−1(p1), . . . , ρ−1(pn)} is a set of generating
rational invariants for the action of the orthogonal group on quadratic
forms (where ρ : K(V2)O(n) ∼=−→ K(Λ2)Bn from Corollary 3.10). We now
describe those “full” invariants explicitly.

Theorem 3.13. Consider V2 = {xTAx | A = (aij) ∈ Rn×n symmetric}.
Then the following n polynomials p̃1, . . . , p̃n in the variables aij form a
set of generating rational invariants for the action of O(n) on V2:

p̃k := Trace(Ak)
for k ∈ {1, . . . , n}.

Proof. First, we observe that p̃1, . . . , p̃n are indeed rational inva-
riants for O(n). By Proposition 3.7, for this we only have to check
that Trace(Ak) = Trace((gAgT )k) for all g ∈ O(n). Indeed, this follows

4Typically, this result is stated in terms of polynomial expressions, not rational
expressions. However, every symmetric rational expression can be written as a
fraction of two symmetric polynomial expressions (see e.g. [DK02, Lemma 3.9.6]),
so the version for rational expressions is implied by the more common version.
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from gT = g−1, since (gAg−1)k = gAkg−1 and Trace(gAkg−1) = Tr(Ak)
by general properties of the trace.

Now Corollary 3.4 proves the claim if we show that for any k the
restriction of p̃k to Λ2 is given by the expression pk from Theorem 3.12.
This is clear, since the trace of the matrix diag(λ1, . . . , λn)k is precisely∑n
i=1 λ

k
i . �

Example 3.14. We write out explicitly the generating rational inva-
riants p̃i for n = 2 and n = 3. For n = 2 these expressions are

p̃1 = Trace
(
a11 a12
a12 a22

)
= a11 + a22

and

p̃2 = Trace
(

a2
11 + a2

12 a11a12 + a12a22
a11a12 + a12a22 a2

12 + a2
22

)
= a2

11 + 2a2
12 + a2

22.

Recall that in this notation, a binary quadratic form v ∈ V2 is thought
of as a triple (a11, a12, a22) ∈ R3 forming the entries of the Gramian

matrix
(
a11 a12
a12 a22

)
, i.e. v = a11x

2 + 2a12xy + a22y
2. Note that p̃1, p̃2 ∈

K(V2)O(2) are precisely the invariants encountered in Example 2.3 (where
we used instead the notation a = a11, b = a12/2, c = a22).

For n = 3 we obtain the following expressions:

p̃1 = a11 + a22 + a33,

p̃2 = a2
11 + 2a2

12 + 2a2
13 + a2

22 + 2a2
23 + a2

33,

p̃3 = a3
11 + 3a11a

2
12 + 3a11a

2
13 + 3a2

12a22 + 6a12a13a23 + 3a2
13a33

+ a3
22 + 3a22a

2
23 + 3a2

23a33 + a3
33,

where we write elements of V2 (i.e. ternary quadratic forms) as

a11x
2 + 2a12xy + a22y

2 + 2a13xz + 2a23yz + a33z
2.

Remark 3.15. It is worth emphasizing that the expressions p̃k in the
variables aij can become quite large, as n grows larger. For the cases
n = 2 and n = 3 this is not a relevant issue here, but once we pass from
2d = 2 to higher degree 2d, we will encounter the same phenomenon
for n = 2 and n = 3 and it will quickly grow an important problem to
resolve.

For example, for n = 4 the last invariant is
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p̃4 = a4
11 + 4a2

11a
2
12 + 4a2

11a
2
13 + 4a2

11a
2
14 + 4a11a

2
12a22 + 8a11a12a13a23 + 8a11a12a14a24

+ 4a11a
2
13a33 + 8a11a13a14a34 + 4a11a

2
14a44 + 2a4

12 + 4a2
12a

2
13 + 4a2

12a
2
14 + 4a2

12a
2
22

+ 4a2
12a

2
23 + 4a2

12a
2
24 + 8a12a13a22a23 + 8a12a13a23a33 + 8a12a13a24a34 + 8a12a14a22a24

+ 8a12a14a23a34 + 8a12a14a24a44 + 2a4
13 + 4a2

13a
2
14 + 4a2

13a
2
23 + 4a2

13a
2
33 + 4a2

13a
2
34

+ 8a13a14a23a24 + 8a13a14a33a34 + 8a13a14a34a44 + 2a4
14 + 4a2

14a
2
24 + 4a2

14a
2
34 + 4a2

14a
2
44

+ a4
22 + 4a2

22a
2
23 + 4a2

22a
2
24 + 4a22a

2
23a33 + 8a22a23a24a34 + 4a22a

2
24a44 + 2a4

23 + 4a2
23a

2
24

+ 4a2
23a

2
33 + 4a2

23a
2
34 + 8a23a24a33a34 + 8a23a24a34a44 + 2a4

24 + 4a2
24a

2
34 + 4a2

24a
2
44 + a4

33

+ 4a2
33a

2
34 + 4a33a

2
34a44 + 2a4

34 + 4a2
34a

2
44 + a4

44,

which is a polynomial with 55 terms. For higher values of n, the
largest invariant p̃n consists of the following number of terms: 377
(n = 5), 3571 (n = 6), 40764 (n = 7), 552294 (n = 8), . . . 5

Meanwhile, the invariants pk from Theorem 3.12 (i.e. the restriction
of p̃k to the slice) in the variables λi remain small: The expression pk
has only k terms. This is a first hint that instead of obtaining full
expressions for rational invariants it can be more useful to just work
with the information what their restriction to the slice is. We will again
encounter this philosophy at several points later on.

Remark 3.16. All results in this section actually hold more generally
in the setting of polynomial invariants. For example, the invariants
described in Theorems 3.12 and 3.13 are in fact generating polynomial
invariants, as introduced in Section 2.2 – even though this is not entirely
clear from the approach presented in this section. Note that passing
from pk ∈ K(Λ2)Bn to p̃k ∈ K(V2)O(n) does not introduce denominators
as would be suggested by Remark 3.5. This should be viewed as a rather
special property of the case of quadratic forms and will no longer be
true in our treatment of the case d > 2.

3.3. A slice for higher degree

The aim of this section is to describe a slice Λ2d ⊂ V2d for the action
of O(n) on V2d for any d ≥ 1. We will then use the constructed slice
in Chapters 4 and 5 to construct invariants similar to the approach in
Section 3.2.

For this, we have to start out with some basic facts about the apolar
product and harmonic polynomials. First, we define an inner product
〈v, w〉 for v, w ∈ V2d:

Definition 3.17. The apolar inner product 〈, 〉 : V2d × V2d → R
is defined as follows: If v = ∑

i1...in ai1...inx
i1
1 . . . x

in
n ∈ V2d and w =

5This has been obtained by a straightforward use of the Computer Algebra
Software Maple.
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i1...in bi1...inx

i1
1 . . . x

in
n ∈ V2d, we define

〈v, w〉 :=
∑
i1...in

i1! · . . . · in! · ai1...inbi1...in .

We may make the same definition for Vk := R[x1, . . . , xn]k for k odd.
The importance of this inner product for the action of the orthogonal
group is the fact that the group action of O(n) preserves 〈, 〉.

Proposition 3.18. If v, w ∈ V2d (or, more generally, v, w ∈ Vk) and
g ∈ O(n), then 〈gv, gw〉 = 〈v, w〉.

Proof. Step 1: The claim holds for V1, i.e. the case of linear
forms.

Note that linear forms v = α1x1 + . . .+ αnxn ∈ V1 and w = β1x1 +
. . . + βnxn ∈ V1 can be written as v = aTx and w = bTx, where

a =
( α1

...
αn

)
∈ Rn, b =

( β1
...
βn

)
∈ Rn and we denote the vector of variables

as x =
( x1

...
xn

)
. Then, by definition, 〈v, w〉 = aT b. Note that gv =

aTgTx = (ga)Tx (and analogously for w), since the action of O(n) is
defined as the composition with g−1 = gT . In particular,

〈gv, gw〉 = (ga)T (gb) = aTgTgb = aT b = 〈v, w〉
(using gTg = id).

Step 2: If v1, . . . , v2d ∈ V1 and w1, . . . , w2d ∈ V1 are linear forms
and v = v1 · . . . · v2d ∈ V2d, w = w1 · . . . · wd ∈ V2d, then
(3.3.1) 〈v, w〉 =

∑
σ∈S2d

〈v1, wσ(1)〉 · . . . · 〈v2d, wσ(2d)〉,

where the sum ranges over all permutations σ of the set {1, . . . , 2d}.
Note that the inner product on the left hand side is the apolar

product for V2d, while the inner products on the right hand side are
the apolar product for V1. Since the expressions of both sides are linear
in each vk and in each wk, it is enough to show (3.3.1) for the case that
each vk and each wk ranges over a given basis of V1. As x1, . . . , xn ∈ V1
form a basis of V1, it is therefore enough to show:
〈xi1 · . . . · xi2d , xj1 · . . . · xj2d〉 =

∑
σ∈S2d

〈xi1 , xjσ(1)〉 · . . . · 〈xi2d , xjσ(2d)〉

holds for all ik, jk ∈ {1, . . . , n}. Using 〈xi, xj〉 =

1 if i = j,

0 otherwise,
, it is

straightforward to check that both sides agree.

Step 3: 〈gv, gw〉 = 〈v, w〉 holds for all v, w ∈ V2d.
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The claim is linear in v and linear in w, so it suffices to show it
for v = xi11 . . . x

in
n and w = xj11 . . . x

jn
n (where i1 + . . . + in = 2d and

j1 + . . . + jn = 2d). This special case is an immediate consequence of
combining Step 1 and Step 2. This concludes the proof. �

Notation 3.19. From now on, for fixed n we denote

Q := x2
1 + . . .+ x2

n ∈ V2.

This Q ∈ V2 plays a special role, since the following holds (more or
less immediately by definition of O(n)):

Observation 3.20. The action of O(n) on V2 fixes Q, i.e. gQ = Q
for all g ∈ O(n). To see this, note that the Gramian matrix of Q =
x2

1 + . . .+ x2
n ∈ V2 is the identity matrix, hence the Gramian matrix of

gQ ∈ V2 is g · id ·gT = id by Proposition 3.7, showing gQ = Q.

Definition 3.21. For any d ≥ 1 we consider the inclusion of vector
spaces

V2d−2 ↪→ V2d, v 7→ Q · v.

and its image QV2d−2 ⊂ V2d, which is given by those polynomials v ∈
V2d which are divisible by Q.

We now define the subspace H2d ⊂ V2d of harmonic polynomials
of degree 2d to be the orthogonal complement of QV2d−2 ⊂ V2d with
respect to the apolar inner product on V2d.

A consequence of Proposition 3.18 is the following:

Proposition 3.22. Let g ∈ O(n) and v ∈ V2d. Then the following
holds:

(i) If v ∈ QV2d−2 ⊂ V2d, then also gv ∈ QV2d−2.
(ii) If v ∈ H2d, then also gv ∈ H2d.

Proof. (i) We can write v = Q · v′ for v′ ∈ V2d−2. By Observa-
tion 3.20, we have gv = (gQ) · (gv′) = Q · (gv′) ∈ QV2d−2.

(ii) We have to show that 〈gv, w〉 = 0 for all w ∈ QV2d−2 ⊂ V2d. We
have 〈gv, w〉 = 〈v, g−1w〉 by Proposition 3.18, and g−1w ∈ Vd−1 ⊂
V2d follows from part (i). Since v ∈ Hd is orthogonal on QV2d−2,
this concludes the proof.

�

By Definition 3.21 there is an orthogonal decomposition V2d =
H2d ⊕ QV2d−2. Since we can also decompose V2d−2 in this manner, we
can iterate this decomposition which leads to the following observation.
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Observation 3.23 (Harmonic Decomposition). For d ≥ 1 there is a
decomposition

V2d = H2d ⊕QH2d−2 ⊕Q2H2d−4 · · · ⊕Qd−2H4 ⊕Qd−1V2,

i.e. each v ∈ V2d can uniquely be written as a sum
v = h2d +Qh2d−2 +Q2h2d−4 + . . .+Qd−2h4 +Qd−1v′

where h2k ∈ H2k and v′ ∈ V2.
Warning 3.24. Recall that V2d = H2d ⊕ QV2d−2 is a decomposition
into orthogonal subspaces with respect to the apolar inner product. In
contrast, the decomposition in Observation 3.23 is not an orthogonal
decomposition if 2d > 4. This is due to the fact that 〈v, w〉 = 〈Qv,Qw〉
does not hold for v, w ∈ V2d−2. On the other hand, it remains true that
each of the subspaces in the Harmonic Decomposition are preserved
under each element g of O(n) as in Proposition 3.22.
Remark 3.25. In the literature, harmonic functions are typically in-
troduced in a different way than presented here, and then it is shown
that they have the properties described above. For more background,
we refer to the literature on Harmonic Functions, e.g. [ABW01].
Definition 3.26. For d ≥ 1 and n ≥ 2 we consider the Harmonic
Decomposition of V2d from Observation 3.23 and define Λ2d ⊂ V2d to
be the subspace

Λ2d := H2d ⊕QH2d−2 ⊕ · · · ⊕Qd−2H4 ⊕Qd−1Λ2,

where Λ2 ⊂ V2 is the subspace of quadratic forms with diagonal Gra-
mian matrix as in Definition 3.8.
Remark 3.27. In other words, elements of the subspace Λ2d are those
v ∈ V2d which can be written as

v = h2d +Qh2d−2 +Q2h2d−4 + . . .+Qd−2h4 +Qd−1v′

with h2k ∈ H2k and v′ ∈ Λ2. Note that for 2d = 2 this definition agrees
with Definition 3.8.
Proposition 3.28. Let d ≥ 1. The subspace Λ2d ⊂ V2d is a slice for
the action of O(n) on V2d and its stabilizer is the group Bn ⊂ O(n)
of signed permutation matrices. In particular, there is a one-to-one
correspondence between rational invariants

ρ : K(V2d)O(n) ∼=−→ K(Λ2d)Bn

which is given by restriction of rational functions.

Proof. The second statement is a consequence of the first state-
ment by Theorem 3.2.

If
v = h2d +Qh2d−2 +Q2h2d−4 + . . .+Qd−2h4 +Qd−1v′
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is the Harmonic Decomposition of an element v ∈ V2d (see Observa-
tion 3.23), then the Harmonic Decomposition of gv is

gv = (gh2d) +Q(gh2d−2) + . . .+Qd−2(gh4) +Qd−1(gv′).
This follows from Observation 3.20 and Proposition 3.22.

From this observation, the claim is an immediate consequence of the
fact that Λ2 ⊂ V2 is a slice for the action of O(n) on V2 with stabilizer
Bn – see Proposition 3.9. �



CHAPTER 4

Invariants for binary forms (n = 2)

In this chapter, we will use the results from Section 3.3 to construct
a set of generating rational invariants for V2d in the case n = 2. By
Proposition 3.28, this amounts to determining rational invariants for
the action of the subgroup B2 ⊂ O(2) on Λ2d. Since Λ2d is defined
by means of the Harmonic Decomposition of V2d, a main step consists
in understanding the subspaces H2d ⊂ V2d and finding an appropriate
description how the subgroup B2 ⊂ O(2) acts on H2d. This will be the
done in Section 4.1. This will be the foundation for describing rational
invariants in Section 4.2.

Throughout this chapter, we fix n = 2.

4.1. Binary harmonic polynomials and the B2-action

We start out with a characterization of the elements in the subspace
H2d ⊂ V2d.
Lemma 4.1. Let d ≥ 1. A binary form

v =
2d∑
i=0

(
2d
i

)
aix

2d−iyi ∈ V2d

is contained in H2d if and only if ai−1 + ai+1 = 0 holds for all i ∈
{1, . . . , 2d− 1}.

Proof. By definition, v lies inH2d if and only if 〈v, (x2+y2)w〉 = 0
for all w ∈ V2d−2. Since the monomials xd−j−1yj−1 for j ∈ {1, . . . , d−1}
form a basis of V2d−2, we may restrict to the cases that w is any of these
monomials. We have

〈v, (x2 + y2)x2d−j−1yj−1〉 =
〈 2d∑
i=0

(
2d
i

)
ai · x2d−iyi, (x2 + y2)x2d−j−1yj−1

〉

=
(

d

j − 1

)
aj−1(2d− j + 1)!(j − 1)! +

(
2d
j + 1

)
aj+1(2d− j − 1)!(j + 1)!

= (2d)! · (aj−1 + aj+1),
where we used that

〈xky`, xk′y`′〉 =

k!`! if k = k′, ` = `′

0 otherwise.
30
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Hence v ∈ H2d if and only if aj−1 + aj+1 = 0 for all j ∈ {1, . . . , n}. �

An immediate consequence of Lemma 4.1 is that dimH2d = 2 for
all d ≥ 1. More precisely, we can specify a very convenient basis:

Proposition 4.2. Let d ≥ 1. The two polynomials

u2d−1 :=
2d∑
i=0
i odd

(−1)
i−1

2

(
2d
i

)
x2d−iyi,

u2d :=
2d∑
i=0
i even

(−1) i2
(

2d
i

)
x2d−iyi

form an orthogonal basis of H2d with respect to the apolar product.

Proof. Lemma 4.1 shows u2d−1 ∈ H2d and u2d ∈ H2d. If v =∑2d
i=0

(
2d
i

)
aix

2d−iyi ∈ H2d, then Lemma 4.1 implies that

ai =

(−1) i2a0 if i even,
(−1) i−1

2 a1 if i odd,

hence v = a1u2d−1 + a0u2d. Since u2d−1 and u2d do not have any mo-
nomials in common, their apolar product is 〈u2d−1, u2d〉 = 0 by defini-
tion. �

Additionally to the above uk, we define u0 := 1 ∈ V0. Note that for
k ≥ 0 the polynomial expression uk has degree k (if k is even) or k+ 1
(if k is odd).
Example 4.3. The first nine uk are the following expressions:
u0 = 1
u1 = 2xy u2 = x2 − y2

u3 = 4x3y − 4xy3 u4 = x4 − 6x2y2 + y4

u5 = 6x5y − 20x3y3 + 6xy5 u6 = x6 − 15x4y2 + 15x2y4 − y6

u7 = 8x7y − 56x5y3 + 56x3y5 − 8xy7 u8 = x8 − 28x6y2 + 70x4y4 − 28x2y6 + y8

The Harmonic Decomposition from Observation 3.23 implies that
those ui form a basis for V2d after multiplying them with a suitable
power of Q = x2 + y2. Precisely:

Proposition 4.4. Let d ≥ 1. Then the expressions

u
(2d)
i := (x2 + y2)d−d

i
2e · ui ∈ V2d

for i ∈ {0, 1, . . . , 2d} form a basis for V2d. A basis for the subspace
Λ2d ⊂ V2d is given by the same expressions for i ∈ {0, 2, 3, . . . , 2d} (i.e.
leaving out u(2d)

1 ).
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Proof. Let Q := x2 +y2 ∈ V2. In Observation 3.23, we noted that
V2d = H2d ⊕QH2d−2 ⊕Q2H2d−4 · · · ⊕Qd−2H4 ⊕Qd−1V2.

By definition of H2, we also have V2 = H2 ⊕QV0, so
V2d = H2d ⊕QH2d−2 ⊕Q2H2d−4 · · · ⊕Qd−2H4 ⊕Qd−1H2 ⊕QdV0.

Note that u0 = 1 is a basis of the one-dimensional vector space V0
and recall that u2k−1 and u2k form a basis of H2k (for all k ≥ 1) by
Proposition 4.2. From this, we conclude that u(2d)

i for i ∈ {0, 1, . . . , 2d}
form a basis of V2d.

To show that u(2d)
i for i 6= 1 form a basis for Λ2d, recall that by

definition
Λ2d := H2d ⊕QH2d−2 ⊕ · · · ⊕Qd−2H4 ⊕Qd−1Λ2.

Hence, it is enough to show this claim for d = 1.
If v ∈ Λ2, then v = ax2 + by2 for some a, b ∈ R by definition of Λ2.

Then

v = a+ b

2 · (x2 + y2) + a− b
2 (x2 − y2) = a+ b

2 ·Qu0 + a− b
2 u2.

This shows that u(2)
0 = Qu0 and u(2)

2 = u2 form a basis for Λ2, conclu-
ding the proof. �

Remark 4.5. As in Warning 3.24, it should be noted that the above
is not an orthogonal basis of V2d for the apolar product, in contrast to
Proposition 4.2.

The main reason why we work with this particular basis u(2d)
i is

that it also reveals easily how the group B2 ⊂ O(2) acts on Λ2d (resp.
V2d):

Lemma 4.6. Let d ≥ 1.

(i) The group B2 ⊂ O(2) is generated by

g1 :=
(
−1 0
0 1

)
∈ B2 and g2 :=

(
0 1
1 0

)
∈ B2,

i.e. each element of B2 can be written as a successive product of
the elements g1 and g2.

(ii) If v = ∑2d
i=0 αiu

(2d)
i ∈ V2d (for some α0, . . . , α2d ∈ R), then

g1v =
2d∑
i=0

(−1)iαiu(2d)
i and g2v =

2d∑
i=0

(−1)(
i
2)αiu(2d)

i .

Proof. (i) By Remark 3.11, every element of B2 can be written
as a product of a 2×2 permutation matrix and a 2×2 sign change
matrix. The only non-trivial 2× 2 permutation matrix is g1, so it
remains to see that all non-trivial matrices of the form diag(τ1, τ2)
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with τ1, τ2 = ±1 can be written as a successive product of g1 and
g2. We check this explicitly:(
−1 0
0 1

)
= g1,

(
1 0
0 −1

)
= g2g1g2,

(
−1 0
0 −1

)
= g1g2g1g2.

(ii) Since Q = x2 + y2 satisfies gQ = Q for all g ∈ B2 and because
of linearity, it suffices to show that g1ui = (−1)iui and g2ui =
(−1)(

i
2)ui holds for all i ∈ {0, 1, . . . , d}.

By definition of the action of B2 ⊂ O(2), the polynomial ex-
pression g1ui arises from the polynomial expression ui by substi-
tuting the variable x by −x. From the definition of ui it is then
immediate that g1ui = ui if i is even and g1ui = −ui if i is odd
(compare also Example 4.3). In short, g1 = (−1)iui.

In the same way, the polynomial expression g2ui by definition
arises from the polynomial expression ui by interchanging the va-
riables x and y. The definition of ui is such that g2ui = ui if
i ≡ 0 or 1 (mod 4) and g2ui = −ui if i ≡ 2 or 3 (mod 4). In
short, g2ui = (−1)(

i
2)ui.

�

4.2. Invariants for binary forms

Theorem 4.7. Let d ≥ 2. Considering

Λ2d =


∑

0≤i≤2d
i 6=1

αiu
(2d)
i | α0, α2, α3, . . . , α2d ∈ R

 ,
the following 2d rational functions pk : Λ2d 99K R are generating ratio-
nal invariants for K(Λ2d)B2.

pk

∑
i 6=1

αiu
(2d)
i

 :=


αk if k ≡ 0 (mod 4),
α2α3αk if k ≡ 1 (mod 4),
α2αk if k ≡ 2 (mod 4),
α3αk if k ≡ 3 (mod 4)

for k ∈ {0, 2, 3, . . . , 2d}.

Proof. Step 1: The expressions pk ∈ K(Λ2d) are rational invari-
ants for the action of B2.

We have to check that pk(v) = pk(gv) holds for all g ∈ B2, v ∈ Λ2d.
By Lemma 4.6.(i), it is enough to check this for the two generators
g = g1 and g = g2 from Lemma 4.6.
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Let v = ∑
i 6=1 αiu

(2d)
i . Then by Lemma 4.6.(ii) we have

pk(g1v) = pk

∑
i 6=1

(−1)iαiu(2d)
i



=


(−1)kαk = αk if k ≡ 0 (mod 4),
((−1)2α2)((−1)3α3)(−1)kαk = α2α3αk if k ≡ 1 (mod 4),
((−1)2α2)((−1)kαk) = α2αk if k ≡ 2 (mod 4),
((−1)3α3)((−1)kαk) = α3αk if k ≡ 3 (mod 4)

= pk(v).

Analogously,

pk(g2v) = pk

∑
i 6=1

(−1)(
i
2)αiu(2d)

i



=



(−1)(
k
2)αk = αk if k ≡ 0 (mod 4),

((−1)(
2
2)α2)((−1)(

3
2)α3)(−1)(

k
2)αk = α2α3αk if k ≡ 1 (mod 4),

((−1)(
2
2)α2)((−1)(

k
2)αk) = α2αk if k ≡ 2 (mod 4),

((−1)(
3
2)α3)((−1)(

k
2)αk) = α3αk if k ≡ 3 (mod 4)

= pk(v).

This shows that the pk are rational invariants for the action of B2.

Step 2: p0, p2, p3, . . . , p2d ∈ K(V2d)B2 form a set of generating rati-
onal invariants.

Let q ∈ K(V2d)B2 , i.e. q
(∑

i 6=1 αiu
(2d)
i

)
is a rational expression

q = q1
q0
∈ R(α0, α2, α3, . . . , α2d) in the variables α0, α2, α3, . . . , α2d which

stays invariant under the action of B2. For k ∈ {0, 4, 5, . . . , 2d} we can
replace each occurrence of αk as follows:

αk =


pk if k ≡ 0 (mod 4),
pk
α2α3

if k ≡ 1 (mod 4),
pk
α2

if k ≡ 2 (mod 4),
pk
α3

if k ≡ 3 (mod 4).

This way, we rewrite q as a rational expression in the invariants pk
and the remaining variables α2 and α3. Using p2 = α2

2 and p3 = α2
3, we

can also replace higher powers of the variables α2 and α3 accordingly
such that we are left with an expression

q = r1 + r2α2 + r3α3 + r4α2α3

r5 + r6α2 + r7α3 + r8α2α3
,

where r1, . . . , r8 ∈ R[p0, p2, p3, . . . , p2d] are polynomial expressions in
pk.
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After multiplying the numerator and denominator with (r5+r6α2)−
α3(r7 +r8α2), the new denominator contains the variable α3 only as α2

3,
so after simplifying the entire resulting expression again by replacing
higher powers of α2 and α3 as before, we are left with an expression
where α3 does not show up anymore in the denominator:

q = r9 + r10α2 + r11α3 + r12α2α3

r13 + r14α2

for r9, . . . , r14 some polynomial expressions in the invariants pk.
Extending numerator and denominator by the factor r13 − r14α2

and replacing α2
2 = p2, we have finally rewritten
q = r15 + r16α2 + r17α3 + r18α2α3,

where r15, . . . , r18 ∈ R(p0, p2, p3, . . . , p2d) are rational expressions in the
invariants pk.

Being expressions in pk, the r15, . . . , r18 are themselves rational in-
variants for the action of B2. In particular, acting by g2 ∈ B2 from
Lemma 4.6 leaves r15, . . . , r18 invariant while replacing α2 by −α2 and
α3 by −α3 (according to part (ii) of Lemma 4.6). Hence:

q(g2v) = r15 − r16α2 − r17α3 + r18α2α3.

Since q is a rational invariant, we have q(g2v) = q(v), from which we
deduce the equality

r15 + r16α2 + r17α3 + r18α2α3 = r15 − r16α2 − r17α3 + r18α2α3.

Hence, r16α2 + r17α3 = 0, i.e. q = r15 + r18α2α3.
In the same way, we now get

r15 + r18α2α3 = q(v) = q(g1v) = r15 − r18α2α3,

i.e. r18α2α3 = 0. This shows q = r15, i.e. we have expressed an arbitrary
rational invariant q ∈ K(Λ2d)B2 as a rational expression (namely the
expression r15) in terms of p0, p2, p3, . . . , p2d. This shows that those pk
form a set of generating rational invariants. �

With the Slice Lemma (Theorem 3.2) we conclude the following:

Corollary 4.8. Let d ≥ 2. Then there is a set of 2d generating rational
invariants p̃0, p̃2, p̃3, . . . , p̃2d ∈ K(V2d)O(2) for the action of O(2) on V2d
such that their restriction to the subspace Λ2d is given by p̃k|Λ2d

= pk
(and this property characterizes p̃k uniquely).



CHAPTER 5

Invariants for ternary forms (n = 3)

In this chapter, we will construct a set of generating rational inva-
riants for V2d in the case n = 3, d ≥ 2. As in the previous chapter, it
is essential to find an appropriate basis for H2d with respect to which
the action of the group B3 ⊂ O(3) on the space Λ2d becomes apparent.
Based on that, we will be able to describe invariants. We will first ex-
amine the case of ternary quartics, i.e. 2d = 4, in Sections 5.1 and 5.2.
This is the first relevant case for applications that cannot be modeled
with quadratic forms; at the same time the treatment of this case ser-
ves as a model for the case of higher degree, since it already reflects
most phenomena encountered for 2d > 4. We turn to the general case
of any d ≥ 2 in Sections 5.3 and 5.4.

Throughout this chapter, we fix n = 3.

5.1. Ternary quartic harmonic functions and the action of B3

Throughout this section, we consider the case d = 2, i.e. degree 2d =
4. We are therefore concerned with the vector space V4 = R[x, y, z]4 of
ternary quartic forms which decomposes according to Observation 3.23
as V4 = H4⊕QV2 (where Q = x2+y2+z2). By Proposition 3.28, we are
interested in the action of B3 ⊂ O(3) on the subspace Λ4 = H4⊕QΛ2.
To this end, we start out by providing a useful basis for the vector
space H4:

Proposition 5.1. The following nine ternary quartic forms form a
basis for the R-vector space H4:
u

(4)
1,0 := 6x2yz − y3z − yz3, u

(4)
1,1 := y4 − 6y2z2 + z4, u

(4)
1,2 := y3z − yz3,

u
(4)
2,0 := 6y2zx− z3x− zx3, u

(4)
2,1 := z4 − 6z2x2 + x4, u

(4)
2,2 := z3x− zx3,

u
(4)
3,0 := 6z2xy − x3y − xy3, u

(4)
3,1 := x4 − 6x2y2 + y4, u

(4)
3,2 := x3y − xy3.

Warning 5.2. These u(4)
i,j – defined in the setting n = 3 – are unrelated

to the expressions u(2d)
k defined in Section 4.1 for the setting n = 2. No

confusion should arise from this, as we are only concerned with the
case n = 3 in this chapter.

Proof. From dim V4 =
(

3+4−1
4

)
= 15 and dim V2 =

(
3+2−1

2

)
= 6

and the Harmonic Decomposition V4 = H4 ⊕ QV2, it follows that H4

36
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is a 9-dimensional R-vector space. Therefore, it suffices to check that
that all u(4)

i,j (i ∈ {1, 2, 3}, j ∈ {0, 1, 2}) are linearly independent and
that they are contained in the subspace H4 of V4.

Let ∑3
i=1

∑2
j=0 λi,ju

(4)
i,j = 0 for some λi,j ∈ R. By considering the

coefficient of the monomials y2z2, z2x2 and x2y2 in the expression∑3
i=1

∑3
j=1 λi,ju

(4)
i,j , we see that λ1,1, λ2,1 and λ3,1 must be zero. Si-

milarly, the coefficients of x2yz, y2zx and z2xy reveal λ1,0 = λ2,0 =
λ3,0 = 0. Now, we are left with ∑3

i=1 λi,2u
(4)
i,2 = 0, from which we de-

duce λ1,2 = λ2,2 = λ3,2 = 0 by considering the coefficients of y3z, z3x
and x3y. Therefore all λi,j must be zero. This shows that the u(4)

i,j are
linearly independent.

It remains to show that u(4)
i,j ∈ H4 for all i, j. By the Definition 3.21,

H4 is the orthogonal complement of QV2 in V4 with respect to the
apolar product. Hence, we only need to see that 〈u(4)

i,j , Qv〉 = 0 for
v ∈ {x2, y2, z2, xy, yz, zx}. It is straightforward to check this. �

The above proof does not provide much insight to how and why the
above basis was chosen in this particular way. Below, we will see that
the action of B3 on H4 is described easily with respect to this basis, but
the question how to come up with this basis remains. We will address
this question later on in Section 5.3, where we systematically examine
the case of higher degree (d > 2). For the purpose of approaching the
case d = 2 the above statement shall be enough.

Definition 5.3. Additionally to the above, we define
u

(4)
1,3 := Qx2, u

(4)
2,3 := Qy2, u

(4)
3,3 := Qz2,

where Q = x2 + y2 + z2.

Corollary 5.4. The expressions u(4)
i,j for i ∈ {1, 2, 3}, j ∈ {0, 1, 2, 3}

form a basis for Λ4.

Proof. This follows immediately from Proposition 5.1 because of
Λ4 = H4 ⊕QΛ2. �

Lemma 5.5. Let v = ∑3
i=1

∑4
j=0 αi,ju

(4)
i,j ∈ Λ4 (for some αi,j ∈ R).

(i) If g ∈ B3 is a 3× 3 permutation matrix and σ is the permutation
of {1, 2, ..., n} corresponding to g, then

gv =
3∑
i=1

4∑
j=0

sgn(σ)ζ(j)αi,ju(4)
σ(i),j,

where sgn(σ) = det(g) is the signum of the permutation σ and

ζ(j) :=

1 if j = 2,
0 otherwise
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for j ∈ {0, 1, 2, 3}.
(ii) If g = diag(τ1, τ2, τ3) ∈ B3 (where τi = ±1) is a 3× 3 sign-change

matrix, then

gv =
3∑
i=1

4∑
j=0

(τ1τ2τ3τi)j+1αi,ju
(4)
i,j .

Proof. (i) The element g acts by permuting the variables x, y
and z in the polynomial expression v ∈ Λ4 ⊂ R[x, y, z]4. From the
definition of ui,j we can read off that this permutation of variables
gives

gu
(4)
i,j =

sgn(σ)u(4)
σ(i),j if j = 2,

u
(4)
σ(i),j otherwise,

from which the claim follows by linearity.
(ii) By the definition of the group action, the element g ∈ B3 acts on a

polynomial expression v ∈ V4 = R[x, y, z]4 by simply substituting
x by τ1x, y by τ2y, and z by τ3z. From the definition of ui,j we
then see that for j ∈ {1, 3} we have

gu
(4)
1,j = τ2τ3u

(4)
1,j , gu

(4)
2,j = τ1τ3u

(4)
2,j , gu

(4)
3,j = τ1τ2u

(4)
3,j ,

and for j ∈ {0, 2} we have gu(4)
i,j = u

(4)
i,j . The claim above is just a

reformulation of this.
�

5.2. Invariants for ternary quartic forms

In this section, we use the basis for Λ4 constructed in Section 5.1
to explicitly determine generating rational invariants for K(Λ4)B3 . We
proceed in the spirit of Section 4.2, even though in this case (n = 3)
the constructed invariants will be slightly more involved than in the
previous case (n = 2).

Theorem 5.6. A set of generating rational invariants for K(Λ4)B3

is given by the 12 rational functions pi,j : Λ4 99K R for i ∈ {1, 2, 3},
j ∈ {0, 1, 2, 3} whose value at v = ∑

i,j αi,ju
(4)
i,j ∈ Λ4 is given by

p1,0(v) := α2
1,0 + α2

2,0 + α2
3,0,

p2,0(v) := α1,0α2,0α3,0,

p3,0(v) := α4
1,0 + α4

2,0 + α4
3,0.

and the remaining pi,j(v) are given by the matrix productp1,1(v) p1,2(v) p1,3(v)
p2,1(v) p2,2(v) p2,3(v)
p3,1(v) p3,2(v) p3,3(v)

 =

 1 1 1
α2

1,0 α2
2,0 α2

3,0
α4

1,0 α4
2,0 α4

3,0


︸ ︷︷ ︸

=:M(α)

·

α1,1 α1,2α1,0 detM(α) α1,3
α2,1 α2,2α2,0 detM(α) α2,3
α3,1 α3,2α3,0 detM(α) α3,3


︸ ︷︷ ︸

=:A(α)

.
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Remark 5.7. Note that the occurring factor detM(α) is explicitly
given as

detM(α) = (α2
1,0 − α2

2,0)(α2
2,0 − α2

3,0)(α2
3,0 − α2

1,0).

Proof. Step 1: The expressions pi,j ∈ K(Λ4) are rational invari-
ants for the action of B3.

By Remark 3.11, it suffices to show pi,j(gv) = pi,j(v) ∀v ∈ Λ4
in the case that g ∈ B3 is a permutation matrix or a sign-change
matrix. It is a straightforward task to check this using Lemma 5.5.
(We can use Remark 5.7 to see that the expression detM(α) remains
unchanged under the action any sign-change matrix g and is mapped
to (−1)det g · detM(α) if g is a permutation matrix.)

Step 2: If q ∈ K(Λ4)B3 is an invariant whose value at v = ∑
i,j αi,ju

(4)
i,j

is given by a polynomial expression in α1,0, α2,0, α3,0 only, then q can
be written polynomially in terms of p1,0, p2,0, p3,0.

First, we consider the monomials αi1,0α
j
2,0α

k
3,0 of the polynomial ex-

pression q. By Lemma 5.5, a sign-change matrix diag(τ1, τ2, τ3) ∈ B3
acts on q by replacing αi1,0α

j
2,0α

k
3,0 by

τ j+k1 τ i+k2 τ i+j3 · αi1,0α
j
2,0α

k
3,0,

so q can only be invariant with respect to all sign-change matrices if
for all its monomials αi1,0α

j
2,0α

k
3,0, the numbers i+ j, i+k and j+k are

even numbers, i.e. i ≡ j ≡ k (mod 2). In particular, we can write q as
a polynomial in

p2,0 := α1,0α2,0α3,0, β1 := α2
1,0, β2 := α2

2,0, β3 := α2
3,0.

If g ∈ B3 is a permutation matrix and σ is the permutation of
{1, 2, 3} corresponding to g, then g acts according to Lemma 5.5 on q
by replacing βi by βσi . Therefore, g is an symmetric polynomial expres-
sion in the three variables β1, β2, β3. By the Fundamental Theorem of
symmetric functions, see [Stu08, Proposition 1.1.2], q can therefore be
written as a polynomial expression in the three power sum polynomials

β1 + β2 + β3 = p1,0,

β2
1 + β2

2 + β2
3 = p3,0 and

β3
1 + β3

2 + β3
3 = 3

2p1,0p3,0 −
1
2p

3
1,0 + 3p2

2,0.

With this, we have expressed q as a polynomial expression in terms of
p1,0, p2,0, p3,0.

Step 3: If q ∈ K(Λ4)B3 is an invariant whose value at v = ∑
i,j αi,ju

(4)
i,j

is given by a rational expression in α1,0, α2,0, α3,0 only, then q can be
written as a rational expression in terms of p1,0, p2,0, p3,0.



5.2. INVARIANTS FOR TERNARY QUARTIC FORMS 40

It is enough to show that the rational expression q can be written
as q = q1

q0
such that q1 and q0 are polynomial expressions which are

also invariants, because we may express both q0 and q1 as polynomial
expressions in terms of p1,0, p2,0, p3,0. We may assume that the polyno-
mial expressions q1 and q0 have no common factor. Since q = q1

q0
is an

invariant, we have for each g ∈ B3:

q1(gv) · q0(v) = q1(v) · q0(gv), v ∈ Λ4.

Since q0(v) and q1(v) have no common factor, the same is true for q1(gv)
and q0(gv) (as polynomial expressions in α1,0, α2,0, α3,0). Therefore, we
deduce from the above equation that for each g ∈ B3 there exists a
scalar λg ∈ R∗ such that q1(gv) = λgq1(v) and q0(gv) = 1

λg
q0(v) holds

for all v ∈ Λ4. Note that for each g ∈ B3 we have gk = id for some
k ≥ 1, hence q1(v) = q1(gkv) = λkgq1(v), which shows λg = ±1. Note
that we therefore have

q1(gv)q0(gv) = q1(v)q0(v), q0(gv)2 = q0(v)2 ∀g ∈ B3, v ∈ Λ4.

In particular, q = q1q0
q2

0
writes q as a fraction whose numerator and

denominator are both invariants.

Step 4: If q ∈ K(Λ4)B3, then q can be written as a rational expres-
sion in the invariants pi,j.

The invariant q is a rational expression in the variables αi,j. We
observe thatα1,1 α1,2α1,0 detM(α) α1,3
α2,1 α2,2α2,0 detM(α) α2,3
α3,1 α3,2α3,0 detM(α) α3,3

 = M(α)−1·

p1,1(v) p1,2(v) p1,3(v)
p2,1(v) p2,2(v) p2,3(v)
p3,1(v) p3,2(v) p3,3(v)

 ,
where M(α) is an expression only involves the variables α1,0, α2,0, α3,0.
With this, we can replace each occurrence of αi,j for i, j ∈ {1, 2, 3} by
a rational expression involving the different invariants pi,j as well as
the three variables α1,0, α2,0, α3,0. Since the pi,j are invariant under the
action of B3, we may just consider them as constants and we can then
rewrite the remaining rational invariant involving only α1,0, α2,0, α3,0 in
terms of p1,0, p2,0, p3,0 by Step 3. This concludes the proof of Step 4,
showing that the pi,j as defined above form a set of generating rational
invariants for the action of B3. �

With the Slice Lemma (Theorem 3.2) we conclude:

Corollary 5.8. There is a set of 12 generating rational invariants
p̃i,j ∈ K(V2d)O(2) (for i ∈ {1, 2, 3}, j ∈ {0, 1, 2, 3}) for the action of
O(3) on V4 such that their restriction to the subspace Λ4 is given by
p̃i,j|Λ4

= pi,j (and this property characterizes pi,j uniquely).
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5.3. The action of B3 for higher degree – formulation

We now turn to the case of arbitrary even degree 2d ≥ 4. The
structure of the B3-action on Λ2d remains very similar to what we saw
in the special case d = 2. The main result is the construction of a
convenient basis for Λ2d, providing the following structural description
analogous to Lemma 5.5.

Proposition 5.9. Let d ≥ 2 be not divisible by 3. Then dim Λ2d =
3(k + 1) for some k ∈ N. There exists a basis (u(2d)

i,j )1≤i≤3,0≤j≤k of
Λ2d and mappings ξ, ζ : {0, . . . , k} → {0, 1} with ξ(0) = 1, ζ(0) =
0 such that the action of B3 on Λ2d is given as follows: Let v =∑3
i=1

∑k
j=0 αi,ju

(2d)
i,j ∈ Λ2d.

(i) If g ∈ B3 is a 3× 3 permutation matrix and σ is the permutation
of {1, 2, ..., n} corresponding to g, then

gv =
3∑
i=1

k∑
j=0

sgn(σ)ζ(j)ασ(i),ju
(2d)
i,j ,

where sgn(σ) = det(g) = ±1 is the signum of the permutation σ.
(ii) If g = diag(τ1, τ2, τ3) ∈ B3 (where τi = ±1) is a 3× 3 sign-change

matrix, then

gv =
3∑
i=1

k∑
j=0

(τ1τ2τ3τi)ξ(j)αi,ju(2d)
i,j .

We also need to consider the case that d is divisible by 3.

Proposition 5.10. Let d be a multiple of 3. Then

dim Λ2d = 3(k + 1) + 1

for some k ∈ N. There exists a basis u(2d)
∞ , (u(2d)

i,j )1≤i≤3,0≤j≤k of Λ2d and
mappings ξ, ζ : {0, . . . , k} → {0, 1} with ξ(0) = 1, ζ(0) = 0 such that
the action of B3 on Λ2d is given exactly as in Proposition 5.9 on the
basis elements u(2d)

i,j , and on the additional basis element u(2d)
∞ given by

gu(2d)
∞ = u(2d)

∞ for all g ∈ B3.

We will delay the (technical) constructive proof for these two results
to Section 5.5. This allows us to immediately formulate the results
about rational invariants analogous to Theorem 5.6.

5.4. Invariants for higher degree ternary forms

Theorem 5.11. Let d ≥ 2 be not divisible by 3 and consider the nota-
tions from Proposition 5.9.
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A set of generating rational invariants for K(Λ2d)B3 is given by
the 3(k + 1) rational functions pi,j : Λ2d 99K R for i ∈ {1, 2, 3}, j ∈
{0, 1, . . . , k} whose value at v = ∑

i,j αi,ju
(2d)
i,j ∈ Λ2d is given by

p1,0(v) := α2
1,0 + α2

2,0 + α2
3,0,

p2,0(v) := α1,0α2,0α3,0,

p3,0(v) := α4
1,0 + α4

2,0 + α4
3,0.

and the remaining pi,j(v) are the entries of the 3 × k-matrix given as
the matrix productp1,1(v) . . . p1,k(v)

p2,1(v) . . . p2,k(v)
p3,1(v) . . . p3,k(v)

 =

 1 1 1
α2

1,0 α2
2,0 α2

3,0
α4

1,0 α4
2,0 α4

3,0


︸ ︷︷ ︸

=:M(α)

·A(α),

where A(α) is the 3× k-matrix whose (i, j)-th entry is

A(α)i,j = αi,jα
ξ(j)
i,0 (detM(α))ζ(j).

Theorem 5.12. Let d be a multiple of 3 and consider the notations
from Proposition 5.10. We define 3(k+1) rational functions pij : Λ2d 99K
R whose value at v = α∞u

(2d)
∞ + ∑

i,j αi,ju
(2d)
i,j ∈ Λ2d is given by the

same expressions as above (i.e. not involving α∞), and add the rational
function p∞ ∈ K(Λ2d) given by p∞(v) := α∞. Then those 3(k + 1) + 1
rational functions p∞, pi,j form a set of generating rational invariants
for K(Λ2d)B3.

Proof of Theorems 5.11 and 5.12. The proof is completely ana-
logous to the proof of Theorem 5.6. �

5.5. The action of B3 for higher degree – construction

In this section, we give the construction of a basis of Λ2d with the
properties specified in Propositions 5.9 and 5.10. First, we establish a
result analogous to Lemma 4.1.

Notation 5.13. For nonnegative integers i, j, k and r = i+ j + k, we
denote the multinomial (

r

i, j, k

)
:= r!

i!j!k! .

Furthermore, we recall that the binomial
(
r
k

)
is defined for all in-

tegers k ≥ 0 and r ∈ Z – even if r < k or if r is even negative –,
as (

r

k

)
:= r(r − 1) · . . . · (r − k + 1)

k! .
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Lemma 5.14. Let d ≥ 2. A ternary form

v =
∑

i+j+k=2d

(
2d
i, j, k

)
ai,j,kx

iyjzk ∈ V2d

is contained in H2d if and only if ai+2,j,k + ai,j+2,k + ai,j,k+2 = 0 holds
for all i, j, k ∈ N such that i+ j + k = 2d− 2.

Proof. The proof is analogous to the proof of Lemma 4.1, but we
choose to provide it in detail nevertheless. By definition, v lies in H2d if
and only if 〈v,Qw〉 = 0 for all w ∈ V2d−2, where Q = x2 + y2 + z2 ∈ V2.
Since the monomials xiyjzk for all i, j, k such that i + j + k = 2d − 2
form a basis of V2d−2, we may restrict to the cases that w is any of
these monomials. We have

〈v,Qxiyjzk〉

=
〈 ∑
i′+j′+k′=d

(
2d

i′, j′, k′

)
ai′,j′,k′x

i′yj
′
zk
′
, (x2 + y2 + z2)xiyjzk

〉
= (2d)! · (ai+2,j,k + ai,j+2,k + ai,j,k+2),

where we used that

〈xi′yj′zk′ , xiyjzk〉 =

i!j!k! if i = i′, j = j′, k = k′

0 otherwise.

Hence v ∈ H2d if and only if ai+2,j,k + ai,j+2,k + ai,j,k+2 = 0 for all
i, j, k ∈ N such that i+ j + k = 2d− 2. �

Recall that dim V2d =
(

2d+n−1
n−1

)
=
(

2d+2
2

)
, so that dim Λ2d =

(
2d+2

2

)
−

3. Note that dimH2d = dimV2d − dim V2d−2 = 4d + 1. With this, we
are prepared for the construction of an “appropriate” basis for Λ2d.

Proof of Propositions 5.9 and 5.10. We simultaneously prove
both propositions by induction on d ≥ 2. The case d = 2 has been es-
tablished in Corollary 5.4 and Lemma 5.5. We now consider the case
d > 2 and we may assume Proposition 5.9 resp. Proposition 5.10 for
d − 1. In particular, we have elements u(2d−2)

i,j ∈ Λ2d−2 for 1 ≤ i ≤
3, 0 ≤ j < r0, where r0 :=

⌊
dim Λ2d−2

3

⌋
=
⌊

1
3

(
2d
2

)⌋
− 1 (and also an

element u(2d−2)
∞ ∈ Λ2d−2 if d ≡ 1 (mod 3)).

By Definition 3.26, we have
Λ2d = H2d ⊕QΛ2d−2,

where Q = x2 + y2 + z2 ∈ V2.
Hence, as a first step, we define

u
(2d)
i,j := Qu

(2d−2)
i,j ∀1 ≤ i ≤ 3, 0 ≤ j ≤ r0 − 1.
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If d 6≡ 1 (mod 3), then these u(2d)
i,j already form a basis for the subspace

QΛ2d−2 ⊂ Λ2d (with the desired properties) and it only remains to
extend it by a suitable basis of H2d. If d ≡ 1 (mod 3), we need to
extend it by a basis of H2d ⊕ 〈Qu(2d−2)

∞ 〉.

Step 1: Definition of additional u(2d)
3,j for j ≥ r0

(1) For ` ∈ {0, 1, . . . , d− 1}, we define

u
(2d)
3,r0+` :=

∑
i+j+k=2d

(
2d
i, j, k

)
ai,j,kx

iyjzk,

with ai,j,k given as follows: If ` + d is even, the entries ai,j,k are
defined as

ai,j,k := 0 if i even or j even or k odd,

a2i+1,2j+1,2k :=


(−1)k if k ≤ ` and i− j = `− k + 1,
(−1)k+1 if k ≤ ` and j − i = `− k + 1,
0 otherwise.

In the other case that `+ d is an odd number, the entries ai,j,k
are for ` > 0 defined as

ai,j,k := 0 if i even or j even or k odd,

a2i+1,2j+1,2k :=


(−1)k · 2 if k = ` and i = j,

(−1)k if k < ` and |j − i| = `− k,
0 otherwise,

and for ` = 0 as

ai,j,k :=

(−1) i−1
2 if k = 0, i and j odd

0 otherwise.

This defines u(2d)
3,j for r0 ≤ j < r1, where r1 := r0 + d. 1

(2) For ` ∈ {0, 1, . . . ,
⌊
d+1

3

⌋
− 1}, we define u(2d)

3,r1+` to be the element∑
i+j+k=2d

(
2d
i,j,k

)
ai,j,kx

iyjzk given as follows: If ` + d is odd, the
entries ai,j,k are defined as

ai,j,k := 0 if one of i, j, k is odd,

a2i,2j,2k :=

(−1)i ·
( i−j−k+`−1

2
`−k

)
if k ≤ `,

0 otherwise.

1Apart from the special case ` = 0, d odd, these expressions are obtained by
defining at,2d−t,0 = ±a2d−t,t,0 = ±1 for one odd number t (specifically, t = d+ `+1
resp. t = d + `), defining the remaining ai,j,0 and ai,j,1 to be zero, and iteratively
computing the remaining ai,j,k from the equations in Lemma 5.14.
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In the other case that `+ d is an even number, the entries ai,j,k
are defined as
ai,j,k := 0 if one of i, j, k is odd,

a2i,2j,2k :=

(−1)i ·
( i−j−k+`

2
`−k

)
+ (−1)i ·

( i−j−k+`
2 −1
`−k

)
if k ≤ `,

0 otherwise.

This defines u(2d)
3,j for r1 ≤ j < r2, where r2 := r1 +

⌊
d+1

3

⌋
. If

d ≡ 2 (mod 3), this finishes “Step 1”. 2

(3) If d ≡ 1 (mod 3), we add

u
(2d)
3,r2

:= Qu(2d−2)
∞ +

∑
i+j+k=2d

(
2d
i, j, k

)
ai,j,kx

iyjzk,

where the entries ai,j,k are defined precisely as in (2) for ` =
⌊
d+1

3

⌋
.

(4) If d ≡ 0 (mod 3), we add u(2d)
∞ := ∑

i+j+k=2d

(
2d
i,j,k

)
ai,j,kx

iyjzk,
where the entries ai,j,k are given as follows:
ai,j,k := 0 if one of i, j, k is odd,

a2i,2j,2k :=



(−1)(
|j−k|−i+d/3

2 ) ·
( |j−k|−i+d/3

2
d/3−i

)
if i < d/3,

(−1)(
|i−k|−j+d/3

2 ) ·
( |i−k|−j+d/3

2
d/3−j

)
if j < d/3,

(−1)(
|i−j|−k+d/3

2 ) ·
( |i−j|−k+d/3

2
d/3−k

)
if k < d/3,

2 if i = j = k = d/3.
Note that the cases specified above overlap, but nevertheless,

this expression is well-defined: If both i < d/3 and j < d/3, we
must have k = d− i− j > d/3 and then

|j − k| − i = k − j − i = |i− k| − j.
The cases where both i < d/3 and k < d/3, or that both j < d/3
and k < d/3 are analogous. 3

We have now constructed u(2d)
3,j for r0 ≤ j < r, where r = r2 + 1 (if

d ≡ 1 (mod 3)) or r = r2 (otherwise). Precise counting in the above
constructions reveals

r =
⌊

1
3

(
2d+ 2

2

)⌋
− 1 =

⌊
dim Λd

3

⌋
.

2These expressions u(2d)
3,r1+` were obtained by first defining a2i,2d−2`−2i,2` :=

±1 (alternatingly) and a2i,2j,2k = 0 for all k > `, and then completing this to a
harmonic function by computing the a2i,2j,2k for k < ` with the use of the equations
in Lemma 5.14 – in a way that preserves the symmetry a2i,2j,2k = a2j,2i,2k or the
anti-symmetry a2i,2j,2k = −a2j,2i,2k.

3This expressions u(2d)
∞ was obtained by defining ad/3,d/3,d/3 := 2 and comple-

ting this to a harmonic function with the use of the equations in Lemma 5.14 in
such a way that the values ai,j,k are symmetric with respect to i, j, k.
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This concludes Step 1.

Step 2: Definition of u(2d)
1,j and u

(2d)
2,j for j ≥ r0

In Step 1, we have defined u(2d)
3,j for r0 ≤ j < r. We define u(2d)

1,j and
u

(2d)
2,j analogously, with the variables x, y, z interchanged (cyclicly). We

make this precise:

Let g0 :=

0 0 1
1 0 0
0 1 0

 ∈ B3. This group element acts as follows:

If v ∈ V2d = R[x, y, z]2d, then g0v ∈ V2d arises from the polynomial
expression v by cyclicly substituting x by y, y by z, and z by x. We
defined u(2d)

3,j for j ≥ r0 in Step 1. We now simply define:
u

(2d)
1,j := g0u

(2d)
3,j and u(2d)

2,j := g0u
(2d)
1,j

for all r0 ≤ j < r. This finishes the construction of u(2d)
i,j (and u(2d)

∞ ),
and it remains to show that they form a basis of Λ2d and have the
desired properties regarding the B3-action.

Step 3: These u(2d)
i,j ∈ V2d, 1 ≤ i ≤ 3, 0 ≤ j < r (together with

u(2d)
∞ if d is a multiple of 3) are contained in Λ2d.
Recall that Λ2d = H2d ⊕ QΛ2d−2. By definition, we know that

u
(2d)
i,j = Qu

(2d−2)
i,j ∈ QΛ2d−2 for j < r0. The expressions u(2d)

3,j ∈ V2d
for r0 ≤ j < r2 can be checked to be contained in H2d ⊂ V2d with
the criterion from Lemma 5.14 (in fact, the coefficients ai,j,k in the
construction of u(2d)

3,j in Step 1 were carefully chosen such that this
holds true).

For illustration, we show that u(2d)
3,j ∈ H2d in the case j = r1 + ` and

` + d odd, as considered in (2) of Step 1. By Lemma 5.14, we have to
check that

a2(i+1),2j,2k + a2i,2(j+1),2k + a2i,2j,2(k+1) = 0.
This is straightforward:
a2(i+1),2j,2k + a2i,2(j+1),2k + a2i,2j,2(k+1)

= (−1)i+1 ·
(
i−j−k+`

2
`− k

)
+ (−1)i ·

(
i−j−k+`−2

2
`− k

)
+ (−1)i ·

(
i−j−k+`−2

2
`− k − 1

)
(∗)= (−1)i+1 ·

(
i−j−k+`

2
`− k

)
+ (−1)i ·

(
i−j−k+`−2

2 + 1
`− k

)
= 0,

where in (∗), we used the formula
(
N
K

)
=
(
N−1
K1

)
+
(
N−1
K−1

)
. Proving

u
(2d)
3,j ∈ H2d in the other cases works in the same way. Since g0 ∈ B3 ⊂
O(3), Proposition 3.22 then implies u(2d)

i,j ∈ H2d for all i ∈ {1, 2, 3}.
For the special constructions (3) and (4) from Step 1 it can equally

be checked using Lemma 5.14 that u(2d)
i,r2 − Qu(2d−2)

∞ ∈ H2d if d ≡ 1
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(mod 3) and that u(2d)
∞ ∈ H2d if d ≡ 0 (mod 3). This concludes Step 3.

Step 4: The u
(2d)
i,j ∈ Λ2d, 1 ≤ i ≤ 3, 0 ≤ j < r (together with

u(2d)
∞ if d is a multiple of 3) form a basis of Λ2d.
Recall that dim Λ2d = 3r+1 if d is a multiple of 3 and that dim Λ2d =

3r otherwise, so the number of u(2d)
i,j (and u(2d)

∞ ) equals the dimension of
Λ2d. Therefore, it suffices to show that they are linearly independent.
By induction, we already know that u(2d)

i,j = Qu
(2d−2)
i,j for j < r0 are

linearly independent, so because of Λ2d = H2d ⊕ Λ2d−2, it suffices to
show that the rest is also linearly independent

For this, assume that ∑3
i=1

∑r−1
j=r0 λi,ju

(2d)
i,j = 0 (or ∑i,j λi,ju

(2d)
i,j +

λ∞u∞ = 0 if d is a multiple of 3). In the case that d is a multiple of 3,
note that in this expression the coefficient of the monomial xd/3yd/3zd/3
is precisely 2λ∞ (since ad/3,d/3,d/3 = 0 for all of the u(2d)

i,j ), so we must
have λ∞ = 0. Hence we are in all cases left with

3∑
i=1

r−1∑
j=r0

λi,ju
(2d)
i,j = 0.

If not all λ3,j for r0 ≤ j < r1 are zero, we may consider the largest
` < r1−r0 such that λ3,r0+` 6= 0. Then we observe from the construction
of the u(2d)

i,j that in the expression ∑
i,j λi,ju

(2d)
i,j , the coefficient of the

monomial x2i+1,2j+1,2` is a non-zero multiple of λ3,r0+` (for a suitable
choice of i, j). This is a contradiction to λ3,r0+` 6= 0, showing that all
λ3,j = 0 for r0 ≤ j < r1. The same of course holds for λ1,j and λ2,j.

Hence, we are left with
3∑
i=1

r−1∑
j=r1

λi,ju
(2d)
i,j = 0.

If not all λi,j for r1 ≤ j < r2 are zero, we consider the largest
` < r2 − r1 such that λi,r1+` 6= 0 for some i. We may assume by
symmetry that λ3,r1+` 6= 0. Because of ` < r2 − r1 =

⌊
d+1

3

⌋
, there

exist i, j such that i + j + ` = d/2 and i, j > `. We consider the
coefficient of the monomial x2iy2jz2` in ∑

i,j λi,ju
(2d)
i,j . By maximality

of `, it is immediate from the construction in Step 1 that this is a
non-zero multiple of λ3,r1+`. This contradicts λ3,r1+` 6= 0, so all λi,j for
r1 ≤ j < r2 must be zero.

If d 6≡ 1 (mod 3), this shows that all λi,j = 0, so we proved linear
independence. In the case d ≡ 1 (mod 3), we are still left with

3∑
i=1

λi,r2u
(2d)
1,r2 = 0.
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Recall that the construction of ui,r2 (see (3) of Step 1) involves Qu(2d−2)
∞ .

Because of Λ2d = H2d ⊕QΛ2d−2, we must have( 3∑
i=1

λi,r2

)
Qu(2d−2)
∞ = 0

(i.e. ∑3
i=1 λi,r2 = 0) as well as

3∑
i=1

λi,r2(u(2d)
i,r2 −Qu

(2d−2)
∞ ) = 0.

Considering the coefficients of x(d+4)/3y(d+4)/3z(d−2)/3 and x(d+4)/3y(d−2)/3z(d+4)/3

in the latter expression gives
λ1,r2 − λ2,r2 = 0 and λ1,r1 − λ2,r3 = 0,

hence λ1,r2 = λ2,r2 = λ3,r2 . Since we also have∑3
i=1 λi,r2 = 0, this shows

that all λi,r2 = 0, also concluding the case d ≡ 1 (mod 3).

Step 5: The group B3 acts with respect to this basis as
claimed.

On the basis elements u(2d)
i,j = Qu

(2d−2)
i,j for j < r0, we know this

by induction, since gQ = Q for all g ∈ B3. (Here, we are defining
ξ(j) = ±1 and ζ(j) = ±1 to take the same values for 2d as for 2d− 2.)

If g = diag(τ1, τ2, τ3) ∈ B3 (where τi = ±1) is a sign-change matrix,
it acts by replacing the variables x by τ1x, y by τ2y, and z by τ3z.
If r0 ≤ j < r1, then gu

(2d)
3,j = τ1τ2u

(2d)
3,j because all monomials in u

(2d)
i,j

have odd degree in x and y and even degree in z. By symmetry, we
have gu(2d)

1,j = τ2τ3u
(2d)
1,j and gu(2d)

2,j = τ1τ3u
(2d)
2,j . For r1 ≤ j < r, we have

gu
(2d)
i,j = u

(2d)
i,j , since all monomials occurring in u(2d)

i,j have even degree
in each variable. In the same way, gu(2d)

∞ = u(2d)
∞ . Hence, the claim

for the action of sign-change matrices is true if we define ξ(j) := 1 for
r0 ≤ j < r1 and ξ(j) := 0 for r1 ≤ j < r.

We now turn to the action of permutation matrices. Note that all
permutation matrices can be written as a successive product of

g0 :=

0 0 1
1 0 0
0 1 0

 ∈ B3 and g1 :=

0 1 0
1 0 0
0 0 1

 ∈ B3,

so it is enough to show the claim for g0 and g1. Denote the permutations
of {1, 2, 3} corresponding to g0 and g1 by σ0 and σ1, respectively. Note
that sgn(σ0) = 1 and sgn(σ1) = −1.

We have g0u
(2d)
i,j = u

(2d)
σ(i),j for all j ≥ r0 by the construction given in

Step 2. The element g1 acts by interchanging the variables x and y in
an expression u(2d)

i,j . The expressions for u(2d)
3,j specified in Step 3 were

carefully chosen such that we have
g1u

(2d)
3,j = (−1)j−r0+d · u(2d)

3,j .
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This confirms with the claim if we define

ξ(j) :=

1 if r0 ≤ j < r1, j − r0 + d even or r1 ≤ j < r, j − r1 + d odd
0 otherwise.

That this extends to the action of any permutation matrix on any basis
element follows from u1,j = g0u3,j and u2,j = g0u3,j.

This concludes Step 5 and ends the proof. �

Remark 5.15. In the proof we constructed a convenient basis for Λ2d
mostly by constructing a convenient basis for the spaceH2d of harmonic
functions (with B3-symmetries as described). To be precise, the basis
elements u(2d)

i,j for 1 ≤ i ≤ 3, r0 ≤ j < r2 are all contained in H2d and,
if d ≡ 2 (mod 3), they form a basis of H2d (by Steps 3 and 4 in the
proof). If d ≡ 0 (mod 3), these u(2d)

i,j together with u(2d)
∞ form a basis

of H2d (by Step 4).
In the case d ≡ 1 (mod 3), the elements u(2d)

i,j for 1 ≤ i ≤ 3, r0 ≤
j < r2, together with

ũi,r2 := u
(2d)
i,r2 −Qu

(2d−2)
∞ ∈ H2d ∀i ∈ {1, 2, 3}

form a linear generating set for H2d. It is not a basis of H2d, since they
satisfy the linear dependence

ũ1,r2 + ũ2,r2 + ũ3,r2 = 0.
In fact, because of the cardinality of this generating set is dimH2d + 1,
this is the only linear dependence relation, and we could extract a
basis for H2d by removing one of the elements ũ1,r2 , ũ2,r2 , ũ3,r2 of our
generating set. (However, note that such a removal destroys some
symmetry and may make the action of B3 on H2d harder to describe.)



CHAPTER 6

Solving the main algorithmic challenges

In Chapters 4 and 5, we have constructed a set of generating rati-
onal invariants p̃1, . . . , p̃m ∈ K(V2d)O(n) for three cases: d = 1 and n
arbitrary (Section 3.2), d ≥ 2 and n = 2 (Chapter 4), d ≥ 2 and n = 3
(Chapter 5). The invariants might have been indexed differently be-
fore, but for convenience we may now assume throughout this chapter
that they are numbered from 1 to m. Observe that in all three cases,
the number of generating rational invariantsm coincides with the lower
bound from Theorem 2.15.

m = dimV2d − dimO(n) =
(

2d+ n− 1
n− 1

)
−
(
n

2

)
.

Recall that the construction of the invariants was slightly indirect:
Apart from the case n = 2, we did not give closed formulas for the
invariants p̃i ∈ K(V2d)O(n). Instead, we only described explicit formulas
for the restriction pi := p̃i|Λ2d

∈ K(Λ2d)Bn of p̃i : V2d 99K R to the
subspace Λ2d ⊂ V2d defined in Section 3.3. We know by Theorem 3.2
that from a theoretical standpoint, the invariants p̃i ∈ K(V2d)O(n) are
uniquely characterized by their restrictions pi ∈ K(Λ2d)Bn . We will see
that this remains true when passing to practical considerations.

In this chapter, we turn to the main algorithmic challenges formu-
lated in Section 2.4. We describe algorithmic solutions, which only rely
on information about the restricted invariants pi := p̃i|Λ2d

∈ K(Λ2d)Bn .

6.1. The Evaluation Problem

After we determined a set of generating rational invariants p̃1, . . . , p̃m ∈
K(V2d)O(n), the most basic algorithmic question is: How can we evalu-
ate p̃1(v), . . . , p̃m(v) for a given point v ∈ V2d?

By construction of the invariants, we know explicitly the restrictions
pi := p̃i|Λ2d

: Λ2d 99K R, which allow us to compute p̃i(w) = pi(w) ∈ R
for all w ∈ Λ2d. If we want to evaluate pi(v) for some v ∈ V2d, we
observe that p̃i(gv) = p̃i(v) for all g ∈ O(n) (because p̃i ∈ K(V2d)O(n)).
By Proposition 3.28, we know that for general v ∈ V2d there always
exists an orthogonal transformation g ∈ O(n) such that gv ∈ Λ2d. For

50
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such a g ∈ O(n), we may then compute

p̃i(v) = p̃i(gv) = pi(gv)

(compare also Remark 3.3).
Recalling the definition of Λ2d, this idea leads to Algorithm 1.

Input : v ∈ V2d = k[x1, . . . , xn]2d, d ≥ 1
Output: (p̃1(v), . . . , p̃m(v)) ∈ Rm

1 Compute v′ ∈ V2 in the Harmonic Decomposition
v = hd +Qh2d−2 +Q2h2d−4 + . . .+Qd−2h4 +Qd−1v′

(with h2k ∈ H2k).
2 Let M ∈ Rn×n be the Gramian matrix of v′ ∈ V2.
3 Determine g ∈ O(n) such that the matrix product gMgT is

diagonal:
gMgT = diag(λ1, . . . , λn) for some λ1, . . . , λn ∈ R.

4 If λi = λj for some i 6= j, output “undefined at v” and stop.
5 Compute w = gv ∈ Λ2d.
6 Compute and output the values pi(w) for i = 1, . . . ,m.

Algorithm 1: Evaluation Algorithm

In the following, we will comment on the validity and on the com-
putational realization of the various steps of Algorithm 1.

First, we convince ourselves that the formulation in Algorithm 1
corresponds to the idea described above of evaluating p̃i(v) = pi(gv)
where g ∈ O(n) is some orthogonal transformation such that gv ∈ Λ2d.
Recall that if

v = hd +Qh2d−2 +Q2h2d−4 + . . .+Qd−2h4 +Qd−1v′

is the Harmonic Decomposition of v computed in Step 1, then the
Harmonic Decomposition of gv is given as

gv = ghd +Q(gh2d−2) +Q2(gh2d−4) + . . .+Qd−2(gh4) +Qd−1(gv′)

by Proposition 3.22. Then the definition of Λ2d gives: gv is contained
in Λ2d if and only if gv′ ∈ V2 lies in Λ2, i.e. the Gramian matrix of gv′
is diagonal. By Proposition 3.7, the Gramian matrix of gv′ is precisely
gMgT (if M is the Gramian matrix of v′ ∈ V2).

It remains to make sense of Step 4 in Algorithm 1. Recall Re-
mark 3.5: Even though the restricted invariants pi ∈ K(Λ2d)Bn are po-
lynomial invariants, the corresponding invariants p̃i ∈ K(V2d)O(n) are
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rational expression1 which are undefined wherever their denominator
vanishes. In fact, going back to the proofs of Propositions 3.28 and 3.9,
we see that the rational function p̃i : V2d 99K R which we obtain from
pi ∈ K(Λ2d)Bn is only defined at those points v ∈ V2d whose quadratic
part v′ ∈ V2 (in the Harmonic Decomposition) has a Gramian matrix
without repeated eigenvalues.2 This precisely corresponds to Step 4.

Computational realization of Step 1: Note that for 2d = 2 we simply
have v′ = v by definition, so we may consider the case 2d ≥ 4. First,
we consider the case n = 2.

Recall the basis u(2d)
i (0 ≤ i ≤ 2d) of V2d from Proposition 4.4. If

we write an element v ∈ V2d as v = ∑2d
i=0 αiu

(2d)
i , then in the Harmonic

Decomposition we have h2k = α2ku2k+α2k−1u2k−1 with ui defined as in
Proposition 4.2. Therefore, the quadratic part v′ ∈ V2 we are interested
in is given as

v′ = α2u2 + α1u1 + α0Qu0 = (α0 + α2)x2 + 2α1xy + (α0 − α2)y2.

The element v ∈ V2d may not be given in the form v = ∑d
i=0 αiu

(2d)
i ,

but as v = ∑d
i=0 aix

d−iyi. These two different ways of writing elements
in V2d just correspond to two different choices of bases for the 2d + 1-
dimensional vector space V2d (namely (u(2d)

i )2d
i=0 and (x2d−iyi)2d

i=0), so
converting between the two notions just corresponds to applying a li-
near change of basis. The base change matrix for passing from (αi)2d

i=0
to (ai)2d

i=0 is the (2d + 1) × (2d + 1)-matrix whose (i, j)-th entry (for
0 ≤ i, j ≤ 2d) is the coefficient of x2d−jyj in the expression u(2d)

i . This
matrix and its inverse (needed for the reverse conversion) can for fixed
d already be computed in a preprocessing step. Alternatively, a con-
version without matrix inversion can be performed by exploiting the
fact that the basis u(2d)

i come from the orthogonal bases (u2d−1, u2d) of
H2d from Proposition 4.2.

The case n = 3 equally just amounts to a change of basis: Note
here that the basis u(2d)

i,j for 1 ≤ i ≤ 3, 0 ≤ j ≤ r (and possibly u(2d)
∞ ) of

Λ2d extends to a basis of V2d by adding

u
(2d)
1,−1 := Qd−1 · yz, u(2d)

2,−1 := Qd−1 · xz, u(2d)
3,−1 := Qd−1 · xy.

Note that then for v = ∑3
i=1

∑r
j=−1 αi,ju

(2d)
i,j [+α∞u(2d)

∞ ] the quadratic
part v′ ∈ V2 of the Harmonic Decomposition is

v′ = α1,3x
2 + α2,3y

2 + α3,3z
2 + α1,−1yz + α2,−1xz + α3,−1xy.

1if we actually wrote them out explicitly as closed formulas – which we do not
attempt because the resulting expressions would be huge

2Leaving out Step 4, Algorithm 1 would still output a value for the non-defined
cases, but that value would depend on the choice of g in Step 3.
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Converting a description v = ∑
i+j+k=2d ai,j,kx

iyjzk ∈ V2d into v =∑3
i=1

∑r
j=−1 αi,ju

(2d)
i,j [+α∞u(2d)

∞ ] can as above be achieved by a linear
change of basis.

Computational realization of Step 2: The Gramian matrix M can
immediately be read off the quadratic form v′ ∈ V2 by its definition.

Computational realization of Step 3: This problem is known as
computing the eigendecomposition of the symmetric matrix M and is
equivalent to finding the eigenvalues and eigenvectors of M . Exact
(symbolic) algorithmic solutions to this problem would in particular
compute the eigenvalues of M explicitly, which is possible for n = 2
(i.e. M is a 2× 2-matrix), but would involve introducing square roots
(symbolically). For n = 3 such an exact is already very undesirable,
even though it would in principle be possible by introducing (nested)
square roots and cubic roots with Cardano’s formulas for solving cubic
equations (but such symbolic expressions are hard to work with – for
example when deciding equality of two expressions).

However, there are well-established numerical methods for compu-
ting the eigendecomposition of a symmetric matrix – with the additio-
nal benefit that the numerical stability of these methods is well-studied.
One example is the QR algorithm (see e.g. [GVL13, Chapter 8]) which
is based on iterated QR decompositions of matrices.

Computational realization of Step 5: This is straightforward by the
definition of the action of g = (gij) ∈ O(n): Applying the substitutions

xk 7→ gk1x1 + gk2x2 + . . .+ gknxn

to v ∈ V2d = R[x1, . . . , xn]2d and expanding the resulting expression
gives w = gv ∈ Λ2d. This expansion may also be precomputed sym-
bolically for fixed d such that it is only necessary to evaluate with the
entries gij.

Computational realization of Step 6: We express w ∈ Λ2d as w =∑
i 6=1 αiu

(2d)
i (for n = 2) resp. w = ∑

i,j αi,ju
(2d)
i,j [+α∞u(2d)

∞ ] (for n = 3)
according to Propositions 4.4, 5.9 and 5.10. Converting w into this
expression corresponds to a linear change of basis as above. Then we
evaluate the invariants p0, p2, p3, . . . , p2d (for d = 2) resp. pi,j and p∞
(for n = 3) with their expressions specified in Theorems 4.7 and 5.11.

6.2. The Reconstruction Problem

In Section 6.1, we saw how to numerically compute (p̃1(v), . . . , p̃m(v)) ∈
Rm for a general point v ∈ V2d. In this section, we consider the inverse
algorithmic problem: Given an m-tuple (µ1, . . . , µm) ∈ Rm, compute
v ∈ V2d such that p̃i(v) = µi for all i. This may not be possible for all
(µ1, . . . µm) ∈ Rm, so we are also interested in the following question:
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For which m-tuples (µ1, . . . µm) ∈ Rm does there exist a v ∈ V2d such
that p̃i(v) = µi for all i?

Note that the reconstructed v ∈ V2d is of course not uniquely deter-
mined, since for any orthogonally equivalent w ∈ V2d (i.e. w = gv for
some g ∈ O(n)), the invariants p̃i ∈ K(V2d)O(n) take the same values
for w as for v. Theorem 2.14 implies that typically the reconstructed
v is unique up to orthogonal transformations, i.e. any different recon-
structed w ∈ V2d is orthogonally equivalent to v.

Recall that for any v ∈ V2d there exists g ∈ O(n) such that w :=
gv ∈ Λ2d. Then

p̃i(v) = p̃i(gv) = pi(w) ∀i ∈ {1, . . . ,m}.

In particular, we can always choose to reconstruct an element w ∈
Λ2d. Since we know explicit formulas for the restricted invariants pi :=
p̃i|Λ2d

∈ K(Λ2d)Bn , this corresponds to solving a system of equations
given by pi(w) = µi ∀i ∈ {1, . . . ,m}.

We will now treat separately the three cases in which we constructed
a set of generating invariants: d = 1 and n arbitrary, d ≥ 2 and n = 2,
and the case d ≥ 2 and n = 3.

6.2.1. The case of quadratic forms (2d = 2). In Theorem 3.12,
we saw that

pk

(
n∑
i=1

λix
2
i

)
:= λk1 + . . .+ λkn

for 1 ≤ k ≤ n form a set of generating rational invariants for the action
of Bn on Λ2. Then the Reconstruction Problem corresponds to solving
the system of polynomial equations

λk1 + . . .+ λkn = µk ∀k ∈ {1, . . . , n}.

for λ1, . . . , λn if possible (where µ1, . . . , µn ∈ R are given scalars). This
particular system of equations is easy to solve: Its resolution is given
by the following result:

Proposition 6.1 (Newton’s identities). Let λ1, . . . , λn ∈ C and let
µk := ∑n

i=1 λ
k
i for k ∈ {1, . . . , n}. Then λ1, . . . , λn are the zeroes (with

multiplicities) of the degree n polynomial

a0T
n + a1T

n−1 + . . .+ an−1T + an ∈ C[T ],

where a0, a1, . . . , an ∈ C are recursively given as

a0 := 1,

ak := −1
k

k∑
i=1

ak−iµi.
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Proof. This fact is known under the name Newton’s identities. Its
proof is straightforward: Let

f(T ) = a0T
n + a1T

n−1 + . . .+ an−1T + an ∈ C[T ]
is the normed polynomial of degree n with zeroes λ1, . . . , λn (counted
with multiplicities), i.e. a0 = 1 and

a0λ
n
i + a1λ

n−1
i + . . .+ an−1λi + an = 0 ∀i ∈ {1, . . . , n}.

Summing these equations over all i ∈ {1, . . . , n} gives
a0µn + a1µn−1 + . . .+ an−1µ1 + an = 0,

showing the recursion for ak. �

This leads to Algorithm 2.

Input : (µ1, . . . , µn) ∈ Rn

Output: A quadratic form v ∈ V2 such that p̃k(v) = µk for all
1 ≤ k ≤ n if possible

1 a0 := 1
2 for k = 1 to n do
3 ak := − 1

k

∑k
i=1 ak−iµi

4 end
5 Determine λ1, . . . , λn ∈ C as the zeroes (with multiplicities) of

the polynomial T n + a1T
n−1 + . . .+ an−1T + an ∈ R[T ]

6 if λ1, . . . , λn ∈ R then
7 Output the quadratic form v := ∑n

i=1 λix
2
i ∈ Λ2.

8 else
9 Output “(µ1, . . . , µn) has no reconstruction in V2”.

10 end
Algorithm 2: Reconstructing a representative in the case d = 1.

For Step 5, any numerical root-finding algorithm (over C) for poly-
nomials may be used.

6.2.2. The case of binary forms (n = 2, 2d ≥ 4). In Theorem 4.7,
we saw that

pk

∑
i 6=1

αiu
(2d)
i

 :=


αk if k ≡ 0 (mod 4),
α2α3αk if k ≡ 1 (mod 4),
α2αk if k ≡ 2 (mod 4),
α3αk if k ≡ 3 (mod 4)

for k ∈ {0, 2, 3, . . . , 2d} form a set of generating rational invariants for
K(Λ2d)B2 . Solving the resulting system of equations for the Recon-
struction Problem is straightforward and leads to Algorithm 3.
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Input : (µ0, µ2, µ3 . . . , µ2d) ∈ Rd

Output: A binary form v ∈ V2d such that p̃k(v) = µk for all
k ∈ {0, 2, 3, . . . , 2d} if possible

1 if µ2 ≤ 0 or µ3 ≤ 0 then
2 Output “(µ1, . . . , µn) has no unambiguous reconstruction in

V2d”.
3 else
4 α2 := √µ2 and α3 := √µ3.
5 for k = 0, 4, 5, . . . , 2d do

6 αk :=


µk if k ≡ 0 (mod 4),
µk/(α2α3) if k ≡ 1 (mod 4),
µk/α2 if k ≡ 2 (mod 4),
µk/α3 if k ≡ 3 (mod 4)

7 end
8 Output the binary form v := ∑

i 6=1 αiu
(2d)
i ∈ Λ2d.

9 end
Algorithm 3: Reconstruction in the case n = 2, d ≥ 2.

The validity of Algorithm 3 is immediate from the formulas of the
invariants pk ∈ K(Λ2d)B2 and we only need to comment on Step 2.
Note that µ2 = α2

2 and µ3 = α2
3 imply that a reconstruction can only

be possible if µ2, µ3 ≥ 0. Furthermore, it is not hard to see that
whenever µ2 = 0 or µ3 = 0 there either exists no reconstruction or
there are infinitely many reconstructions v ∈ Λ2d which cannot all be
orthogonally equivalent.

For example, for µ2 = µ3 = 0, the system of equations has only a
solution if µk = 0 for all k not divisible by 4, and there are infinitely
many solutions, given by α2 = α3 = 0, αk = µk if k is a multiple of
4, and all remaining αk ∈ R can be chosen arbitrarily. These solutions
are not all orthogonally equivalent.

6.2.3. The case of ternary forms (n = 3, 2d ≥ 4). In Theo-
rems 5.11 and 5.12, we constructed invariants pi,j ∈ K(Λ2d)B3 for
1 ≤ i ≤ 3 and 0 ≤ j < r (plus an invariant p∞ if d is a multiple
of 3).

The crucial part in the resolution of the system of equations for
the Reconstruction problem lies solving for α1,0, α2,0, α3,0 the following
equations, arising from the invariants p1,0, p2,0, p3,0. Similar to Propo-
sition 6.1 we easily see:
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Proposition 6.2. Let µ1,0, µ2,0, µ3,0 ∈ C. If α1,0, α2,0, α3,0 ∈ C are a
solution of the system

α2
1,0 + α2

2,0 + α2
3,0 = µ1,0,

α1,0α2,0α3,0 = µ2,0,

α4
1,0 + α4

2,0 + α4
3,0 = µ3,0,

then the squares α2
1,0, α

2
2,0, α

2
3,0 ∈ C are the zeroes (with multiplicities)

of the cubic polynomial

T 3 − µ1,0T
2 +

µ2
1,0 − µ3,0

2 T − µ2
2,0 ∈ C[T ].

Proof. Let f ∈ C[T ] be the polynomial whose zeroes (with mul-
tiplicities) are α2

1,0, α
2
2,0, α

2
3,0. Then

f(T ) = (T − α2
1,0)(T − α2

2,0)(T − α2
3,0)

= T 3 − (α2
1,0 + α2

2,0 + α2
3,0)T 2

+ (α2
1,0α

2
2,0 + α2

2,0α
2
3,0 + α2

3,0α
2
1,0)T − α2

1,0α
2
2,0α

2
3,0

= T 3 − µ1,0T
2 +

µ2
1,0 − µ3,0

2 T − µ2
2,0.

�

To answer the question when such a system of equations has real
solutions, we use:

Proposition 6.3. A cubic polynomial f(T ) = T 3−aT 2+bT−c ∈ R[T ]
has three distinct positive real solutions if and only if

a, b, c > 0 and a2b2 − 4b3 − 4a3c− 27c2 + 18abc > 0.

Proof. The expression a2b2 − 4b3 − 4a3c − 27c2 + 18abc is the
discriminant of the cubic polynomial f , which has the property that
it is positive if and only if f has three distinct real solutions. By
Descartes’ rule of signs, f has no negative solutions if and only if the
signs of the coefficients of f alternate, i.e. a, b, c > 0. �

Combining those two results, we obtain Algorithm 4.
For Step 14 in Algorithm 4, it should be observed that an unambi-

guous reconstruction requires α2
1,0, α

2
2,0, α

2
3,0 to be distinct and non-zero.

Then the validity follows from the results given above.
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Input : µi,j ∈ R for 1 ≤ i ≤ 3, 0 ≤ j < r [plus µ∞ ∈ R]
Output: A ternary form v ∈ V2d such that p̃i,j(v) = µi,j for all

i, j [and p∞ = µ∞] if possible
1 if d is a multiple of 6 then
2 α∞ := µ∞
3 end
4 a := µ1,0, b := µ2

1,0−µ3,0

2 , c := µ2
2,0

5 if a, b, c > 0 and a2b2 − 4b3 − 4a3c− 27c2 + 18abc > 0 then
6 Compute the (distinct) zeroes t1, t2, t3 > 0 of the polynomial

T 3 − aT 2 + bT − c ∈ R[T ].
7 α1,0 := ±

√
t1, α2,0 := ±

√
t2, α3,0 := ±

√
t3, where we choose

signs such that α1,0α2,0α3,0 = µ2,0.
8 Calculate the matrix product

A :=

1 1 1
t1 t2 t3
t21 t22 t23


−1

·

µ1,1 . . . µ1,r−1
µ2,1 . . . µ2,r−1
µ3,1 . . . µ3,r−1

 .
9 for 1 ≤ i ≤ 3, 1 ≤ j < r do

10 αi,j = Ai,j

α
ξ(j)
i,0 ·((t1−t2)(t2−t3)(t3−t1))ζ(j) .

11 end
12 Output the ternary form v := ∑

i,j αi,ju
(2d)
i,j [+α∞u(2d)

∞ ] ∈ Λ2d.
13 else
14 Output “The values µi,j allow no unambiguous

reconstruction in V2d”.
15 end

Algorithm 4: Reconstruction in the case n = 2, d ≥ 2.

6.3. The Rewriting Problem

In this section, we want to briefly sketch how the Rewriting Problem
specified in Section 2.4 can be addressed.

Since the constructed rational invariants p̃1, . . . , p̃m ∈ K(V2d)O(n)

form a set of generating rational invariants, it must be possible to
express any other rational invariant q ∈ K(V2d)O(n) as a rational com-
bination of p̃1, . . . , p̃m, i.e. there must exist a rational expression in m
variables r(T1, . . . , Tm) ∈ R(T1, . . . , Tm) such that

q = r(p̃1, . . . , p̃m).

Our aim is: Given q ∈ K(V2d)O(n), find such an r(T1, . . . , Tm) ∈
R(T1, . . . , Tm).
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Note that restricting the above equality to the subspace Λ2d ⊂ V2d
gives:

q|Λ2d
= r(p1, . . . , pm).

Hence, to determine the rational expression r, it is sufficient to re-
write q|Λ2d

∈ K(Λ2d)Bn in terms of the restricted generating rational
invariants p1, . . . , pm ∈ K(Λ2d)Bn . In the proofs of Theorems 3.12, 4.7
and 5.11 we showed that p1, . . . , pm ∈ K(Λ2d)Bn form a generating set
of rational invariants by specifying explicitly how any other rational
invariant can be expressed in terms of p1, . . . , pm. The explicit pro-
cedures given there can be converted into a rewriting algorithm in a
straightforward way.



Conclusion

This thesis has examined the question how to characterize homo-
geneous polynomials of even degree up to orthogonal transformations,
from a viewpoint of Rational Invariant Theory. We have constructed
sets of generating rational invariants of minimal cardinality in the cases
of dimensions two and three (i.e. polynomials in two or three varia-
bles). This construction has been based on theoretical considerations.
Instead of specifying full explicit expressions for the invariants, we have
employed the Slice Method to characterize them by their restriction to
a suitable subspace. We have seen how the main algorithmic challen-
ges associated with rational invariants (evaluation, reconstruction and
rewriting) can be solved numerically based on the construction, and
the computational realization has been discussed.
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