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CHAPTER 1

Introduction

1.1. Motivation

A smooth projective variety over C is of Calabi–Yau type if its
canonical bundle is numerically trivial. These varieties form an impor-
tant class of objects in Higher-Dimensional Algebraic Geometry.

Indeed, it has been a common theme in the study of algebraic
varieties in higher dimensions to investigate the geometry based on
properties of the canonical bundle. An early instance of this is the
Enriques–Kodaira classification of surfaces, where the basic invariant
is the Kodaira dimension of the surface, which roughly measures how
many global sections the canonical divisor and its multiples possess.

In Birational Geometry, a central result is the finite generation of
the canonical ring and the Minimal Model Program tries to classify
varieties up to birational equivalence and study their geometry by con-
structing algebraic fiber space structures and birational contractions
based on numerical properties of the canonical bundle.

A class of relatively well-behaved varieties in any dimension is given
by Fano varieties, which are characterized by the ampleness of the anti-
canonical bundle. In general, it seems that special numerical properties
of the canonical divisor may facilitate the study of the geometry of a
given variety. This leads to the immediate question: What can we say
about varieties whose canonical bundle is numerically trivial? This is
the study of varieties of Calabi–Yau type.

Philosophically, the birational study of a variety of Calabi–Yau
type X seems less tractable at a first glance, since its Néron–Severi
space N1(X)R := Pic(X) ⊗ R/ ≡num lacks an intrisically defined non-
zero point corresponding to KX , which could serve as a starting point
for investigations inside N1(X)R. On the other hand, there is a nice
structural prediction for varieties of Calabi–Yau types, the Morrison–
Kawamata Cone Conjecture.

In concordance with the general philosophy of Birational Geometry
that for understanding the geometry of X it is essential to characterize
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the convex geometry of certain cones inside N1(X)R, the Morrison–
Kawamata Cone Conjecture concerns the structure of the most impor-
tant cone, the cone Amp(X) ⊂ N1(X)R spanned by ample divisors,
resp. its closure Nef(X). In general, one cannot expect that Nef(X)
is a rational polyhedral cone, as is the case for Fano varieties. Indeed,
there are examples that Nef(X) may be a round cone or an almost
rational polyhedral cone generated by infinitely many extremal rays,
see [Tot12, Section 4.1].

In fact, as the automorphism group of X permutes the extremal
rays of the cone Nef(X), it can be easily seen that Nef(X) cannot be
a rational polyhedral cone when the action of Aut(X) on N1(X)R is
given by an infinite group. The Cone Conjecture then predicts the next
best: that the nef cone is rational polyhedral up to the action of the
automorphism group. More precisely, [Mor93], [Kaw97]:

Conjecture (Morrison–Kawamata Cone Conjecture). Let X be a va-
riety of Calabi–Yau type. Then there exists a rational polyhedral cone
which is a fundamental domain for the action of Aut(X) on Nef(X)∩
Eff(X).

This formulation is due to Kawamata and is a refined form of a
conjecture of Morrison, which states the above result for Nef+(X) :=
conv(Nef(X)∩N1(X)Q) instead of Nef(X)∩Eff(X). We refer to Sec-
tion 2.3 for a detailed discussion how these conjectures relate to each
other and also for the convention for fundamental domains used in this
Conjecture. There we will also state a weak version of the Cone Con-
jecture allowing for a fundamental domain which is rational polyhedral
up to a finite number of exceptional faces.

Progress has been made on the Cone Conjecture as follows: Sterk
[Ste85] proved the Cone Conjecture for K3 surfaces and it was ob-
served by Kawamata [Kaw97] that this argument extends to arbitrary
surfaces of Calabi–Yau type. This settles the case dimX = 2. Kawa-
mata also proved a relative version for threefolds fibered over a positive-
dimensional base, [Kaw97]. For abelian varieties, the Cone Conjecture
was proven by Prendergast-Smith [PS12b]. Moreover, the Conjecture
has been verified several special varieties, e.g. [OS01], [PS12a]. In
general, the case dimX = 3 remains widely open.

This thesis is concerned with investigating the structure of Calabi–
Yau threefolds with Picard number ρ(X) = 3 with a view towards the
Kawamata–Morrison Cone Conjecture. Here, by a Calabi–Yau variety
we mean – in contrast to a variety of Calabi–Yau type – a smooth
projective variety X with KX = 0 and H1(X,OX) = 0.

Calabi–Yau varieties are of large interest because of their impor-
tance in Theoretical Physics as well as the central role they play among
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varieties of Calabi–Yau type: According to the following Theorem,
Calabi–Yau varieties are one of three fundamental building blocks of
varieties with numerically trivial canonical bundle:
Theorem 1.1 (Beauville–Bogomolov Decomposition). Let X be a smooth
projective variety of Calabi–Yau type. Then there exists a finite étale
covering

T ×
r∏
i=1

Ai ×
s∏
i=1

Yi → X,

where T is a complex torus, Ai are hyperkähler manifolds and Yi are
simply-connected Calabi–Yau varieties.

1.2. Outline of the thesis

This thesis will be structured as follows: In Chapter 2, we give the
basic definitions, specify notations and recall basic results on which
this thesis is based. We give a precise statement of Morrison’s and
Kawamata’s version of the Cone Conjecture and compare these two.

Chapter 3 is headed towards a classification result (Theorem 3.12)
for the intersection form on threefolds with Picard number 3, on which
our analysis of these varieties will be built. This classification is known
for Calabi–Yau varieties by [LOP13] when the automorphism group
Aut(X) is infinite. We give a proof of their result from a different per-
spective which allows an extension to the case of a finite automorphism
group acting non-trivially on the Néron–Severi space N1(X)R.

For this, we start out Chapter 3 by noting that the properties of
the intersection product as a multisymmetric form on N1(X)R reflect
in its associated vanishing set, the null cone. Then, we give general
criteria when this vanishing set is reducible and splits off a hyperplane.
The main result in this direction will be Corollary 3.9, showing that for
odd-dimensional varieties of Picard number 3 such a splitting always
occurs unless the action of Aut(X) on N1(X)R is very simple. Finally,
we deduce from this the desired classification result for threefolds with
Picard number three.

In Chapter 4, with the classification result established, we investi-
gate the structure of each of the different types of Calabi–Yau threefolds
with Picard number 3 in more detail. Based on this, we obtain results
on the Cone Conjecture and the existence of rational curves. Our main
focus will lie on the investigation of the case that the null cone splits
as the union of three hyperplanes.

We conclude in Chapter 5 by indicating how questions about Dio-
phantine Approximation problems may provide further restrictions on
the structure of the nef cone of Calabi–Yau threefolds by exploiting a
finiteness result due to Szendrői [Sze99].
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1.3. Summary of the main results

The main results we establish in this thesis are the following:

Theorem 1.2 (Theorem 4.1). Let X be a threefold with Picard num-
ber 3 whose Chern classes satisfy c2(X) 6≡ 0 or c1(X)2 6≡ 0. Then

A+(X) := im(Aut(X)→ GL(N1(X)) ∩ SL(N1(X))
is either trivial or a cyclic group.

Theorem 1.3 (Corollary 3.9). Let X be a smooth projective variety of
odd dimension n with Picard number 3 and such that the group A+(X)
is neither trivial nor of order 3. Then the intersection form

N1(X)R → R, x→ xn

factors off a linear factor over R.

Theorem 1.4 (Theorems 4.18, 4.20, 4.22). Let X be a Calabi–Yau
threefold with Picard number 3 such that the group A+(X) is non-trivial
and assume that the intersection form

N1(X)R → R, x→ x3

splits into linear factors over R. Then the following holds:

(i) If Aut(X) is infinite, then Morrison’s Cone Conjecture holds.
(ii) If Aut(X) is finite, then the Weak Cone Conjecture holds.
(iii) If Aut(X) is infinite and X is simply-connected, then it contains

a rational curve.

Along our way, we will also encounter further results that may be
of independent interest.



CHAPTER 2

Preliminaries

2.1. Basics, definitions and conventions

In this section we start by fixing conventions and basic definitions
to be used in this thesis.

We denote R≥0 := {x ∈ R | x ≥ 0} and R>0 := {x ∈ R | x > 0}.
If ϕ ∈ GL(V ) for a vector space V over k and λ ∈ k is an eigenvalue
of ϕ, we define the generalized eigenspace of ϕ with respect to λ is
ker(ϕ − id)dimV ⊂ V . We denote the dual vector space by V ∨ and if
` ∈ V ∨, then we denote

{` = 0} := {v ∈ V | `(v) = 0}.

2.1.1. Preliminaries from Algebraic Geometry. By a variety we
mean an integral separated scheme of finite type over C. For simplic-
ity, we will restrict to smooth projective varieties in this Thesis, even
though many results will hold with possibly some additional effort in
a more general setting.

We denote the canonical divisor of a smooth variety X by KX .
All subschemes and points we refer to are closed unless mentioned
otherwise. By a surface, a threefold etc. we mean a smooth projective
variety of the corresponding dimension.

For a smooth variety X its Picard group Pic(X) plays a prominent
role in the study of the geometry of X. Its importance is two-fold: On
the one hand, global sections of a line bundle on X determine a rational
map to projective space. This simple fact is basic for the construction
of morphisms between projective varieties. On the other hand, there
is a well-behaved intersection product between divisors and 1-cycles
and many properties of a morphism induced by a line bundle reflect in
numerical properties of the intersection product.

For a smooth variety X we denote the intersection product of a
divisor D and a 1-cycle C by D · C. We recall that a divisor (resp.
a 1-cycle) is called numerically trivial (denoted ≡ 0) if its intersec-
tion with any 1-cycle (resp. divisor) is zero. Denoting the subgroup of
numerically trivial divisors by Div0(X) ⊂ Div(X), the Néron–Severi
group N1(X) := Div(X)/Div0(X) is finitely generated. Similarly, we
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denote by N1(X) the quotient of the group of 1-cycles by the subgroup
of numerically trivial 1-cycles. This gives rise to a perfect pairing of
abelian groups

N1(X)×N1(X)→ Z, ([D], [C]) 7→ D · C.

In particular, the abelian groups N1(X) and N1(X) are free of the same
rank and we obtain an natural identification with the dual Z-module:
N1(X)∨ ∼= N1(X) and N1(X)∨ ∼= N1(X). The finite rank of N1(X)
(resp. N1(X)) is called the Picard number of X, denoted by ρ(X).

Even though the intersection product on divisors and 1-cycles gives
a satisfying description for many phenomena on varieties and will be
sufficient for most parts of the treatment in this thesis, it is worthwile to
keep in mind the general construction from Intersection Theory involv-
ing cycles of arbitrary dimension: For an n-dimensional variety X we
let CHi(X) be the Chow group of i-cycles modulo rational equivalence
and denote CHi(X) := CHn−i(X). Note that CHi(X) = 0 if i < 0 or
i > n. The Chow ring of X is the graded ring CH(X) := ⊕

i CHi(X),
where the product is given by the intersection product

CHi(X)× CHj(X)→ CHi+j(X), (α, β) 7→ α · β.

We then denote N i(X) := CHi(X)/ ≡, where we take the quotient
by numerical equivalence ≡, and let Ni(X) := Nn−i(X). In partic-
ular (identifying Nn(X) with Z), there is a well-behaved intersection
product α1 · . . . · αk ∈ Z for αj ∈ N ij (X) with ∑k

j=1 ij = n.
For any vector bundle E on a smooth variety X of dimension n,

Intersection Theory associates Chern classes ci(E) ∈ CHi(X) for each
i ∈ {1, . . . , n}. In particular, a smooth variety X carries intrinsically
defined Chern classes ci(X) := ci(TX) ∈ CHi(X) associated to its tan-
gent bundle TX .

When working with the free abelian groups of finite rank N1(X)
and N1(X), it is convenient to extend the scalars to a field, defining

N1(X)k := N1(X)⊗Z k

for a field k to obtain a finite-dimensional k-vector space of dimen-
sion ρ(X). Similarly we define N1(X)k. This scalar extension is most
natural for k = Q. However, many geometric properties reflect in the
structure of convex cones inside these Q-vector spaces and the most
natural setting for convex geometry is working over k = R because of
completeness properties. (For example, a proper closed convex cone
in N1(X)Q may have no extremal rays, while a closed convex cone in
N1(X)R is always generated by its extremal rays if it contains no lines.)
When working with polynomial vanishing sets on N1(X)R or with spec-
tral properties of vector space endomorphisms (as in Chapter 3), it is
also useful to work over k = C, but this much less natural as it loses
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the possibility of applying convex geometry, because we are no longer
working over an ordered field. We remark that it may also be of use
in some cases to work over other fields, but in this thesis we will only
be concerned with k = Q, R or C. Throughout this thesis, when we
denote N1(X)k or N1(X)k, then k is always assumed to be a field of
characteristic zero and can be thought of as Q, R or C. For appropriate
distinction we may sometimes use the notation N1(X)Z := N1(X) and
N1(X)Z := N1(X) to stress that we are considering the free abelian
groups. Note that there are natural inclusions

N1(X)Z ⊂ N1(X)Q ⊂ N1(X)R ⊂ N1(X)C

and similarly for N1(X).

2.1.2. Preliminaries from Convex Geometry. On the finite-dim.
R-vector spaces N1(X)R and N1(X)R we always consider the Euclidean
topology. As the convex geometry of these vector spaces is important,
we specify some notational conventions here for any finite dimensional
R-vector space V : By a linear cone in V we mean a subset which is
closed under scalar multiplication, whereas by convex cone we mean
a subset of V closed under addition and multiplication by positive
scalars. Note that a convex cone is a linear cone only when it is a
linear subspace. A quadric cone, cubic cone etc. is a nontrivial(!)
linear cone cut out by an irreducible homogeneous polynomial of the
corresponding degree.

A ray in V is a convex cone of the form R≥0v for some non-zero
v ∈ V and we refer to R>0v as the corresponding non-closed ray. A
convex subcone C ′ of a convex cone C is called extremal, or a face of
C, if v + w ∈ C ′ for any v, w ∈ C implies v, w ∈ C ′. Note that when C
and C ′ are closed, this is equivalent to saying that C ′ is the intersection
of C with a hyperplane in V . We say that a hyperplane H in V is a
supporting hyperplane for a closed convex cone C if H∩C is an extremal
subcone.

In particular, the above defines the notion of an extremal ray of
a convex cone. We say that a set M of rays in V converge (resp.
accumulate) towards a given ray R if any open cone containing R\{0}
contains almost all (resp. finitely many) of the non-closed rays inM.

A convex cone C ⊂ V has dimension k if any subspace of V con-
taining C is of dimension at least k and C is called full-dimensional if
its dimension equals dim V . The dual cone C∨ ⊂ V ∨ is defined as

C∨ := {` ∈ V ∨ | ` ≥ 0 on C}.

It can be shown that a closed convex cone is full-dimensional if and
only its dual cone contains no lines.
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When V is any finite-dimensional k-vector space (recall chark = 0),
then we call a free Z-submodule F ⊂ V of rank dimk V an integral
structure on V . (In particular, N1(X)Z is an integral structure on
N1(X)k, and similarly for N1(X).) Note that we can then identify
V = F⊗Zk and we have a naturalQ-linear subspace FQ := F⊗ZQ ⊂ V .
With respect to a fixed integral structure F on V , we say that a point
v ∈ V is integral if v ∈ F and rational if v ∈ FQ. A linear subspace
W ⊂ V is called rational if it is spanned by W ∩ FQ (or equivalently,
if it the kernel of a rational linear form h ∈ F∨Q ⊂ V ∨).

If k = R, then a convex cone C ⊂ V is called rational if C =
conv(C ∩ FQ), where conv denotes the convex hull of a subset in V .
If C ∩ FQ = 0, then C is called irrational. It is easily observed that a
convex cone not containing lines is rational if and only if it does not
contain irrational extremal rays.

In the following we recall the most important convex cones in
N1(X)R for the study of a smooth projective variety X. The ample
cone Amp(X) is the open convex cone spanned by ample classes in
N1(X)R. The closure of Amp(X) is the nef cone Nef(X), which does
not need to be rational. The effective cone Eff(X) is the rational con-
vex cone spanned by effective divisor classes. Its interior is the big cone
Big(X) and its closure is the pseudo-effective cone Psef(X). All of the
mentioned cones are full-dimensional and contain no lines, see [Ogu14,
Proposition 2.2].

A note on visualization: For a convex cone C not containing lines,
there exists an affine hyperplane not passing through 0 which intersects
C in a bounded convex set and it may be useful to just visualize this
intersection representing the cone. We will use this convention in many
Figures throughout this thesis without further notice.

2.2. Calabi–Yau threefolds

We define the main objects under consideration in this thesis:

Definition 2.1. A variety of Calabi–Yau type is a smooth projec-
tive variety X over C whose canonical divisor is numerically trivial, i.e.
KX = 0 in N1(X). We call X a Calabi-Yau variety if additionally
H1(X,OX) = 0 and KX = 0 holds in Pic(X).

Remark 2.2. Calabi–Yau varieties form an important class of vari-
eties in Algebraic Geometry and are also of high interest in Theoreti-
cal Physics. The fact that in this field there has been extensive study
with approaches from different points of view has unfortunately lead to
many competing (non-equivalent) definitions of Calabi–Yau varieties.
The reader should be aware that in the literature conventions differing
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from the above are in use: Sometimes, for example, a variety of Calabi–
Yau type (in our definition) is just referred to as a Calabi–Yau variety,
in which case the varieties additionally satisfying H1(X,OX) = 0 are
often referred to as strict Calabi–Yau varieties. Some authors however
use the denomination “strict Calabi–Yau” for the stronger requirement
H i(X,OX) = 0 for all i ∈ {1, . . . , dimX − 1}. We will stick to Defini-
tion 2.1.

Example 2.3. The following construction produces many examples of
Calabi–Yau varieties of dimension n ≥ 3 and Picard number m: In the
product of projective spaces

P := Pk1 × . . .× Pkm

with ∑m
i=1 ki = n + r for some r ≥ 1, we can consider the complete

intersection
X := H1 ∩ · · · ∩Hr,

where eachHj ⊂ P is a general hypersurfaces of multidegree (a1j, . . . , amj)
such that we have ∑r

j=1 aij = ki+1 for all i. The latter condition guar-
antees KX = 0 and it follows from the Lefschetz Hyperplane Theorem
that ρ(X) = m and H1(X,OX) = 0 (see e.g. [Laz04, Example 3.1.25]).

Definition 2.4. We say that a smooth variety is simply–connected
if it is simply–connected considered as a real manifold.

Remark 2.5. It is known that a simply–connected smooth projective
variety X satisfies H1(X,OX) = 0. This follows from H1(X,Z) = 0
and the Hodge Decomposition

H1(X,C) = H1(X,OX)⊕H0(X,Ω1
X).

Note that Calabi–Yau varieties are a generalization of K3 surfaces
to higher dimensions. In this thesis, the main focus lies on Calabi–
Yau threefolds. Apart from being a diverse class of varieties which is
interesting for itself, they have received particular attention from their
importance in Theoretical Physics.

Remark 2.6. If X is a Calabi–Yau threefold, then the property that
H1(X,OX) = 0 implies by Serre Duality that H2(X,OX) = 0.

In particular, the exponential sequence

0→ Z→ OX → O×X → 1

shows that Pic(X) = H1(X,O×X)→ H2(X,Z) is an isomorphism. This
implies that

Pic(X)⊗Z Q ∼= N1(X)Q
for Calabi–Yau threefolds.
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2.3. The Cone Conjecture

In this section, we give a precise formulation of Morrison’s and
Kawamata’s Cone Conjectures and compare the two versions. We will
also formulate a weaker version. The Cone Conjecture aims to answer
the following question.

Question 2.7. Let X be a variety of Calabi–Yau type. How does the
nef cone Nef(X) ⊂ N1(X)R look like?

For Fano varieties, i.e. smooth projective varietiesX such that−KX

is ample, it is a consequence of Mori’s Cone Theorem that Nef(X) is a
rational polyhedral cone. Here we recall the following definition from
Convex Geometry:

Definition 2.8. A convex cone C in a finite-dimensional R-vector
space V is polyhedral if it is spanned by finitely many extremal rays,
i.e.

C =
k∑
i=1

R≥0vi

for some v1, . . . , vk ∈ V .
For an open subset U ⊂ V , a convex cone C ⊂ V is locally poly-

hedral in U if for every point p ∈ U there is a compact neighborhood
K of p such that C ∩ K is a polytope (i.e. the convex hull of finitely
many points).

For varieties of Calabi–Yau type however, we cannot expect a sim-
ilar description of Nef(X), as there are examples where the nef cone
is not rational or not finitely generated. For instance, [Tot12, Sec-
tion 4.1] provides examples of surfaces of Calabi–Yau type whose nef
cone is a round cone (and in particular not rational) or a rational cone
with infinitely many extremal rays.

The Cone Conjecture predicts that this failure of the nef cone to
be rational polyhedral is explained by the action of the automorphism
group Aut(X) on Nef(X). To make this precise, we need the following
definition of a fundamental domain:

Definition 2.9. Let V be a finite-dimensional vector space over R and
let G → GL(V ) be a linear group action on V . If C is a subset of V
such that G · C = C, then a fundamental domain for the action of G
on C is a subset Π ⊂ C such that

(i) G · Π = C, i.e. ⋃g∈G g(Π) = C, and
(ii) If g(Π) ∩ Π has non-empty interior for some g ∈ G, then g ∈

ker(G→ GL(V )).
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Certainly, this is not a very well-suited definition for arbitrary sets
C ⊂ V , e.g. if C has empty interior. However, for us, C will always be
a full-dimensional convex cone, and the above definition permits us to
construct fundamental domains which are closed.

The hope is now that the action of Aut(X) on the nef cone Nef(X)
permits a rational polyhedral cone as a fundamental domain. But this
cannot be true if Nef(X) has an irrational extremal ray as in one of
the examples of [Tot12, Section 4.1]. Indeed, such a ray cannot be
contained in ⋃f∈Aut(X) f

∗(Π) for a rational polyhedral cone Π. Hence,
we must pay closer attention to the boundary of Nef(X).

Definition 2.10. Let X be a smooth projective variety. We define
Nef+(X) := conv(Nef(X) ∩N1(X)Q)

and
Nefe(X) := Nef(X) ∩ Eff(X).

Moreover, we define the group A(X) to be the image of the natural
group homomorphism

Aut(X)op → GL(N1(X)R), f 7→ f ∗

given by pulling back divisor classes by an automorphism of X.

Remark 2.11. Note that Amp(X) ⊂ Nef+(X) ⊂ Nef(X) and Amp(X) ⊂
Nefe(X) ⊂ Nef(X).

The cone Nefe(X) (conjecturally) plays a particular role in the
study of the geometry of a variety of Calabi–Yau type X: The Log
Abundance Conjecture for X predicts that any nef effective divisor is
semiample, giving rise to a morphism X → Y with connected fibers to
a variety Y , which may be used to study the geometry of X. The Log
Abundance Conjecture has been confirmed for dimX ≤ 3 in [KMM94]
and [KMM04].

The following conjecture is due to Morrison [Mor93], predicting
that Nef+(X) is up to the action of Aut(X) a rational polyhedral cone.

Conjecture 2.12 (Morrison’s Cone Conjecture). Let X be a variety
of Calabi–Yau type. Then there exists a rational polyhedral cone which
is a fundamental domain for the action of Aut(X) on Nef+(X).

This Conjecture was inspired by Mirror Symmetry. In [Kaw97],
Kawamata referred to Morrison’s Cone Conjecture with a slightly dif-
ferent formulation, replacing Nef+(X) by Nefe(X).

Conjecture 2.13 (Kawamata’s Cone Conjecture). Let X be a variety
of Calabi–Yau type. Then there exists a rational polyhedral cone which
is a fundamental domain for the action of Aut(X) on Nefe(X).
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Regarding the relation between the two versions of the Cone Con-
jecture, there is the following result.
Proposition 2.14 ([LOP16]). Let X be a variety of Calabi–Yau type.
Then Nefe(X) ⊂ Nef+(X).

The exact relation between Morrison’s and Kawamata’s version of
the Cone Conjecture is revealed by the following result from Convex
Geometry:
Theorem 2.15 ([Loo14]). Let V be a finite-dimensional vector space
over R equipped with an integral structure F ⊂ V and let C ⊂ V be
a full-dimensional closed convex cone containing no lines. Let G ⊂
GL(F ) be a group preserving C, i.e. G · C = C.

If there is a rational polyhedral cone Π ⊂ C+ such that G · Π ⊃
Int(C), then G · Π = C+, where C+ := conv(C ∩ FQ), and there exists
a rational polyhedral cone Π′ ⊂ C+ which is a fundamental domain for
the action of G on C+.

This implies the following consequence, as observed in [LOP16]:
Corollary 2.16. Let X be a variety of Calabi–Yau type. Then Kawa-
mata’s Cone Conjecture holds for X if and only if Nefe(X) = Nef+(X)
and Morrison’s Cone Conjecture holds for X.

Proof. If we assume Kawamata’s Cone Conjecture for X, then
there exists a rational polyhedral cone Π ⊂ Nefe(X) such that

A(X) · Π = Nefe(X) ⊃ Amp(X).
By Proposition 2.14, Π ⊂ Nef+(X), so the first part of 2.15 implies
Nefe(X) = Nef+(X). �

A further consequence of Theorem 2.15 is the following characteri-
zation of Morrison’s Cone Conjecture for varieties with finite automor-
phism group:
Corollary 2.17. Let X be a variety of Calabi–Yau type. If Nef(X) is
a rational polyhedral cone, then A(X) is a finite group and Morrison’s
Cone Conjecture holds on X. Conversely, if A(X) is a finite group and
we assume that Morrison’s Cone Conjecture holds on X, then Nef(X)
is a rational polyhedral cone.

Proof. If Nef(X) is a rational polyhedral cone, there are only
finitely many primitive integral classes on the extremal rays of Nef(X).
Any ϕ ∈ A(X) permutes these classes and is uniquely determined by
this permutation since Nef(X) is a full-dimensional cone. There are
only finitely many of these permutations, so A(X) is a finite group.
Applying Theorem 2.15 to the convex cone Nef(X) and the rational
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polyhedral subcone Π = Nef(X), we get a rational polyhedral cone Π′
which is a fundamental domain for the action of Aut(X) on Nef+(X).

Conversely, if A(X) is a finite group and Morrison’s Cone Conjec-
ture holds on X, then there is a rational polyhedral cone Π which is
a fundamental domain for the action of Aut(X) on Nef+(X). Since
Aut(X) is finite, Nef+(X) = Aut(X) · Π is also a rational polyhedral
cone and therefore coincides with its closure Nef(X). �

This is a convenient point to recall a result of Oguiso [Ogu14,
Proposition 2.4]:

Proposition 2.18. Let X be a Calabi–Yau variety. Then the kernel
of

Aut(X)op → A(X), f 7→ f ∗

is a finite group. In particular, Aut(X) is finite if and only if A(X) is.

As a final consequence, we observe that the second part of Theo-
rem 2.15 also yields the following:

Observation 2.19. In order to prove Morrison’s (or Kawamata’s)
Cone Conjecture for a variety of Calabi–Yau type X, it is sufficient
to construct a fundamental domain for the action of a subgroup G ⊂
A(X).

With this in mind, we can restrict all considerations to working
with the following subgroup:

Definition 2.20. Let X be a smooth projective variety. Then we
define

A+(X) := A(X) ∩ SL(N1(X)R)
and denote by Aut+(X) its preimage under Aut(X)→ A(X).

Note that A+(X) is a subgroup of index 2 of A(X), as A(X) ⊂
GL(N1(X)Z) implies | detϕ| = 1 for all ϕ ∈ A(X).

We will obtain explicit descriptions of the group A+(X) for Calabi–
Yau threefolds with Picard number 3 in the following chapters and will
use this information to deduce results on the Cone Conjecture.

We conclude this section by formulating a more modest, weaker
version of the Cone Conjecture, permitting the fundamental domain
to have finitely many exceptional faces where it fails to be rational
polyhedral.

Definition 2.21. Let V be a finite-dimensional vector space over R
equipped with an integral structure. A closed convex cone C ⊂ V is
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C

P1

P2

Figure 2.1. An almost rational polyhedral cone with
two exceptional faces. The exceptional faces may be ir-
rational and the extremal rays of C may accumulate to-
wards them.

called an almost rational polyhedral cone if there are finitely many
supporting hyperplanes P1, . . . ,Pr of C such that the convex cone

C0 := C \
r⋃
i=1
Pi

is locally rational polyhedral inside the open set V \ ⋃ri=1 Pi. See Fig-
ure 2.3.

The sets C ∩ Pi are called the exceptional faces of C.

Conjecture 2.22 (Weak Cone Conjecture for Nef+ resp. Nefe). Let
X be a variety of Calabi–Yau type. Then there is an almost rational
polyhedral cone Π ⊂ Nef(X) such that Π+ := conv(Π ∩ N1(X)Q) is
a fundamental domain for the action of A+(X) on Nef+(X) (resp.
Nefe(X)).

2.4. Rational matrix groups

Here, we recall an important finiteness result on matrix groups
due to Burnside [Bur05], which will facilitate the study of the group
A+(X).

Theorem 2.23 ([Bur05]). Let V be a finite-dimensional vector space
over k and let G be a subgroup of GL(V ). If there is a constant N such
that each element of G is of finite order ≤ N , then G is a finite group.
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For matrix groups over Z, we can drop the uniform bound, showing
that A+(X) is either a finite group or contains an element of infinite
order:

Corollary 2.24. Let V be a finite-dimensional vector space over k with
an integral structure F ⊂ V . If G is a subgroup of GL(F ) and each
element of G has finite order, then G is a finite group.

In particular, for a Calabi–Yau variety X, either A+(X) contains
an element of infinite order or Aut(X) is finite.

Proof. The second claim follows from the first because the ker-
nel of Aut(X) → A(X) is finite by Proposition 2.18 and A+(X) is a
subgroup of A(X) of index at most 2.

To deduce the first claim from Theorem 2.23, we want to show that
the order of any ϕ ∈ G is bounded by some fixed constant. Let ϕ ∈ G
be of order N . Then the minimal polynomial µ ∈ Z[X] of ϕ divides
XN − 1, so over C it splits into distinct linear factors. In particular, ψ
diagonalizes over C and its eigenvalues ξ1, . . . , ξm (m ≤ dim V ) must be
N -th roots of unity. Then µ(ξi) = 0 for all i, so if ξi is a Ni-th primitive
root of unity, then the Ni-th cyclotomic polynomial ΦNi

must divide
the characteristic polynomial of ϕ, because the latter is a polynomial
in Z[X]. For degree reasons we get φ(Ni) ≤ dim V , where φ denotes
the Euler function. If we define K to be the maximum integer such
that φ(K) ≤ dim V , then we get Ni ≤ K. Certainly, ψN1·...·Nm = id, so
N ≤ N1 · . . . ·Nm ≤ KdimV . We deduce from Theorem 2.23 that G is
finite. �



CHAPTER 3

The intersection form of a variety

Since many properties of divisors like being ample or being nef and
big are of numerical nature and can be expressed in terms of the inter-
section product, it is a natural question to investigate the intersection
product.

For instance, in the case of a surface X the intersection product
defines a bilinear form on N1(X)R = N1(X)R and its classification up
to a Z-basis of N1(X)Z, i.e. as a lattice, is an important invariant in
the study of surfaces. The classification up to a real basis of N1(X)R
is much simpler, as the Hodge Index Theorem asserts that the bilinear
form always has the signature (s+, s−, s0) = (1, ρ(X)− 1, 0).

In higher dimensions the situation is however much more involved.
If X is a smooth projective variety of dimension n, the intersection
product

N1(X)Z × · · · ×N1(X)Z → Z, (x1, . . . , xn) 7→ x1 · . . . · xn,

extends linearly to

N1(X)R × · · · ×N1(X)R → R, (x1, . . . , xn) 7→ x1 · . . . · xn.

This is a symmetric n-linear form on the vector space N1(X)R, i.e. an
element of Symn(N1(X)∨R). The classification of this multisymmetric
form up to a basis of N1(X)R is much more diverse for n ≥ 3 than the
uniform answer in the case of surfaces.

In this chapter, we will study the intersection form by investigating
its zero set given by

N = {α ∈ N1(X)R | αn = 0}.

We start out in Section 3.1 by observing that this zero set typically
reflects the properties of the intersection form up to a scalar. In Sec-
tion 3.2 we give criteria for the vanishing setN to be reducible, splitting
of a hyperplane. Finally, in Section 3.3, we use the results to obtain
a classification of the intersection form for Calabi–Yau threefolds of
Picard number 3.

17
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3.1. The null cone of a variety

We start out by observing two basic properties of the intersection
product.

Observation 3.1. Let X be a variety of dimension n and let f ∈
Aut(X). Then

f ∗x1 · . . . · f ∗xn = x1 · . . . · xn
for all x1, . . . , xn ∈ N1(X)k.

Lemma 3.2. Let X be a smooth projective variety of dimension n.
Then the intersection product on N1(X)k is non-degenerate in the fol-
lowing sense: Let x ∈ N1(X)k such that

x · y2 · . . . · yn = 0

for all y2, . . . , yn ∈ N1(X)k. Then x = 0.

Proof. We fix an integral ample class h on X. By assumption we
know that x ·hn−2 · y = 0 for all y ∈ N1(X)k, so x ·hn−2 = 0 in N1(X)k
(by the definition of numerical equivalence). But the Hard Lefschetz
Theorem implies that

N1(X)k → N1(X)k, z 7→ z · hn−2

is an isomorphism. From this we deduce x = 0. �

As a consequence of these two properties, the intersection product
induces restrictions on the possible linear automorphisms in A+(X).
This will yield particularly strong implications on the structure of
A+(X) when X is a threefolds with Picard number 3 (see section 3.3).

In this chapter, we abstract from the specific situation of studying
the intersection product on a variety and linear automorphisms on
N1(X)R to an abstract vector space over R equipped with a (non-
degenerate) symmetric multilinear form. Although we may only apply
the results of this section to the case of N1(X)R for a variety X, we
prefer to formulate the results in the abstract setting whenever possible
to highlight which results follow purely from methods of (multi-)Linear
Algebra.

Definition 3.3. Let V be a finite-dimensional k-vector space and let
ω ∈ Symn(V ∨) be a symmetric n-linear form on V . Then we call

N := {x ∈ V | ω(x, . . . , x) = 0}

the null cone of ω. A linear automorphism ϕ ∈ GL(V ) is compatible
with ω if

ω(ϕ(x1), . . . , ϕ(xn)) = ω(x1, . . . , xn)
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holds for all x1, . . . , xn ∈ V . The group of such ϕ is denoted by O(ω) ⊂
GL(V ). A linear automorphism ϕ ∈ GL(V ) preserves N if

ϕ(N ) = N .

It can be seen that if V is a finite-dimensional vector space over
an algebraically closed field, then studying a multilinear form ω ∈
Symn(V ∨) is equivalent to studying its null cone N in the sense that
we can recover ω from N up to scalar and a linear automorphism in
GL(V ) preserving N is compatible with ω up to a scalar. (This can be
seen by similar arguments as in the proof of the following Proposition
below.) However, we are interested in vector spaces over R, for which
the following variant holds:

Proposition 3.4. Let V be a finite-dimensional R-vector space, let
ω ∈ Symn(V ∨) be a symmetric n-linear form on V and consider its
null cone N . Assume that for some point z ∈ V \N the interior of the
set Wz ⊂ V is nonempty, where

Wz := {x ∈ V \ {z} | the affine line through z and x
intersects N in ≥ n points}.

Then the following holds:

(i) The set N determines ω uniquely up to a scalar factor.
(ii) An automorphism ϕ ∈ GL(V ) is compatible with ω up to a scalar

factor if and only if it preserves N .

Proof. First, we note that the map h : V → R, x 7→ ω(x, . . . , x)
uniquely determines ω: Indeed, if x1, . . . , xn ∈ V , then the map

Rn → R, (t1, . . . , tn)T 7→ h(t1x1 + . . .+ tnxn)

is given by a homogeneous polynomial of degree n whose coefficient of
t1 . . . tn is precisely n! · ω(x1, . . . , xn). Thus, the value ω(x1, . . . , xn) is
uniquely determined by h.

We also observe, that ϕ ∈ SL(V ) is compatible with ω if and only
if h ◦ ϕ = h: This follows from the fact that the coefficient of t1 . . . tn
of the polynomial mapping

Rn → R, (t1, . . . , tn)T 7→ h(ϕ(t1x1 + . . .+ tnxn))

is precisely n! · ω(ϕ(x1), . . . , ϕ(xn)).
Next, we show that N determines h up to scalar. After a choice

of basis for V (resp. V ∨), we can view h as a homogeneous polyno-
mial of degree n and N as its zero locus. Assume that g is another
homogeneous polynomial of degree n with zero locus N . Then

g′ := h(z)g − g(z)h
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is a homogeneous polynomial of degree n vanishing at more than n
points along the affine line through z and any x ∈ Wz. Thus, g′ is zero
along all such lines, i.e., g′ vanishes at the set Wz ⊂ V . But by the
assumption on z, the set Wz has nonempty interior, implying g′ = 0.
Therefore, g is a scalar multiple of h.

If ϕ ∈ SL(V ) preserves N , then the zero sets of h◦ϕ and h coincide,
so by the above argument h ◦ ϕ = λh for some λ ∈ R. �

3.2. Reducibility of the null cone

Viewing N as a vanishing set of a homogeneous polynomial of de-
gree n, i.e. as a hypersurface of degree n, it is natural to ask when
N is a reducible algebraic set. Especially, we address the following
question: When does N split as a hyperplane and a hypersurface of
degree n−1? We will attribute this splitting to the existence of an au-
tomorphism preserving N with certain spectral properties. Note that
for considerations about the eigenvalues of linear automorphisms it is
most natural to pass to a vector space over C.

Definition 3.5. Let V be a finite-dimensional vector space over C
and let n ∈ N be any positive integer. We say that an automorphism
ϕ ∈ GL(V ) has good spectral properties with respect to n if ϕ
has a real eigenvalue µ such that:

(i) the generalized eigenspace of ϕ with respect to µ is one-dimensional,
(ii) for any λ1, . . . , λn ∈ Eig(ϕ) \ {µ} (not necessarily distinct) we

have
n∏
i=1

λi 6= 1
.

We say that ϕ has very good spectral properties with respect
to n if µ can be chosen to be 1.

An automorphism ϕ of a finite-dimensional vector space V over
R has (very) good spectral properties with respect to n, if
ϕ⊗ C ∈ GL(V ⊗ C) does.

The main criterion for a splitting of the null cone is given by the
following Lemma.

Lemma 3.6. Let V be a finite-dimensional R-vector space and let ω ∈
Symn(V ∨) be a symmetric n-linear form on V . Assume that there exists
an automorphism ϕ ∈ GL(V ) which is compatible with ω and has good
spectral properties with respect to n. Then the null cone

N := {x ∈ V | ω(x, . . . , x) = 0}
contains a hyperplane in V .
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Explicitly, the hyperplane contained in N is given by {` = 0} for
a non-zero linear form ` ∈ V ∨ with ` ◦ ϕ = µ`, where µ is as in
Definition 3.5.

Proof. Let µ be the real eigenvalue of ϕ as given by Definition 3.5.
Since the dual automorphism ϕ∨ on the dual vector space V ∨ has the
same minimal polynomial as ϕ, there is a nonzero linear form ` : V → R
such that ` ◦ ϕ = ϕ∨(`) = µ`. We show that the hyperplane {` = 0} is
contained in N .

Note that it suffices to consider the automorphism ϕC := ϕ⊗C on
the complex vector space VC := V ⊗ C. Indeed, if we show that the
hyperplane {`C = 0} ⊂ VC defined by the linear form `C := ` ⊗ C is
contained in

NC := {x ∈ VC | ωC(x, . . . , x) = 0},
then the claim follows. We therefore now work over C, but omit the
subscript C for better readability.

We can choose a basis x1, . . . , xm of V such that ϕ has Jordan
normal form with respect to this basis, i.e. for some r ∈ N there exist
λ1, . . . , λr ∈ C and 1 = j1 < · · · < jr < jr+1 = m+ 1 such that

ϕ(xi) =

λkxi if i = jk
λkxi + xi−1 if jk < i < jk+1.

As the generalized µ-eigenspace of ϕ is one-dimensional, we may assume
that λr = µ and jk = m, while λi 6= µ for i < r. In order to show that
{` = 0} ⊂ N , it suffices to verify the following two claims:
Claim 1: {` = 0} = 〈x1, . . . , xm−1〉.
Claim 2: The restriction of the symmetric n-linear form ω to 〈x1, . . . , xm−1〉
is trivial, i.e.

ω(xi1 , . . . , xin) = 0 for all i1, . . . , in ∈ {1, . . . ,m− 1}.

Proof of Claim 1 : This follows from ` ◦ ϕ = µ`. Indeed, if i is the
smallest index in {1, . . . ,m} such that `(xi) 6= 0, then

µ`(xi) = `(ϕ(xi)) = λk`(xi),
where k is such that jk ≤ i < jk+1. Consequently, we must have µ = λk,
i.e. i = m.

Proof of Claim 2 : This follows from the fact that ϕ is compatible with
ω. Assume for contradiction that ω restricted toW := 〈x1, . . . , xm−1〉 is
non-zero. Then we can inductively define is (for s ∈ {1, . . . , n}) as the
smallest index in {1, . . . ,m−1} such that the symmetric (n− s)-linear
form ω(xi1 , . . . , xis ,_, . . . ,_) is non-zero on W .
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Let ks ∈ {1, . . . , r − 1} be such that jks ≤ is < jk+1. Note that the
definition of i1 guarantees

ω(ϕ(xi1), . . . , ϕ(xin)) = λk1ω(xi1 , ϕ(xi2), . . . , ϕ(xin)),
which in turn by definition of i2 equals

λk1λk2ω(xi1 , xi2 , ϕ(xi3), . . . , ϕ(xin)).
Inductively, we get

ω(ϕ(xi1), . . . , ϕ(xin)) =
n∏
s=1

λks · ω(xi1 , . . . , xin).

As ϕ is compatible with ω and ω(xi1 , . . . , xin) 6= 0 by construction, we
deduce that ∏n

s=1 λks = 1, contradicting property (ii) in Definition 3.5.
�

As a first consequence, we obtain:

Proposition 3.7. Let V be a finite-dimensional R-vector space and let
ω ∈ Symn(V ∨) be a symmetric n-linear form on V . Assume that for
some k < n there is a ϕ ∈ O(ω) having very good spectral properties
with respect to each i ∈ {k + 1, . . . , n}. Then the null cone N of ω is
the union of a hyperplane and the null cone of a symmetric k-linear
form.

If V is equipped with an integral structure F ⊂ V and ϕ ∈ GL(F ),
then the hyperplane is rational.

Proof. This follows from repeated application of Lemma 3.6: Let
` ∈ V ∨ be an eigenvector of ϕ∨ with eigenvalue 1 (which is unique up to
scalar by Definition 3.5). Then Lemma 3.6 implies that {` = 0} ⊂ N .
After a choice of basis for V , we can view

h : V → R, x 7→ ω(x, . . . , x)
as a homogeneous polynomial mapping of degree n with vanishing set
N , so viewing ` as a linear form with respect to the chosen basis, we
deduce h = `·h′ for some homogeneous polynomial mapping h′ : V → R
of degree n− 1.

As h ◦ ϕ = h and ` ◦ ϕ = ` (by the choice of `), we get h′ ◦ ϕ = h′.
Thus, if we consider the symmetric (n−1)-linear form ω′ ∈ Symn−1(V ∨)
associated to h′ by defining ω′(x1, . . . , xn−1) ∈ R to be the 1/(n − 1)!
times the coefficient of t1 . . . tn−1 in the polynomial mapping

Rn−1 → R, (t1, . . . , tn−1)T 7→ h′(t1x1 + · · ·+ tn−1xn−1),
then we see that ϕ ∈ O(ω′). Replacing ω by ω′ and n by n − 1, we
may now sucessively repeat the argument n− k times and deduce the
claim.
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If ϕ ∈ GL(F ) for an integral structure F ⊂ V , then the subspace
ker(ϕ∨− id) of V ∨ is rational with respect to the natural integral struc-
ture F∨ on V ∨. In particular, we may choose ` ∈ F∨, i.e. {` = 0} is a
rational hyperplane in V . �

The assumption on the spectral properties of elements in O(ω) ∩
SL(F ) is rather technical, but when dim V = 3, we can deduce the
following general result:

Theorem 3.8. Let V be a three-dimensional vector space over R with
an integral structure F ⊂ V and a non-degenerate n-linear symmetric
form ω ∈ Symn(V ∨) for n odd. If the group O(ω) ∩ SL(F ) is neither
trivial nor of order three, then the null cone N of ω splits as the union
of a plane and the vanishing set of a homogeneous polynomial of degree
n− 1.

Proof. We assume for contradiction that N does not contain a
plane.

Let ϕ ∈ O(ω) ∩ SL(F ) such that ϕ 6= id. We claim that ϕ must
be of order 3. Knowing that, we can deduce that O(ω) ∩ SL(F ) is a
p-group for p = 3. By Theorem 2.23, we also know that O(ω)∩ SL(F )
is a finite group, so by properties of p-groups we deduce that the order
of O(ω) ∩ SL(F ) is a power of 3. On the other hand, it was shown by
Minkowski in [Min87] that the order of any finite subgroup of GL(3,Q)
divides 48, so |O(ω) ∩ SL(F )| = 3, contradicting the assumption.

We will show ordϕ = 3 by examining the set of eigenvalues EigC(ϕ) :=
Eig(ϕ ⊗ C). Note that by Lemma 3.6, ϕ cannot have good spectral
properties with respect to n. We distinguish three cases:

Case 1: ϕ⊗ C has a non-real eigenvalue.

Then EigC = {a, λ, λ} for some a ∈ R, λ ∈ C \ R. As ϕ does
not have good spectral properties with respect to n, we must have
λiλ

n−i = 1 for some i ∈ {0, . . . , n}. In particular, we deduce |λ| = 1,
so detϕ = 1 implies a = 1. This in turn shows

2 · Re(λ) = λ+ λ = Tr(ϕ)− 1.

As ϕ ∈ SL(F ), we have Tr(ϕ) ∈ Z, so Re(λ) ∈ 1
2Z. The only elements

of C \ R with this property are the primitive r-th roots of unity for
r ∈ {3, 4, 6}. From 1 = λiλ

n−i = λ2i−n and the fact that n is odd we
deduce that λ is a primitive third root of unity. Since in a suitable
basis of V we have ϕ⊗ C = diag(1, λ, λ), we see that ϕ is of order 3.

Case 2: ϕ diagonalizes (over R).
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If ϕ has a multiple eigenvalue, then in a suitable basis of V we have
ϕ = diag(a, a, 1/a2) for some a ∈ R. Since ϕ is not the identity, a 6= 1,
so a3 6= 1 and an 6= 1 (as n is odd). But then ϕ has good spectral
properties with respect to n (choosing µ = 1/a2 in Definition 3.5).

Therefore, ϕ has three distinct real eigenvalues a, b, c ∈ R with
abc = detϕ = 1. At least two of them are not 1, so we may assume
a 6= 1, b 6= 1. As the generalized eigenspace of ϕ with respect to c
is one-dimensional, but ϕ does not have good spectral properties with
respect to n, we must have aibn−i = 1 for some i ∈ 0, . . . , n. By possibly
interchanging a and b, we can assume i to be odd. If α ∈ R \ {1} is
the unique real number with αi = b, then aibn−i = 1 implies a = αi−n

and, thus, c = αn−2i. Then both b and c are odd powers of α, so any
product of n numbers from {b, c} is an odd power of α as well and can
therefore not equal 1. This shows that ϕ has good spectral properties
with respect to n (choosing µ = a in Definition 3.5), a contradiction.

Case 3: EigC(ϕ) ⊂ R, but ϕ does not diagonalize.

If a 6= 1 is a simple eigenvalue of ϕ whose generalized eigenspace
is 2-dimensional, then again choosing µ = 1/a2 in Definition 3.5 shows
that ϕ has good spectral properties, so necessarily a = 1. When the
generalized eigenspace of ϕ with respect to some eigenvalue a is 3-
dimensional, then also a = 1, because 1 = detϕ = a3. Therefore,
choosing a suitable basis (x, y, z) of V such that ϕ is in Jordan normal
form, we are left with the cases

ϕ =

1 1 0
0 1 0
0 0 1

 or ϕ =

1 1 0
0 1 1
0 0 1


We will lead both cases to a contradiction.

In the following we use multiplicative notation for ω, i.e. we denote
α1 · . . . · αn := ω(α1, . . . , αn)

and use powers αi in the obvious manner. Moreover, we denote α1 ·
. . . · αk ≡ 0 for some α1, . . . αk ∈ V if

α1 · . . . · αk · β1 · . . . · βn−k = 0
for all β1, . . . , βn−k ∈ V .

In the first of the two cases above we show that x ≡ 0, contradicting
the non-degeneracy of ω. If x 6≡ 0, then we can define i to be maximal
in {1, . . . , n} such that xi 6≡ 0. Then for any j, k ∈ {0, . . . , n} such that
i+ j + k = n we get:
xi−1yj+1zk = ϕ(x)i−1ϕ(y)j+1ϕ(z)k = xi−1(y + x)j+1zk

= xi−1yj+1zk + (j + 1) · xiyjzk (using xi+1 ≡ 0),
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implying xiyjzk = 0, thus xi ≡ 0, a contradiction.

In the second of the two cases we show that the plane 〈x, y〉 is
contained in N . For this, we show that xiyjzk = 0 whenever i + 2j +
3k ≤ 2n, implying in particular that for any i ∈ {1, . . . , n} we have
xiyn−i = 0, from which the claim follows.

Assume the converse and letM ∈ {n, . . . , 2n} be minimal such that
xiyjzk 6= 0 for some i + j + k = n with i + 2j + 3k = M . First, we
assume that M < 2n. Let i ∈ {0, . . . , n} be minimal such that there
exist j, k ∈ {0, . . . , n} with i + j + k = n and i + 2j + 3k = M and
xiyjzk 6= 0. Then i ≥ 1 (because of M < 2n) and

xi−1yj+1zk = ϕ(x)i−1ϕ(y)j+1ϕ(z)k

= xi−1(y + x)j+1(z + y)k = xi−1yj+1zk + (j + 1) · xiyjzk.

Here, the last step is due to minimality of M and i. This gives a
contradiction, so we must have M = 2n.

Now let k be minimal such that there exist i, j ∈ {0, . . . , n} with
i+ j + k = n, i+ 2j + 3k = 2n and xiyjzk 6= 0. Note that in this case
j + 2k = n, so the fact that n is odd implies j ≥ 1. Then

xiyj−1zk+1 = ϕ(x)iϕ(y)j−1ϕ(z)k+1

= xi(y + x)j−1(z + y)k+1 = xiyj−1zk+1 + (k + 1) · xiyjzk,

using minimality of M = 2n and k. This gives a contradiction, con-
cluding the proof that 〈x, y〉 ⊂ N and therefore finishing the proof that
N contains a plane. �

Since Theorem 3.8 constitutes a central result on the splitting of
the null cone, we explicitly state here the consequence for varieties:

Corollary 3.9. Let X be a smooth projective variety of odd dimension
n with Picard number 3 and assume that the group A+(X) is neither
trivial nor of order three. Then the null cone N splits as the union of
a plane and the vanishing set of a homogeneous polynomial of degree
n− 1.

If ci1(X) · . . . · cik(X) 6= 0 in N1(X) for some i1 + · · ·+ ik = n− 1,
then the plane is given by

{x ∈ N1(X)R | x · ci1(X) · . . . · cik(X) = 0}.

(In particular, all such products ci1(X) · . . . · cik(X) are proportional to
each other.)

Proof. The first part immediately follows from Theorem 3.8 using
Observation 3.1 and Lemma 3.2.
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For the second claim, let ci1(X) · . . . · cik(X) 6= 0 for some i1 + · · ·+
ik = n − 1. As in the beginning of the proof of Theorem 3.8, the fact
that A+(X) is neither trivial nor of order 3 implies that there exists
ϕ ∈ A+(X) not of order 3. As any automorphism preserves ci1(X) ·
. . . · cik(X), we see that 1 ∈ Eig(ϕ∨) = Eig(ϕ). If ϕ has good spectral
properties, then it must in fact have very good spectral properties, so
{` = 0} ⊂ N according to Lemma 3.6, where ` is an eigenvector of ϕ∨
with eigenvalue 1, i.e. ` coincides with ci1(X) . . . cik(X) up to scalar.
(Note that the eigenspace of ϕ of the eigenvalue 1 is one-dimensional.)

If ϕ does not have good spectral properties, then the case distinction
in the proof of Theorem 3.8 shows that for some basis x, y, z ∈ N1(X)R
we have ϕ(x) = x, ϕ(y) = y+ x, ϕ(z) = z+ y and the plane contained
in N is 〈x, y〉. Then

ci1(X) · . . . · cik(X) · y = ci1(X) · . . . · cik(X) · ϕ(y)

and
ci1(X) · . . . · cik(X) · z = ci1(X) · . . . · cik(X) · ϕ(z)

imply that 〈x, y〉 = {ci1(X) · . . . · cik(X) = 0}. �

In particular, for Calabi–Yau threefolds with Picard number 3, we
deduce:

Corollary 3.10. Let X be a simply connected Calabi–Yau threefold of
Picard number 3 and assume that the group A+(X) is neither trivial
nor of order 3. Then

N = {c2(X) = 0} ∪ {q = 0}

for some quadratic form q on N1(X)R.

Proof. This follows from the above by the fact that c2(X) 6=
0 for simply connected Calabi–Yau threefolds, see [Kob87, Corol-
lary IV.4.15] or [LOP16, Proposition 2.1]. �

3.3. Classification for threefolds with Picard number 3

In this section, we classify the null cone (and by that the intersec-
tion form, according to Proposition 3.4) for threefolds X with Picard
number ρ(X) = 3 and non-trivial group A+(X). This is inspired by
[LOP13, Propositions 3.2 and 4.3], where such a classification was
shown for the case that c2(X) 6= 0 and A+(X) is an infinite group.
The classification result below will extend their result by getting rid of
these two assumptions.

We will deduce the classification result from Corollary 3.9. It will
be an easy consequence after establishing the following result [KW14,



3.3. CLASSIFICATION FOR THREEFOLDS WITH PICARD NUMBER 3 27

Proposition 4.1], which shows how the Hodge Index Theorem imposes
restrictions on a splitting intersection form for threefolds.
Lemma 3.11 ([KW14]). Let X be a threefold and assume that its
null cone N ⊂ N1(X)R splits as the union of a hyperplane P and the
zero set of a quadratic form q on N1(X)R. Assume that the sign of q
is chosen in such a way that q(Amp(X)) > 0 and denote its associated
bilinear form by (_,_)q. Then:

(i) The radical of (_,_)q, defined by
R := {x ∈ N1(X)R | (x, y)q = 0 for all y ∈ N1(X)R},

intersects the hyperplane P trivially.
(ii) The bilinear form (_,_)q has signature (s+, s−, s0) = (1, ρ(X)−

1, 0) or (1, ρ(X)− 2, 1) or (2, ρ(X)− 2, 0).

Proof. We loosely follow the proof in [KW14].

(i) Assume for contradiction that there exists a non-zero u ∈ R∩P .
Then we can extend this to a basis u, v, w of N1(X)R and we
denote by U, V,W ∈ N1(X)∨R its dual basis.

Let ` ∈ N1(X)∨R be a non-zero linear form vanishing on P .
Then we can naturally view ` and q as polynomials in R[U, V,W ]
of degrees 1 and 2. Since `(u) = 0 and u ∈ R, we must have `, q ∈
R[V,W ] ⊂ R[U, V,W ]. We know from the proof of Proposition 3.4
that the intersection product x · y · z for x, y, z ∈ N1(X)R is given
up to a factor of 6 by the coefficient of t1t2t3 in the polynomial
mapping

h : R3 → R, (t1, t2, t3)T 7→ (t1x+ t2y + t3z)3.

Observing that N1(X)R → R, α→ α3 coincides up to scalar with
` · q, we may view h as an element of R[V,W ]. This shows that
u · y · z = 0 for all y, z ∈ N1(X)R, contradicting Lemma 3.2.

(ii) Let H be a very ample divisor on X, which we may view as a
smooth surface contained in X.
Step 1: The bilinear form (_,_)H on N1(X)R given by

(x, y)H := Hxy for x, y ∈ N1(X)R
has signature (1, ρ(X)− 1, 0).

Because of (H,H)H = H3 > 0, it suffices to show that for any
non-zero x ∈ N1(X)R the implication

(x,H)H = 0 ⇒ (x, x)H < 0
holds. But by the Hodge Index Theorem on H, the equality
0 = (x,H)H = x|H · H|H implies (x, x)H = x|H · x|H < 0 unless
x|H = 0. But the Lefschetz Hyperplane Theorem implies that

N1(X)→ N1(H), x 7→ x|H
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is injective, which concludes the proof of Step 1.
Step 2: Let ` be the non-zero linear form on N1(X)R such that
x3 = `(x) · q(x) for all x ∈ N1(X)R. Then there are positive real
numbers a, b, c such that

(x, y)H = a · (x, y)q + b · (H, x)H · `(y)
+ b · (H, y)H · `(x)− c · `(x) · `(y)

holds for all x, y ∈ N1(X)R.
Here, we use again the fact that the intersection product x·y·H

is given up to a factor of 6 by the coefficient of t1t2t3 in the
polynomial mapping

R3 → R, (t1, t2, t3)T 7→ (t1x+ t2yt3H)3.

Expanding out (` · q)(t1x+ t2y + t3H) gives
6(x, y)H = 2(x, y)q · `(H) + 2(H, x)q · `(y) + 2(H, y)q · `(x).
For y = H we obtain

(H, x)q = 3
2`(H)(H, x)H −

q(H)
2`(H)`(x)

and by plugging this into the above formula, we obtain the claimed
expression for

a := `(H)
3 , b := 1

2`(H) , c
:= q(H)

3`(H) .

Note that `(H) > 0, as H3 > 0 and by assumption on q also
q(H) > 0, so these are all positive.
Step 3: If the linear forms ` and (H,_)H are proportional, then
(_,_)q has signature (1, ρ(X)− 1, 0).

Since (_,_)H is non-degenerate and (H,H)H = H3 > 0, there
is a (_,_)H-orthogonal basis of the form x1 = H, x2, . . . , xρ(X).
By Step 2 we have (xi, xj)H = a · (xi, xj)q for all i ≥ 1, j > 1,
in particular this basis is also (_,_)q-orthogonal. By Step 1, we
know that (H,H)H > 0 implies (xi, xi)q = 1/a · (xi, xi)H < 0 for
i > 1. Since (H,H)q = q(H) > 0, this shows the claim.
Step 4: If the linear forms ` and (H,_)H are linearly indepen-
dent, then (_,_)q has signature (2, ρ(X)−2, 0) or (1, ρ(X)−2, 1)
or (1, ρ(X)− 1, 0).

Since (_,_)H is non-degenerate we have N1(X)R = 〈H〉 ⊕
Y , where Y is the (_,_)H-orthogonal complement of 〈H〉. By
assumption, the linear form `|Y on Y is non-zero, so by non-
degeneracy of (_,_)H there exists a unique non-zero x2 ∈ Y such
that `|Y = (x2,_)H on Y .
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From the signature of (_,_)H and (H,H)H = H3 > 0 and
(x2, H)H = 0, we know that (x2, x2)H < 0. We can therefore
extend x1 := H, x2 to a (_,_)H-orthogonal basis x1, . . . , xρ(X) ∈
N1(X)R. From Step 2 it follows that (xi, xj)H = a · (xi, xj)q holds
for all i ≥ 1, j > 2. In particular, (_,_)q is negative definite
on 〈x3, . . . , xρ(X)〉. On the other hand, we know that (H,H)q =
q(H) > 0. From this, the claim on the signature of (_,_)q follows.

�

Now, we classify the null cone of threefolds with Picard number 3
and nontrivial A+(X). Note that we do not need to require X to be
of Calabi–Yau type.

Theorem 3.12. Let X be a threefold of Picard number 3 such that the
group A+(X) is nontrivial. Then the null cone N ⊂ N1(X)R takes one
of the following forms (see Figure 3.1):

Type I: N is the union of three distinct planes whose common in-
tersection is trivial.

Type II: N is the union of a plane and a quadric cone intersecting at
two lines.

Type III: N is the union of a plane and a quadric cone whose inter-
section is one line.

Type IV: N is the union of a plane and a quadric cone intersecting
trivially.

Type V: N is an irreducible cubic cone, which is invariant under
the action of a linear automorphism ϕ ∈ GL(N1(X)R) with
order 3.

Proof. First, we consider the case that the intersection form splits,
i.e. the null cone N is the union of a plane P and the vanishing set
{q = 0} for a quadratic form q onN1(X)R. By Lemma 3.11, the bilinear
form (_,_)q associated to q has signature (s+, s−, s0) = (1, 2, 0) or
(2, 1, 0) or (1, 1, 1).

In the first two cases the vanishing set of q is a quadric cone and
depending on the way this cone intersects the plane P , the null cone is
of Type II, III or IV. In the third case the vanishing set of q is a union
of two distinct planes whose intersection is the radical R of (_,_)q.
By Lemma 3.11, we have R∩ P = 0, so the null cone is of Type I.

It remains to consider the case that N does not split. Then Corol-
lary 3.9 implies that A+(X) is generated by an element ϕ of order 3.
Certainly, ϕ leaves N invariant, so the null cone is of Type V. This
concludes the proof. �
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Type I Type II

Type III Type IV

Figure 3.1. Illustration of Types I to IV

Definition 3.13. In view of Theorem 3.12 we say that a threefold X is
a threefold of Type I if it has Picard number 3, its group A+(X) is
non-trivial and its null cone is of Type I. Similarly for the Types II–V.

Remark 3.14. It is unknown to the author whether all of these types
do in fact occur. The reader is challenged to try and construct examples
of such threefolds.

Remark 3.15. In [LOP13] only the types I, II and III are mentioned.
Indeed, we will see later on that the cases Type IV and Type V can
only occur when A+(X) is finite. The last case Type V requires that
A+(X) is a group of order 3.

Warning 3.16. For visualization purposes it is tempting to consider
some affine plane P and to draw a picture of N∩P . However, one must
be aware of the position of the nef cone in order to choose the plane P
in such a way that Nef(X)∩P is a non-empty compact set. Otherwise,
the picture could be very misleading, as it could even happen that
Nef(X) ∩ P = ∅. It may be necessary to choose different planes P for
different positions of the nef cone.



CHAPTER 4

The structure of Types I to V

In this chapter, we will use the classification of the null cone for
threefolds of Picard number three (see Theorem 3.12) to investigate
the different types of threefolds with Picard number 3. For each type,
we will establish a structure theorem, explicitly describing the group
A+(X) and giving more detailed information in each case. The follow-
ing table summarizes the descriptions of A+(X) to be established in
Propositions 4.16, 4.23, 4.26, 4.30 and 4.31.

Type A+(X) N

I
〈 1

λ 0 0
0 λ 0
0 0 1

〉 ∼= Z, λ > 1

or
〈0 0 1

1 0 0
0 1 0

〉 ∼= Z/3

{U = 0} ∪ {V = 0} ∪ {W = 0}

II
〈 1

λ 0 0
0 λ 0
0 0 1

〉 ∼= Z, λ > 1 {UV −W 2 = 0} ∪ {W = 0}

III
〈1 1 1

2
0 1 1
0 0 1

〉 ∼= Z {2UW − V 2 = 0} ∪ {W = 0}

IV
〈cosα − sinα 0

sinα cosα 0
0 0 1

〉 ∼= Z/k,

α = 2π/k, k ∈ {2, 3, 4, 6}

{W 2 − U2 − V 2 = 0} ∪ {W = 0}

V
〈cosα − sinα 0

sinα cosα 0
0 0 1

〉 ∼= Z/3,

α = 2π/3

{V (V 2−3U2) +aW (U2 +V 2) +W 3 = 0},
a ∈ R

Figure 4.1. Classification of the groupsA+(X) and the
null conesN for threefolds with c1(X)2 6= 0 or c2(X) 6= 0.
The entries refer to a suitable basis u, v, w ∈ N1(X)R and
its dual basis U, V,W ∈ N1(X)∨R.

As an immediate consequence, we obtain the following result:
31
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Theorem 4.1. Let X be a threefold with Picard number 3 with c1(X)2 6=
0 or c2(X) 6= 0. Then A+(X) is either trivial or a cyclic group.

We will use the obtained explicit descriptions of A+(X) to de-
duce results towards the Cone Conjecture and the existence of rational
curves. We will focus on investigating threefolds of Type I.

4.1. General observations

In this section we collect some tools for the study of the Types I–V.

4.1.1. The importance of non-trivial Chern classes. The follow-
ing simple observation shows that the existence of non-trivial Chern
classes on X imply a restriction on the group A+(X). Essentially, we
have already encountered this argument in the proof of Corollary 3.9,
but we state it here explicitly for easier reference.

Lemma 4.2. Let X be a smooth projective variety of dimension n
and let ϕ ∈ A+(X). If ci1(X) · . . . · cik(X) 6= 0 in N1(X)R for some
i1 + · · ·+ ik = n−1, then ϕ has an integral eigenvector of eigenvalue 1.

Proof. Let ϕ = f ∗ for some f ∈ Aut(X). The action of f on
N1(X)R induced by the push-forward f∗ : N1(X)Z → N1(X)Z coincides
with the dual action ϕ∨ ∈ GL(N1(X)R) of ϕ on N1(X)R = (N1(X)R)∨.
Thus,

f∗(ci1(X) · . . . · cik(X)) = ci1(X) · . . . · cik(X)
in N1(X)Z shows that ϕ∨ has an integral eigenvector of eigenvalue 1
and therefore ϕ does, too. �

For Calabi–Yau threefolds, this turns out to be a very useful prop-
erty, as c2(X) 6= 0 holds apart from a well-studied case [OS01]:

Theorem 4.3. Let X be a Calabi–Yau threefold. If c2(X) = 0 in
N1(X)R, then Nef(X) is a rational polyhedral cone and Nefe(X) =
Nef+(X). In particular, Aut(X) is finite and Kawamata’s Cone Con-
jecture holds for X.

Proof. The first part is [OS01, Theorem (0.1).IV] and the second
part follows from Corollary 2.17. �

Moreover, there is the following important non-negativity result for
the second Chern class.

Proposition 4.4 ([Miy87], [Kob87]). Let X be a threefold of Calabi–
Yau type. Then x · c2(X) ≥ 0 for all nef classes x.

Moreover, if X is a simply-connected Calabi–Yau threefold, then
c2(X) 6= 0 in N1(X).
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Proof. The non-negativity of c2(X) was shown in [Miy87]. The
non-triviality follows from [Kob87, Corollary IV.4.15]. �

4.1.2. The local structure of the nef cone. While for a variety of
Calabi–Yau type X the precise structure of its nef cone is subject to
the Cone Conjecture, the local structure of Nef(X) inside the big cone
is well-understood due to the following important result by Kawamata
[Kaw88, Theorem 5.7], which is an easy consequence of the Log Cone
Theorem.

Proposition 4.5. Let X be a variety of Calabi–Yau type. Then Nef(X)∩
Big(X) is a locally rational polyhedral convex subcone of Big(X).

Another way to phrase this is by considering the positive component
U of X, defined as follows.

Definition 4.6. Let X be a smooth projective variety. The connected
component U of N1(X)R\N containing Amp(X) is called the positive
component of X.

Remark 4.7. In the literature this is sometimes referred to as the
positive cone. This is a reasonable denomination for surfaces, as the
Hodge Index Theorem shows that it is in fact a round convex cone. We
would like to point out however, that in higher dimensions the positive
component may be non-convex.

Lemma 4.8. Let X be a smooth projective variety of dimension n.
Then a nef class x ∈ Nef(X) is big if and only if xn > 0. In other
words,

Nef(X) ∩ Big(X) = Nef(X) ∩ U ,
where U denotes the positive component.

In particular, Nef(X)∩ U is locally rational polyhedral in U , where
U is the positive component.

Proof. The first claim is shown in [Laz04, Theorem 2.2.16] as
a consequence of Siu’s criterion for bigness, which we formulate be-
low in Proposition 4.10. Alternatively, it follows immediately from the
asymptotic Riemann–Roch Theorem for nef divisors [Laz04, Corol-
lary 1.4.41].

The equivalence with Nef(X)∩Big(X) = Nef(X)∩U follows from
the observation that Nef(X) is contained in the closure of U , so a nef
class x lies in the positive component U if and only if xn > 0.

The last claim is then just a reformulation of Lemma 4.5. �

An easy consequence is the following result:
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Proposition 4.9. Let X be a variety of Calabi–Yau type and assume
that all non-zero nef classes are big, i.e. Nef(X) \ {0} is contained in
the positive component. Then Nef(X) is a rational polyhedral cone and
Kawamata’s Cone Conjecture holds true on X.

Proof. Since each non-zero nef class is big and therefore lies in
Eff(X), we have Nef(X) = Nefe(X). Hence, by Corollary 2.17, it
suffices to show that Nef(X) is a rational polyhedral cone.

Since Nef(X) contains no lines, we can choose a rational affine
hyperplane P in N1(X)R not passing through 0 such that Nef(X)∩P
is a compact (convex) set. By Lemma 4.5, each point x ∈ Nef(X) ∩
P permits a compact neighborhood Kx such that Nef(X) ∩ Kx and
hence also Nef(X)∩L∩Kx is a rational polytope. By compactness of
Nef(X) ∩ L, we see that the convex set Nef(X) ∩ L is a finite union
of rational polytopes, so it is a rational polytope itself. Since Nef(X)
is the closed convex cone generated by Nef(X) ∩ L, we deduce that
Nef(X) is rational polyhedral. �

4.1.3. Criteria for big and effective. We conclude the section on
basic tools for the study of Calabi–Yau threefolds with providing cri-
teria for bigness and effectiveness of divisors classes.

First, we recall a basic criterion for big classes due to Siu [Siu93,
Corollary 1.2], see also [Laz04, Theorem 2.2.15].

Proposition 4.10. Let X be a projective variety of dimension n. Let
x, y ∈ Nef(X) and assume that

xn > nxn−1y.

Then x− y is big.

We will use this criterion to study the big cone in some of the Types
I–V. Regarding the effective cone, we present the following result which
is an adaption of an argument in [HBW92, p. 53–54].

Lemma 4.11. Let X be a threefold of Calabi–Yau type. Let E is an
integral divisor with E ·H2 > 0 and E2 ·H > 0 for some ample divisor
H. Then there are finitely many integral curves C1, . . . , Cr ⊂ X such
that an integral class x ∈ N1(X)Z in

(R>0E + Nef(X)) ∩ {x ∈ N1(X)R | x · Ci ≥ 0 ∀i}

lies in Eff(X) if c2(X) · x+ 2x3 > 0.

Remark 4.12. The argument given in [HBW92, p. 53–54] shows the
claim only for x in

(R>0E + Amp(X)) ∩ {x ∈ N1(X)R | x · Ci > 0 ∀i}.
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Our improvement will come from using the Kawamata–Viehweg Van-
ishing Theorem instead of the Kodaira Vanishing Theorem. Later,
when applying Lemma 4.11 in the proof of 5.7, it will in fact be crucial
to have the stronger version of this Lemma.

Before proving this lemma, we show how this result may also be
suitable for excluding certain irrational rays from Nef(X)∩N by arith-
metic arguments. Here, we work out a suggestion by Wilson [Wil97,
p. 390].

Proposition 4.13. Let X be a threefold of Calabi–Yau type and let
R≥0x ⊂ N be an irrational ray inside the null cone with x · c2(X) > 0
and x2 6= 0 in N1(X)R. Assume that there exists a sequence of rational
rays Ri ⊂ N1(X)R converging towards the ray R≥0x with the property
that

(i) x ∈ conv(Amp(X) ∪Ri) for all i.
(ii) On each of the rational rays Ri there exists an integral class yi

such that
yi · c2(X) + 2y3

i > 0.

Then x /∈ Nef(X).

First, we show how Proposition 4.13 follows from the Lemma.

Proof of 4.13. Assume for contradiction that x ∈ Nef(X). Since
x2 6= 0 in N1(X)R, there must exist an integral ample class h such that
x2 ·h > 0 and x·h2 > 0. Hence, there exists a neighborhood U of x such
that y2 ·h > 0, y·h2 > 0 for all y ∈ U . Let e be a rational class in U such
that R>0x is contained in R>0e + Amp(X). Let C1, . . . , Cr ∈ N1(X)
be curve classes as in Lemma 4.11.

Then the fact that x is nef and the ray R≥0x is irrational imply
that R>0x lies in the interior of the set

W := (R>0E + Nef(X)) ∩ {x ∈ N1(X)R | x · Ci ≥ 0 ∀i}.
Hence, the rays Ri = R>0yi lie in W for i � 0, so from Lemma 4.11
we deduce yi ∈ Eff(X) for i � 0, because yi · c2(X) + 2y3

i > 0 by
assumption.

Because of x ∈ conv(Amp(X) ∪ R≥0yi), this shows x ∈ Big(X),
contradicting Lemma 4.8. �

Now, we turn to the proof of the Lemma.

Proof of Lemma 4.11. By replacing H with a sufficiently large
multiple, we may assume that H is very ample and by Bertini’s Theo-
rem we can view H as a smooth surface contained in X.
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Step 1: E|H ∈ Eff(H).

It follows from the Riemann–Roch Theorem on H that
h0(H, kE|H) + h0(H,KH − kE|H) > 0

for k � 0, since E|H
2 = E2 · H > 0. On the other hand, H|H ·

E|H = H2 · E > 0 implies that H|H · (KH − kE|H) < 0 for k � 0, so
KH − kE|H /∈ Eff(H). We deduce that kE|H is linearly equivalent to
an effective divisor for k � 0 and in particular E|H ∈ Eff(H). In the
following, we may assume that E|H itself is effective.

Step 2: If C1, . . . , Cr are the fixed curves of the linear system |E|H |,
then

W := (R>0E + Nef(X)) ∩ {x ∈ N1(X)R | x · Ci ≥ 0 ∀i}
maps into Nef(H)∩Big(H) under the restriction N1(X)R → N1(H)R.

Let x ∈ W , i.e. x = λE + µv, where v ∈ Nef(X) and λ > 0, µ ≥ 0.
In order to deduce that x|H ∈ Nef(H) we need to show that C ·x|H ≥ 0
for all curves C in H.

So, let C be a curve in H. If C is a component of Fix |E|H |, then
C ·x|H = C ·x ≥ 0 by assumption on x. Otherwise we have C ·E|H ≥ 0,
because E|H is effective. As C · v|H ≥ 0, it follows that C · x|H ≥ 0.
Hence, x|H ∈ Nef(H).

Now
x|H

2 = x2 ·H = λ2E2 ·H + λµE|H · v|H + µ2v2 ·H
≥ λ2E2 ·H > 0,

so x|H ∈ Big(H) by 4.8.

Step 3: For any divisor D ∈ Pic(X) whose class lies in W , we have

h0(X,OX(D)) = 1
6D

3 + 1
12c2(X) ·D,

possibly after replacing D with some multiple of itself.

The Riemann–Roch Theorem on X shows

h0(OX(D)) + h2(OX(D)) ≥ 1
6D

3 + 1
12c2(X) ·D

and this quantity is positive if c2(X) · D + 2D3 > 0, so it suffices to
show that h2(OX(D)) = 0.

For this, we consider the short exact sequence
0→ OX(KX−D−(k+1)H)→ OX(KX−D−kH)→ OH(KX−D−kH)→ 0
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for all k ≥ 0. Since D|H is nef and big by Step 2, the same is true for
(−KX +D + kH)|H for all k ≥ 0 (note that KX is numerically trivial,
so it does not influence numerical properties). This implies

hi(OH(KX −D − kH)) = 0 for i = 1, 2
by the Kawamata–Viehweg Vanishing Theorem. Hence, it follows that
h1(OX(KX −D− (k+ 1)H)) = h1(OX(KX −D− kH)) for all k ≥ 0.
But ampleness of H implies that

h1(OX(KX −D − kH)) = h2(OX(D + kH)) = 0
for k � 0, so we deduce that h2(OX(D)) = h1(OX(KX −D)) = 0. �

As an immediate corollary we deduce:

Proposition 4.14. Let X be a threefold of Calabi–Yau type. Let x ∈
Nef(X) ∩ N1(X)Z be a rational nef class such that x · c2(X) 6= 0 and
x2 6= 0 in N1(X)R. Then x ∈ Eff(X).

Proof. If x3 > 0, then x is big by Proposition 4.8, so in particular
it lies in Eff(X).

Otherwise we have x3 = 0. We may assume that x is integral. Then
we can apply Lemma 4.11 by choosing E in the Lemma to be a divisor
whose class is x. Indeed, the fact that x2 6= 0 in N1(X)R implies that
x2 · h > 0 and x · h2 > 0 for some ample class h. Then x lies in the set
W of the Lemma and it satisfies

x · c2(X) + 2x3 = x · c2(X) > 0,
so x ∈ Eff(X) follows. �

This result can be refined: It can be deduced from the Log Abun-
dance Theorem in dimension 3 that an effective nef divisor on a variety
of Calabi–Yau type is semiample. Moreover, Oguiso proved that the
condition x2 6= 0 in the above Corollary is in fact not necessary for
simply-connected Calabi–Yau threefolds, showing the following result,
[Ogu93, Proposition 2.7].

Proposition 4.15. Let X be a simply-connected Calabi–Yau threefold
and let D ∈ Pic(X) be an integral nef divisor on X such that D·c2(X) 6=
0. Then D is semiample.

4.2. Threefolds of Type I

4.2.1. The structure theorem. In the following, we determine the
structure of A+(X) for Calabi–Yau threefolds of Type I, naturally ex-
tending the results of [LOP13].
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Proposition 4.16. Let X be a threefold of Type I and assume one of
the following:

(a) X is a Calabi–Yau variety or
(b) c2(X) 6= 0 in N1(X) or
(c) c1(X)2 6= 0 in N1(X).

Then one of the following two cases must occur:

(1) A+(X) ∼= Z and there exists a basis (u, v, w) of N1(X)R such that
the following holds:
(i) A+(X) is generated by ϕ with ϕ(w) = w, ϕ(v) = λv and

ϕ(u) = (1/λ)u for some λ > 0, λ 6= 1.
(ii) The null cone is given by N = 〈u, v〉 ∪ 〈v, w〉 ∪ 〈w, u〉 and the

positive component is R>0u+ R>0v + R>0w.
(iii) The classes u, v ∈ N1(X)R are nef and w is an integral class,

i.e. w ∈ N1(X)Z.
(iv) The rays R≥0u and R≥0v are irrational, but 〈u, v〉 is a rational

plane.
(2) A+(X) ∼= Z/3 and there exists a basis (u, v, w) of N1(X)R such

that the following holds:
(i) A+(X) is generated by ϕ with ϕ(u) = v, ϕ(v) = w and

ϕ(w) = v.
(ii) The null cone is given by N = 〈u, v〉 ∪ 〈v, w〉 ∪ 〈w, u〉 and the

positive component is R>0u+ R>0v + R>0w.
(iii) The subspaces 〈u〉, 〈v〉, 〈w〉, 〈u, v〉, 〈v, w〉, 〈w, u〉 are either

all rational or all irrational.

Proof. Since X is of Type I, we have

N = 〈u, v〉 ∪ 〈v, w〉 ∪ 〈w, u〉

for some u, v, w ∈ N1(X)R. After possibly changing the signs of u, v, w,
we may assume that Nef(X) ⊂ R≥0u+ R≥0v + R≥0w. This shows (ii).

Any linear automorphism in A+(X) preserves N and must there-
fore permute the rays R≥0u, R≥0v and R≥0w. Note that A+(X) ⊂
SL(N1(X)R) forces this permutation to have signum 1. We distinguish
two cases.

Case 1: All non-trivial elements in A+(X) have order 3.

In this case A+(X) is a p-group for p = 3. By 2.23, we know
that A+(X) is a finite group, so by properties of p-groups we deduce
that the order of A+(X) is a power of 3. On the other hand, it was
shown by Minkowski in [Min87] that the order of any finite subgroup
of GL(3,Q) divides 48, so |A+(X)| = 3.
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Then a generator ϕ of A+(X) cannot leave the rays R≥0u, R≥0v and
R≥0w invariant, but must permute them. We may assume that ϕu = av
ϕv = bw, ϕw = cu for some a, b, c > 0 with abc = 1. Rescaling u, v, w,
we can assume that a = b = c = 1. The claims about rationality
immediately follow from the symmetry induced by ϕ.

Now let A+(X) be not of order 3. As before, this implies the
existence of a ϕ ∈ A+(X) such that ψ := ϕ3 is not the identity. Note
that ψ leaves the rays R≥0u, R≥0v and R≥0w fixed, so it is of infinite
order and diagonalizes with respect to the basis u, v, w.

If X is a Calabi–Yau variety (i.e. assumption (a)), then the fact
that A+(X) is an infinite group implies c2(X) 6= 0 in N1(X), by The-
orem 4.3. Therefore, in any case we can define ` ∈ N1(X) \ {0} by
` := c2(X) (in the case of assumption (a) or (b)) or ` := c1(X)2 (for
assumption (c)). In particular, by Proposition 4.2, we see that 1 is an
eigenvalue of ψ. We may assume that ψ(w) = w, while ψ(v) = λv and
ψ(u) = (1/λ)u for some λ > 1.

Since Rw is the eigenspace of ϕ with respect to eigenvalue 1 and
ϕ ∈ SL(N1(X)Z) acts on the integral structure, we may assume w ∈
N1(X)Z. Meanwhile, the line Rv cannot be rational, as otherwise
ψ would act on the discrete subgroup N1(X)Z ∩ Rv, contradicting
ψ−K(v)→ 0, as K →∞. Analogously, Ru is not a rational line either.
Note however, that we have {` = 0} = 〈u,w〉, as `(w) = `(ϕ(w)) =
λ`(w) (and similarly for u). So, this is a rational plane. If α ∈ N1(X)R
is an ample class, then (1/λ)K · ψK(α) → v, so v is nef and similarly
for w.

Finally, we observe that irrationality of the rays R≥0u and R≥0v as
opposed to rationality of the ray R≥0w implies that any ϕ ∈ A+(X)
must leave the ray R≥0w invariant. Then detϕ = 1 also implies in-
variance of the rays R≥0u and R≥0v. Because of Proposition 4.2, the
eigenspace of ϕ with respect to 1, being a rational line, must coin-
cide with Rw. In other words, any ϕ ∈ A+(X) is given by ϕw = w,
ϕv = λϕv, ϕu = (1/λϕ)u for some λϕ > 0, so we can view A+(X) as
a subgroup of the multiplicative group R∗. Since A+(X) acts on the
integral structure N1(X)Z and discrete subgroups of the multiplica-
tive group R∗ are cyclic, this implies that A+(X) is an infinite cyclic
group. �

4.2.2. Type I with infinite automorphism group. Using Propo-
sition 4.10, we deduce the following about the big cone on X:

Proposition 4.17. Let X be a threefold of Type I with A+(X) ∼= Z.
Then Big(X) coincides with the positive component.
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Proof. Let ϕ ∈ A+(X) and u, v, w ∈ N1(X)R be as in Propo-
sition 4.16, so the positive component is R>0u + R>0v + R>0w. We
proceed in two steps.

Step 1: Big(X) ⊃ R>0u+ R>0v + R>0w.

To show this inclusion, we first notice that v2 = 0 in N1(X)R. To
see this, we observe that (v + Ku)3 = 0 for all K ∈ R (since it is
contained in N ), which in particular implies v2u = 0. In the same way
we can show v2w = 0. Since we also know v3 = 0 and u, v, w form a
basis of N1(X)R, this shows v2 = 0 in N1(X)R.

Together with v3 = 0 this implies, that
(x−Kv)3 = x3 − 3x2(Kv)

for any x ∈ N1(X)R and any K ∈ R. Proposition 4.10 implies that
x −Kv is big whenever x is nef and (x −Kv)3 > 0 for some K ≥ 0.
We deduce that the interior of the set

Z := {y ∈ N1(X)R | y3 ≥ 0, y +Kv is nef for some K ≥ 0}
(which is non-empty, since it contains Amp(X)) is contained in Big(X).
We show that Z ⊃ R>0u+ R≥0v + R>0w.

It is immediate to note that Z is a convex cone with ϕ(Z) = Z for
any ϕ ∈ A+(X). Moreover, Z = conv(R≥0v ∪ Z ′), where

Z ′ := Z ∩ (R≥0u+ R≥0w),
because y ∈ Z implies y = au+ bv+ cw for a, b, c ≥ 0 and y− bv ∈ Z ′.
It therefore suffices to show that Z ′ ⊃ R>0u+ R>0w.

Note that Z ′ is a convex subcone of R≥0u+R≥0w such that ϕ(Z ′) =
Z ′ for any ϕ ∈ A+(X). Since Z has non-empty interior, it follows from
Z = conv(R≥0v ∪ Z ′) that Z ′ contains a point p = au + bw with
a, b > 0. Then writing A+(X) = Zϕ as given in Proposition 4.16, we
obtain ϕK(p)→ bw and (1/λ)K ·ϕ−K(p)→ au as K →∞. Thus, u,w
are in the closure of Z ′, so Z ′ ⊃ R>0u + R>0w. This concludes the
proof of Step 1.

Step 2: Big(X) ⊂ R>0u+ R>0v + R>0w.

Since the pseudo-effective cone Psef(X) is the closure of Big(X), it
suffices to show that

Psef(X) ⊂ R≥0u+ R≥0v + R≥0w.

For contradiction, assume that there exists x = au+bv+cw ∈ Psef(X)
where at least one of a, b, c ∈ R is negative.

If c < 0, then R>0u+ R>0v is contained in the interior of
conv({x} ∪ (R>0u+ R>0v + R>0w)).
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But the latter set is contained in the closed convex cone Psef(X). In
particular, R>0u+R>0v lies in the interior of Psef(X), which is Big(X).
In particular, u + v is big, but by Proposition 4.16 it is also nef and
lies in the null cone. This contradicts Lemma 4.8.

We are left with the case that c ≥ 0 and at least one of a, b ∈ R
is negative. We may assume that b < 0, as we can otherwise inter-
change u and v, replacing ϕ by ϕ−1. Since the pseudoeffective classes
(1/λ)KϕK(x) converge to bv as K →∞, this implies that the line Rv is
contained in Psef(X). This is a contradiction, since the cone Psef(X)
contains no lines. This finishes the proof of Step 2. �

Our main result regarding the Cone Conjecture is the following:

Theorem 4.18. Let X be a threefold of Calabi–Yau type which is of
Type I with A+(X) ∼= Z.

Then Morrison’s Cone Conjecture holds true for X. Moreover,
Kawamata’s Cone Conjecture holds true for X if and only if there
exists an effective divisor D with c2(X) ·D = 0.

Note that by Theorem 4.3, the condition c2(X) 6= 0 is automatically
fulfilled when X is a Calabi–Yau threefold of Type I with A+(X) ∼= Z.

Proof. We adopt the notation from Proposition 4.16. We distin-
guish two cases:

Case 1: There exists x ∈ Nef(X) ∩N \ 〈u, v〉.

After rescaling x we have x = w+αu or x = w+αv for some α ≥ 0.
Then ϕm(x)→ w as m→∞ resp. m→ −∞. As Nef(X) is closed, we
deduce that w ∈ Nef(X), so

Nef(X) = R≥0u+ R≥0v + R≥0w.

The plane 〈u, v〉 is rational, so there exists an integral class z0 =
a0u+b0v for some a0 > 0, b0 > 0. We claim that the rational polyhedral
convex cone

Π := R≥0w + R≥0z0 + R≥0ϕ(z0)
is a fundamental domain for the action of A+(X) on Nef+(X) (see
Figure 4.2.2).

Since R≥0u and R≥0v are irrational rays and w is integral, we get

Nef+(X) = R>0u+ R>0v + R≥0w.

We consider the map

g : R>0u+ R>0v + R≥0w → (0,∞), (au+ bv + cw) 7→ b/a.
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Figure 4.2. The fundamental domain for A+(X) in Case 1

Then g(ϕ(x)) = ϕ̃(g(x)), where ϕ̃ : (0,∞) → (0,∞) is the multiplica-
tion by λ2. As [g(z0), λ2g(z0)] is a fundamental domain for the action
of ϕ̃ on (0,∞), its preimage under g is a fundamental domain for the
action of ϕ. To finish, we note that g−1([g(z0), g(ϕ(z0))]) = Π.

Case 2: Nef(X) ∩N = R≥0u+ R≥0v.

By Lemma 4.8, Nef(X) is locally rational polyhedral inside

U := R>0u+ R>0v + R>0w.

In particular, each extremal ray of Nef(X) in U is rational and these
extremal rays are locally discrete in U . Pick one such extremal ray and
let z0 ∈ Nef(X) ∩ U be an nonzero integral class on the rational ray.
After possibly rescaling z0, the affine line through w and z0 intersects
R≥0u + R≥0v in a point z1. As 〈u, v〉 is a rational plane and w and z0
are integral points, z1 is rational.

Define g and ϕ̃ as in Case 1. Then [g(z0), λ2g(z0)] is a fundamental
domain for the action of ϕ̃ on (0,∞), so its preimage

Π := g−1([g(z0), g(ϕ(z0))]) ∩ Nef(X)

is a fundamental domain for the action of ϕ on Nef+(X). Note that

g−1([g(z0), g(ϕ(z0))]) = R≥0z1 + R≥0ϕ(z1) + R≥0w

(compare Figure 4.2.2). As the extremal rays of Nef(X) in U are locally
discrete, only finitely many of them lie in R≥0z0 + R≥0ϕ(z0) + R≥0w,
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Figure 4.3. The fundamental domain for A+(X) in Case 2

let’s say R≥0x1, . . . ,R≥0xm. Then the fundamental domain

Π = Nef(X)∩(R≥0z1+R≥0ϕ(z1)+R≥0w) =
m∑
i=1

R≥0xi+R≥0z1+R≥0ϕ(z1)

is a rational polyhedral convex cone. �

We can also deduce the existence of rational curves on Calabi–Yau
threefolds of Type I with infinite automorphism group, building on the
following result by Oguiso [Ogu93, Theorem 5.1].

Proposition 4.19 ([Ogu93]). Let X be a simply connected Calabi–
Yau threefold such that one of the following holds:

(i) There exists a non-zero x ∈ Eff(X) ∩N1(X)Q \ Amp(X).
(ii) There exists a non-zero x ∈ ∂ Nef(X) ∩ N1(X)Q such that x ·

c2(X) 6= 0 or x2 = 0 in N1(X)R.

Then X contains a rational curve.

Theorem 4.20. Let X be a simply connected Calabi–Yau threefold of
Type I with A+(X) ∼= Z. Then X contains a rational curve.

Proof. We use the notation from Proposition 4.16. If Nef(X) =
R≥0u+R≥0v+R≥0w, then w ∈ ∂ Amp(X) satisfies condition (ii) from
Proposition 4.19. Otherwise any non-zero rational x ∈ R>0u+R>0v+
R>0w \ Amp(X) satisfies condition (i) by Proposition 4.17. �

4.2.3. Type I with finite automorphism group. The second case,
according to Proposition 4.16, is that X is a Calabi–Yau threefold of
Type I with A+(X) ∼= Z/3. In this case, Corollary 2.17 shows that



4.2. THREEFOLDS OF TYPE I 44

Kawamata’s Cone Conjecture holds for X if and only if Nef(X) is a
rational polyhedral cone and Nefe(X) = Nef+(X). We confirm the
second part of this assertion:

Proposition 4.21. Let X be a simply-connected Calabi–Yau threefold
of Type I with A+(X) ∼= Z/3. Then

Nefe(X) = Nef+(X).

Proof. Theorem 4.3 shows this when c2(X) = 0, so we may as-
sume from now on that c2(X) 6= 0.

By Proposition 2.14, we always have Nefe(X) ⊂ Nef+(X). To
show the reverse inclusion we use that each rational nef class x with
x · c2(X) > 0 is effective, by Proposition 4.15. Hence, it is enough to
show that x · c2(X) > 0 for all non-zero nef classes x.

Adopting the notation from Proposition 4.16, we have
v · c2(X) = ϕ(u) · c2(X) = u · c2(X),
w · c2(X) = ϕ2(u) · c2(X) = u · c2(X).

Since u, v, w form a basis ofN1(X)R and c2(X) 6= 0 inN1(X)R, we must
have u · c2(X) 6= 0. If x = au + bv + cw is a nef class, then a, b, c ≥ 0
by the description of the positive component in Proposition 4.16, so
a+ b+ c > 0 if x 6= 0. We deduce that

x · c2(X) = (a+ b+ c) · (u · c2(X)) 6= 0.
By Proposition 4.4, we deduce that x · c2(X) > 0. This finishes the
proof. �

Theorem 4.22. The Weak Cone Conjecture for Nef+ holds on three-
folds of Calabi–Yau type which are of Type I and have a finite auto-
morphism group.

Here, the almost rational polyhedral fundamental domain can be
chosen to have at most two exceptional faces.

Proof. We use the notation established in Proposition 4.16. We
will distinguish several cases, but first we remark that in all cases the
class h = u+v+w is a rational ample class. Indeed, if x = au+bv+cw
with a, b, c > 0 is any integral ample class, then

x+ ϕ(x) + ϕ2(x) = (a+ b+ c) · h ∈ N1(X)Z
must be ample as well, which implies h ∈ Amp(X) ∩N1(X)Q.

Case 1: u is nef.

In this case also v = ϕ(u) and w = ϕ2(u) are nef, so Nef(X) =
R≥0u+ R≥0v + R≥0w.
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Figure 4.4. The fundamental domain for A+(X) in Case 1

According to Proposition 4.16, there are two possibilities: Either
the non-trivial subspaces of N are all rational or they are all irrational.

When N has only rational subspaces, the rays R≥0u, R≥0v and
R≥0w are all rational, so Nef(X) is a rational polyhedral cone. This
implies by Corollary 2.17 the existence of a fundamental domain for the
action of Aut(X) on Nef+(X) which is a rational polyhedral cone (i.e.
without any exceptional faces). Explicitly, Π = R≥0h + R≥0u + R≥0v
is easily seen to be a fundamendal domain for the action of A+(X) on
Nefe(X).

We now consider the case that the subspaces of N are irrational.1
Then we choose a rational plane A containing the line Rh and inter-
secting R>0u + R>0v along a ray R≥0p for some p = au + bv, a, b > 0.
We claim that the convex cone

Π := R≥0h+ R≥0p+ R≥0v + R≥0ϕ(p)
provides the desired fundamental domain for A+(X), see Figure 4.2.3.

First, we consider the supporting planes P1 := 〈u, v〉 and P2 :=
〈v, w〉 of Π and observe that

Π0 := Π \ (P1 ∪ P2)
1Note that, by Corollary 2.17, Morrison’s Cone Conjecture predicts that this

case should in fact not occur.
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is locally rational polyhedral in N1(X)R \ (P1∪P2). Indeed, the points
x ∈ Π0 not contained in the interior of Π0 are contained in the rational
faces Π ∩ A, Π ∩ ϕ(A) or their common intersection R≥0h, so locally
around x the cone Π0 is locally rational polyhedral. (Note that we use
the rationality of the plane A at this point.) This shows that Π is an
almost rational polyhedral cone with two exceptional faces.

Second, we observe that Π is a fundamental domain for the action
of A+(X) on Nef(X). Note that Π and ϕ(Π) lie on different sides of
the plane A, so their interiors don’t intersect and similarly for Π and
ϕ2(Π). In order to show

Nef(X) = Π ∪ ϕ(Π) ∪ ϕ2(Π),
we consider an arbitrary x ∈ Nef(X). Then x′ := x − λh ∈ ∂ Nef(X)
for precisely one λ ≥ 0. Up to replacing x by ϕ(x) or ϕ2(x), we may
assume that x′ ∈ R≥0u + R≥0v. We have x′ ∈ Π if x′ ∈ R≥0u + R≥0p
and x′ ∈ ϕ2(Π) if x′ ∈ R≥0v + R≥0p, so we deduce x ∈ Π ∪ ϕ2(Π).

Finally, we show that Π+ is a fundamental domain for the action
of A+(X) on Nefe(X) = Nef+(X). (We showed the latter equality
in Proposition 4.21.) This follows from the above if we show that
any irrational ray in Nef+(X) is still contained in ϕi(Π+) for some
i ∈ {0, 1, 2}. As the irrational rays in Nef+(X) cannot lie on the
boundary of Nef+(X), they are contained in Amp(X), so it suffices to
show that

Π+ ∩ Amp(X) = Π ∩ Amp(X).
But this is the case, since the convex cone Π ∩ Amp(X) is rational by
the rationality of the plane A.

Case 2: u is not nef.

In this case
Nef(X) ( R≥0u+ R≥0v + R≥0w,

so the boundary of Nef(X) must intersect the positive component U .
By Lemma 4.8, Nef(X) is locally rational polyhedral inside the positive
component, so there must be a rational class p ∈ ∂ Nef(X) ∩ U . Note
that p does not lie on the ray R≥0h by ampleness of h.

Since h and p are rational, there exists a non-zero rational class
γ ∈ N1(X)Q such that h · γ = 0 and p · γ = 0. We claim that

Π := {x ∈ Nef(X) | x · γ ≥ 0, ϕ−1(x) · γ ≤ 0}
provides the desired fundamental domain, see Figure 4.2.3

First, we observe that Π is a fundamental domain for the action of
A+(X) on Nef(X). Indeed, it follows from the definition of Π that the
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Figure 4.5. The fundamental domain for A+(X) in Case 2

interiors of Π and ϕ(Π) don’t intersect, and the same holds for Π and
ϕ2(Π). On the other hand,

Nef(X) = Π ∪ ϕ(Π) ∪ ϕ2(Π),
because any nef class x = au+ bv + cw satisfies

(x+ ϕ(x) + ϕ2(x)) · γ = (a+ b+ c) · h · γ = 0,
which implies ϕi(x) · γ ≥ 0, ϕi−1(x) · γ ≤ 0 for some i ∈ {0, 1, 2}.

From this we deduce that Π+ is a fundamental domain for the action
of A+(X) on Nefe(X) = Nef+(X). As in Case 1, it suffices to show
that the convex cone Π ∩ Amp(X) is rational. This follows from the
fact that the planes
{x ∈ N1(X)R | x · γ = 0} and {x ∈ N1(X)R | ϕ−1(x) · γ = 0

are rational, since they are spanned by h and p, resp. h and ϕ(p).

Finally, we show that Π is an almost rational polyhedral cone with
at most one exceptional face. From the fact that Nef(X) is locally
rational polyhedral in the positive component U and the rationality of
the just mentioned planes, it follows that

Π \ (P1 ∪ P2 ∪ P3)
is locally rational polyhedral inside R \ (P1 ∪ P2 ∪ P3), where

P1 := 〈u, v〉, P2 := 〈v, w〉 and P3 := 〈w, u〉.
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So Π is an almost rational polyhedral cone with at most three excep-
tional faces.

To see that it has in fact at most one exceptional face, it suffices
to show that Π intersects at most one of the three planes P1, P2 and
P3 non-trivially. Assume for contradiction that Π contains non-zero
points x ∈ P1 and y ∈ P2. (We may assume this by possibly replacing
Π by ϕ(Π) or ϕ2(Π).) Then both ϕ(x) and y are non-zero nef classes
in P2 such that ϕ(x) ∈ ϕ(Π), while y ∈ Π. It follows that there exists
a non-zero nef class z in P2 ∩Π ∩ ϕ(Π). But Π ∩ ϕ(Π) is by definition
contained in R≥0h + R≥0p and, hence, lies in the positive component
U . But z ∈ P2 implies z /∈ P2, a contradiction.

This shows that Π has at most one exceptional face in Case 2,
finishing the proof of the Theorem. �

4.3. Threefolds of Type II

Proposition 4.23. Let X be a threefold of Type II. Then A+(X) ∼= Z
and there exists a basis (u, v, w) of N1(X)R such that the following
holds:

(i) The null cone is given by N = L ∪ Q, where L = 〈u, v〉 and Q
is the vanishing set of the quadratic polynomial q = UV − W 2

(where U, V,W ∈ N1(X)∨R is the dual basis of u, v, w).
(ii) The positive component is either

U = {UV −W 2 > 0 and U, V,W > 0}
or

U = {UV −W 2 < 0 and W > 0}.
(iii) A+(X) is generated by ϕ with ϕ(w) = w, ϕ(v) = λv and ϕ(u) =

(1/λ)u for some λ > 0, λ 6= 1.
(iv) The ray R≥0w is rational and the rays R≥0u and R≥0v are irra-

tional. The plane L and the quadric cone Q are rational (i.e.,
with respect to a rational basis of N1(X)R we can describe Q as
the vanishing set of a rational polynomial).

(v) The classes u is nef and either v or −v is nef.

Remark 4.24. The above basis is useful because of the simplicity of
the description of A+(X). However, for picturing the null cone N and
the positive component U , it may be worth noting that in the basis
(x, y, z) with x := u+ v, y := u− v, z := w we have

N = {X2 − Y 2 − Z2 = 0} ∪ {Z = 0},
U = {X2 − Y 2 − Z2 > 0, X, Y, Z > 0} or {X2 − Y 2 − Z2 < 0, Z > 0},

where (X, Y, Z) is the dual basis of (x, y, z).
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Proof. We proceed mostly in the order given in the formulation
of the Proposition.

(i) Recall that by definition, A+(X) 6= 0 and N = Q ∪ L, where
L ⊂ N1(X)R is a plane and Q ⊂ N1(X)R is a quadric cone
intersecting L along two lines.

There is a quadratic form q : N1(X)R → R with vanishing set
Q. After possibly changing the sign of q we can assume that
the associated bilinear form (_,_)q on N1(X)R has signature
(s+, s−, s0) = (1, 2, 0). Note that the property that Q∩L consists
of two distinct lines translates to the fact that the restriction of
this bilinear form to L has signature (1, 1, 0).

Let u and v be non-zero classes spanning the two lines in Q∩L.
Since (_,_)q and its restriction to L are non-degenerate bilinear
forms, we can find a non-zero w ∈ N1(X)R which is orthogonal
to 〈u, v〉 with respect to (_,_)q. According to the signature of
the bilinear form, we must have q(w) < 0. After rescaling the
basis, we can assume that (_,_)q is given with respect to the
basis (u, v, w) by the matrix0 1

2 0
1
2 0 0
0 0 −1

 .
In particular, we have q = UV −W 2 and this shows the claim on
the description of N .

Regarding the positive component U , we observe for now that
we can assume that Amp(X) lies in the half-space {W > 0} by
possibly replacing w by its negative. Here, we use that Amp(X)∩
{W = 0} = ∅, since {W = 0} = L lies in the null cone.

(ii) We consider any ϕ ∈ A+(X), ϕ 6= id. Then ϕ must preserve the
setsQ and L, so there must exist γ, γ′ ∈ R× such thatW ◦ϕ = γW
and q◦ϕ = γ′q. In particular, ϕ preserves the bilinear form (_,_)q
up to a factor of γ′. Hence, ϕ(w) is orthogonal to ϕ(L) = L with
respect to (_,_)q, implying that ϕ(w) is a multiple of w. In fact,
ϕ(w) = γw because of

W (ϕ(w)) = (W ◦ ϕ)(w) = γW (w).

Since ϕ preserves Amp(X) and Amp(X) ⊂ {W > 0}, we further
know γ > 0. Hence, with respect to the basis (u, v, w) we have

ϕ =

 0
ϕ|L 0
0 0 γ

 .
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Note that ϕ preserves the cubic form N1(X)R → R, x 7→ x3,
which is up to a scalar given by q ·W . This implies γ′ = 1/γ > 0.
Since q(u) = q(v) = 0, necessarily ϕ|L must act on Ru ∪ Rv. If
ϕ|L were of the form

ϕ|L =
(

0 β
α 0

)

for some α, β ∈ R×, then (ϕ(u), ϕ(v))q = γ′ · (u, v)q implies αβ =
γ′ > 0. But this contradicts detϕ = 1.

Therefore, ϕ|L must satisfy ϕ(u) = αu, ϕ(v) = βv for some
α, β ∈ R×, i.e. ϕ = diag(α, β, γ) with respect to the basis (u, v, w).
As ϕ preserves q ·W , we have

(UV −W 2) ·W = (αU · βV − γ2W 2) · γW,

which implies γ = 1 and αβ = 1.

We have now shown that any element of A+(X) must be of
the form diag(1/β, β, 1) with respect to the basis (u, v, w). Since
A+(X) ⊂ SL(N1(X)Z) is a non-trivial discrete group, we deduce
the existence of λ ∈ R, |λ| > 1 such that A+(X) is the infinite
cyclic group generated by ϕ = diag(1/λ, λ, 1). We will see in a
moment that in fact λ is positive.

(iii) Let h = au + bv + cw be an ample class with a, b 6= 0. Then
λ−kϕk(h) → bv and λkϕ−k(h) → au, as k → ∞. Therefore,
u, v ∈ ∂ Amp(X) are nef up to sign. Without changing q, we may
change the sign of both simultaneously to guarantee that u is nef.
In particular, λ must be positive, as otherwise both u and −u
were nef, but Nef(X) contains no lines.

(iv) The line Rw is the eigenspace of ϕ for the eigenvalue 1, so it
is rational. Since for any a > 0 the classes ϕ−k(av) accumulate
towards zero as k → ∞, we see that the line Rv cannot contain
an integral class. In the same way we show the irrationality of
Ru.

The plane L is given by {W = 0}, where W ∈ N1(X)∨R is an
eigenvector of the dual morphism ϕ∨ for the eigenvalue 1. After
replacing W with a suitable multiple of itself, W is a rational
linear form on N1(X)R, so L is rational. Moreover, the cubic
form

h : N1(X)R → R, x 7→ x3

is given up to scalar by q ·W , so q is up to scalar the rational
quadratic form h/W . This shows the rationality of Q.
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(v) Finally, we establish the description of the positive component.
We already asserted that Amp(X) lies in the half-plane {W > 0}.
The connected components of {W > 0} \ {q = 0} are

{UV −W 2 > 0, U, V,W > 0},
{UV −W 2 > 0,W > 0, U, V < 0} and
{UV −W 2 < 0,W > 0}.

(The reader may find the advice from Remark 4.24 useful to illus-
trate this.) Since u is nef, it must lie in the closure of the positive
component, so this rules out the possibility {UV −W 2 > 0,W >
0, U, V < 0}. This concludes the proof.

�

Theorem 4.25. Let X be a threefold of Calabi–Yau type of Type II. We
adopt the notation from Proposition 4.26 and assume that the positive
component of X is

U = {UV −W 2 > 0 and U, V,W > 0}.

Then:

(i) If up to the action of Aut(X) there are only finitely many extremal
rays of Nef(X) lying on the null cone N , then the Weak Cone
Conjecture for Nef+(X) holds.

(ii) If the intersection Nef(X)∩N only consists of R≥0u+R≥0v, then
Morrison’s Cone Conjecture holds on X.

Proof. We give a rough sketch of the proof, as the ideas are very
similar to the proof of 4.22.

Let ` ∈ N1(X)∨Q be a non-zero rational linear passing through the
line Rw and intersecting Amp(X). Then the closed convex cone

M := {x ∈ U | `(x) > 0, `(ϕ−1(x)) < 0}

is easily seen to be a fundamental domain for the action of A+(X) on
U+.

We define Π := M ∩ Nef(X), see Figure 4.3. Then it follows that
Π+ := conv(Π ∩ N1(X)Q) is a fundamental domain for the action of
A+(X) on Nef+(X). By Lemma 4.8, Π is locally rational polyhedral
at each point inside U .

In (i), we know by assumption that the intersection Π∩N consists
only of finitely many extremal faces of Nef(X) which may possibly
form exceptional faces of Π. This shows that Π is an almost polyhedral
fundamental domain for the action of A+(X) on Nef+(X).
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Nef(X)

Π

ϕ−1(Π)

ϕ(Π)

v

u

w

ϕ(z0)

z0

z1

ϕ(z1)

ϕ−1(z0)

ϕ−1(z1)

ϕ2(z0)ϕ2(z1)

Figure 4.6. The fundamental domain for the action of A+(X)

In (ii), Π can be seen to have no exceptional faces, showing that
under the assumption in (ii), the fundamental domain Π is a rational
polyhedral cone, showing Morrison’s Cone Conjecture. �

4.4. Threefolds of Type III

Proposition 4.26. Let X be a threefold of Type III. Then A+(X) ∼= Z
and there exists a basis (u, v, w) of N1(X)R such that the following
holds:

(i) The null cone is given by N = L ∪ Q, where L = 〈u, v〉 and Q
is the vanishing set of the quadratic polynomial q = 2UW − V 2

(where U, V,W ∈ N1(X)∨R is the dual basis of u, v, w).
(ii) With respect to the basis (u, v, w), the group A+(X) is generated

by

ϕ =

1 1 1
2

0 1 1
0 0 1


for some λ > 0.

(iii) The class u ∈ N1(X)R is nef and the ray R≥0u is rational.
(iv) The plane L and the quadric cone Q are rational.
(v) The positive component is either
U = {2UW − V 2 > 0,W > 0} or {2UW − V 2 < 0,W < 0}.
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Remark 4.27. As in Remark 4.24, we observe that for a more intuitive
illustration it is worth noting that

N = {X2 − Y 2 − Z2 = 0} ∪ {X − Y = 0} and
U = {X2 − Y 2 − Z2 > 0, X − Y > 0}
or {X2 − Y 2 − Z2 < 0, X − Y > 0},

where X, Y, Z ∈ N1(X)∨R is the dual basis corresponding to x := u+w√
2 ,

y := u−w√
2 , z := v.

Proof. (i) Recall that by definition, A+(X) 6= 0 andN = Q∪L,
where L ⊂ N1(X)R is a plane and Q ⊂ N1(X)R is a quadric cone
intersecting L along one line.

We consider a quadratic form q : N1(X)R → R with vanishing
set Q such that the associated bilinear form (_,_)q on N1(X)R
has signature (s+, s−, s0) = (1, 2, 0). The property that Q ∩ L
consists of one line translates to the fact that the restriction of
(_,_)q to L has signature (0, 1, 1).

Let u be a class spanning the line L∩Q. Then q(u) = 0, so u
lies in the radical of the bilinear form on L associated to q|L, be-
cause q|L is negative semi-definite. We can extend this to a basis
(u, v) of L such that q(v) = −1. Let L′ be the orthogonal com-
plement of v with respect to (_,_)q. Then L′ is two-dimensional
and, since q|L′ has signature (1, 1, 0), the intersection L ∩Q con-
sists of two lines. One of them is Ru and let w be a class spanning
the other line in L ∩ Q. Then (u, v, w) form a basis of N1(X)R.
After rescaling w, we can assume that (u,w)q = 1, so that the
bilinear form (_,_)q is given with respect to the basis (u, v, w)
by the matrix 0 0 1

0 −1 0
1 0 0

 .
This shows q = 2UW − V 2 with respect to the chosen basis.

(ii) Let ϕ ∈ A+(X), ϕ 6= id. Since ϕ preserves the intersection form
h : N1(X)R → R, x 7→ x3,

which is up to scalar given by q ·W , there exists γ ∈ R× such that
W ◦ ϕ = γW and q ◦ ϕ = (1/γ) · q.

Since the line Ru is the intersection of L and Q, it is preserved
under ϕ, i.e. ϕ(u) = αu for some α 6= 0. We deduce from these
two obsverations that

ϕ =

α c b
0 β a
0 0 γ


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holds with respect to the basis (u, v, w) for some β, a, b, c ∈ R.
Note that detϕ = 1 implies αβγ = 1.

Together with

1 = (u,w)q = γ · (ϕ(u), ϕ(w))q = αγ2

and
−1 = (v, v)q = γ · (ϕ(v), ϕ(v))q = −β2γ,

this implies α = β = γ = 1.

Now, we obtain

0 = (v, w)q = γ · (ϕ(v), ϕ(w))q = c− a

and
0 = (w,w)q = γ · (ϕ(w), ϕ(w))q = 2b− a2,

so

ϕ =

1 a a2

2
0 1 a
0 0 1

 .
If we denote such a matrix by Ma for any a ∈ R, then one

easily verifies Ma ·Mb = Ma+b for all a, b ∈ R. Hence, we can
consider the discrete group A+(X) ⊂ SL(N1(X)R) as a subgroup
of R. Since discrete subgroups of R are cyclic, it follows that
A+(X) = 〈Mλ〉 for some λ > 0.

By replacing u with λ2u and v with λv, the linear formW and
the quadratic form q = 2UW − V 2 remain unchanged, while we
obtain A+(X) = 〈ϕ〉 with ϕ = M1.

(iii) Let h = au + bv + cw be an ample class with c 6= 0. Then
2
k2 · ϕk(h) → cu as k → ∞, so u or −u is nef. By changing the
sign of u, v and w simultaneously we do not change the description
of N or ϕ, so we may assume that u is nef. The line Ru is the
eigenspace of ϕ for the eigenvalue 1, so it is rational, since ϕ acts
on the integral structure N1(X)Z.

(iv) The linear form W ∈ N1(X)∨R is an eigenvector of ϕ∨ for the
eigenvalue 1, so up to rescaling W is rational. Hence, the line
L = {W = 0} is rational. Since the cubic form

h : N1(X)R → R, x 7→ x3

is rational and coincides with q ·W up to scalar, Q is given by
the vanishing of the rational quadratic form h/W . Hence, Q is
rational.



4.4. THREEFOLDS OF TYPE III 55

(v) The only connected components of N1(X)R \ N containing the
nef class u in their closure are

{2UW − V 2 > 0,W > 0},
{2UW − V 2 < 0,W > 0} and
{2UW − V 2 < 0,W < 0},

so U must be one of them.
We consider ample class h = au+ bv + cw with c 6= 0. Then

1
k2ϕ

k(h)→ c

2u as k →∞.

But this implies that cu is nef, so c > 0. On the other hand,
u+ εh must be ample for ε� 1 and

(2UW − V 2)(u+ εh) = 2εc+ ε2(2ac− b) > 0
for ε� 1. Hence, U = {2UW − V 2 > 0,W > 0}.

�

Theorem 4.28. Let X be a threefold of Calabi–Yau type of Type III.
We adopt the notation from Proposition 4.26.

(i) If up to the action of Aut(X) there are only finitely many extremal
rays of Nef(X) lying on the null cone N , then the Weak Cone
Conjecture for Nef+(X) holds.

(ii) If the intersection Nef(X)∩N only consists of the ray R≥0u, then
Morrison’s Cone Conjecture holds on X.

Proof. We sketch the proof, as it is very similar to the proof of
4.22.

We fix a non-zero rational linear form ` ∈ N1(X)∨Q not proportional
to W passing through the line Ru. Then the closed convex cone

M := {x ∈ U | `(x) > 0, `(ϕ−1(x)) < 0}
is easily seen to be a fundamental domain for the action of A+(X) on
U , see Figure 4.4.

Defining Π := M∩Nef(X), it follows that Π+ := conv(Π∩N1(X)Q)
is a fundamental domain for the action of A+(X) on Nef+(X). By
Lemma 4.8, Π is locally rational polyhedral at each point inside U .

In (i), we know by assumption that the intersection Π∩N consists
only of finitely many extremal rays which may possibly form excep-
tional faces of Π. This shows that Π is an almost polyhedral funda-
mental domain for the action of A+(X) on Nef+(X).

In (ii), this construction has no exceptional faces when we note the
following: The ray R≥0u is rational (by Proposition 4.26) and there



4.4. THREEFOLDS OF TYPE III 56

M

{` = 0}

{` ◦
ϕ = 0}

u

Figure 4.7. The fundamental domain for the action of
A+(X) on the positive cone

exists an open cone C containing the ray R>0u such that

C ∩M ⊂ Nef(X).

For this, we have to see that the planes {` = 0} and {`◦ϕ = 0} intersect
Nef(X) outside the ray R≥0u. This is easy to show by examining the
action of ϕ, but the easiest way to establish this is to choose ` from
the beginning in such a way that {` = 0} intersects Amp(X).

Hence, under the assumption in (ii), the fundamental domain Π is
a rational polyhedral cone, showing Morrison’s Cone Conjecture. �

Regarding Kawamata’s Cone Conjecture, by Corollary 2.16, the
question is about the difference between Nef+ and Nefe. We obtain
the following result:

Proposition 4.29. Let X be a simply-connected Calabi–Yau threefold
of Type III. Then Nefe(X) = Nef+(X) if and only if there exists an
effective divisor D such that D · c2(X) = 0.

Proof. First, we observe that Nefe(X) = Nef+(X) is equivalent
to R≥0u ⊂ Eff(X). Indeed, we know from Proposition 4.15 and Propo-
sition 2.14 that Nefe(X) and Nef+(X) coincide away from the plane
{c2(X) = 0}. Note that by Theorem 4.3 we must have c2(X) 6= 0
because of A+(X) ∼= Z. The intersection of U with {c2(X) = 0} is just
the ray R≥0uand in fact R≥0u ⊂ Nef+(X) by Proposition 4.26. Hence,
Nefe(X) = Nef+(X) holds if and only if u ∈ Eff(X).

To finish the proof, we have to notice that any effective class in
{c2(X) = 0} must lie on the ray R≥0u. Indeed, if au+ bv is an effective
class, then 1/k · ϕk(au + bv) → bu, as |k| → ∞. Considering this for
k →∞ and k → −∞ shows that bu and −bu are both pseudo-effective.
Since Psef(X) contains no lines, we deduce b = 0. �
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4.5. Threefolds of Type IV

Proposition 4.30. Let X be a threefold of Type IV with c2(X) 6= 0 or
c1(X)2 6= 0 in N1(X). Then A+(X) ∼= Z/k for a k ∈ {2, 3, 4, 6} and
there exists a basis (u, v, w) of N1(X)R such that the following holds:

(i) The null cone is given by N = L ∪Q, where L = 〈u, v〉 and Q is
the vanishing set of the quadratic polynomial q = W 2 − U2 − V 2

(where U, V,W ∈ N1(X)∨R is the dual basis of u, v, w).
(ii) With respect to the basis (u, v, w), the group A+(X) is generated

by

ϕ =

cosα − sinα 0
sinα cosα 0

0 0 1


for α = 2π/k.

(iii) The class w ∈ N1(X)R is ample and the ray R≥0w is rational.
(iv) The positive component is

U = {W 2 − U2 − V 2 > 0,W > 0}.
(v) The plane L and the quadric cone Q are rational.

Proof. (i) Recall that by definition, A+(X) 6= 0 andN = Q∪L,
where L ⊂ N1(X)R is a plane and Q ⊂ N1(X)R is a quadric cone
intersecting L trivially.

We consider a quadratic form q : N1(X)R → R with vanishing
set Q such that the associated bilinear form (_,_)q on N1(X)R
has signature (s+, s−, s0) = (1, 2, 0). The property that Q ∩ L =
{0} translates to the fact that the restriction of (_,_)q to L has
signature (0, 2, 0).

Let u, v be an orthogonal basis of L such that q(u) = (u, u)q =
−1 and q(v) = (v, v)q = −1. We can extend this to a basis
(u, v, w) which is orthogonal with respect to (_,_)q and such
that q(w) = (w,w)q = 1. With respect to this basis, we have

q = W 2 − U2 − V 2

and L = {W = 0}.
(ii) By Corollary 3.9, we have L = {` = 0}, where ` ∈ N1(X) \ {0}

is given by ` = c2(X) or ` = c1(X)2. Since the linear forms
`,W ∈ N1(X)∨R are both non-zero and vanish on L, they must
agree up to a scalar multiple and hence, as ` ◦ ϕ = `, we have
W ◦ ϕ = W . Since the cubic form

h : N1(X)R → R, x 7→ x3

is preserved by ϕ and is given up to scalar by W · q, we also know
q ◦ ϕ = q, i.e. ϕ is compatible with the bilinear form (_,_)q.
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The line Rw is the orthogonal complement of L with respect
to (_,_)q and ϕ(L) = L, so w is an eigenvector of ϕ. Because of

W (ϕ(w)) = (W ◦ ϕ)(w) = W (w) = 1,
we see that ϕ(w) = w. Therefore, the fact that ϕ is compatible
with (_,_)q implies that with respect to the basis (u, v) of L we
have

ϕ|L ∈ SO(2,R).

This shows that each ϕ ∈ A+(X) is with respect to the basis
(u, v, w) of the form

ϕ =

cosα − sinα 0
sinα cosα 0

0 0 1


for some α ∈ R/(2πZ). If we denote such a matrix by Mα, then
for any α, β ∈ R/(2πZ) we have Mα · Mβ = Mα+β, so we can
consider the discrete group A+(X) as a subgroup of R/(2πZ).
But discrete subgroups of R/(2πZ) are finite cyclic groups of the
form 〈2π

k
〉 for k > 0. This shows A+(X) = 〈ϕ〉 with ϕ = M2π/k.

It remains to be shown that k ∈ {2, 3, 4, 6}. Since A+(X) is
non-trivial, we have k > 1. Note that ϕ|L preserves the integral
structure N1(X)Z ∩ L (note that L = {` = 0} is rational), so
we can consider its minimal polynomial over Q, which is the k-th
cyclotomic polynomial. For k = 5 or k > 7, the k-th cyclotomic
polynomial has degree ≥ 4, but on the other hand the character-
istic polynomial of ϕ|L is of degree dimL = 2. Hence, we must
have k ∈ {2, 3, 4, 6}.

(iii) Since the minimal polynomial of ϕ|L is the k-th cyclotomic poly-
nomial, we have in particular

k−1∑
i=0

ϕi
∣∣∣
L

= 0.

In particular, if h = au+ bv + cw is an integral ample class with
c 6= 0, then

k−1∑
i=0

ϕi(h) = k · cw,

so w or −w is ample and the line Rw is rational. We may change
the sign of w without affecting the description of N or ϕ, so we
can assume that indeed w is ample.

(iv) The connected component of N1(X)R \ (L ∪Q) given by
{W 2 − U2 − V 2 > 0,W > 0}

contains the ample class w, so it is the positive component.
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(v) The plane L = {` = 0} is rational, because ` ∈ N1(X)Z. The
cubic form

h : N1(X)R → R, x 7→ x3

is rational and factors up to a scalar as ` · q. Hence, the quadric
cone Q is given by the rational quadratic form h/`.

�

4.6. Threefolds of Type V

Proposition 4.31. Let X be a threefold of Type V. Then A+(X) ∼=
Z/3 and there exists a basis (u, v, w) of N1(X)R such that the following
holds:

(i) With respect to the basis (u, v, w), the group A+(X) is generated
by

ϕ =

cosα − sinα 0
sinα cosα 0

0 0 1


for α = 2π/3.

(ii) The class w ∈ N1(X)R is ample and the ray R≥0w is rational.
(iii) The plane 〈u, v〉 is rational.
(iv) The null cone is given by the vanishing set

{V (V 2 − 3U2) + aW (U2 + V 2) +W 3 = 0}

for some a ∈ R (where U, V,W ∈ N1(X)∨R is the dual basis of
u, v, w).

Proof. (i) By Corollary 3.9, the group A+(X) must be of or-
der 3. The characteristic polynomial of ϕ is T 3−1 = (T −1)(T 2 +
T + 1), implying that with respect to a suitable basis u, v, w of
N1(X)R the automorphism ϕ is given by

ϕ =

cosα − sinα 0
sinα cosα 0

0 0 1

 ,
where α = 2π/3, i.e. ϕ acts by rotation by 2π/3 on the plane
spanned by u and v.

(ii) If h = au+ bv + cw is any integral ample class with c 6= 0, then

3cw = h+ ϕ(h) + ϕ2(h)

is also ample and integral. Hence, either w or −w is ample. By
possibly changing the sign of w, we may assume that w is ample.
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(iii) The plane 〈u, v〉 = {W = 0} is rational because RW ⊂ N1(X)R
is the eigenspace of the eigenvalue 1 of ϕ∨ and ϕ is defined over
the integral structure N1(X)Z.

(iv) Denote by U, V,W the dual basis associated to u, v, w and let
h ∈ R[U, V,W ] be the homogeneous polynomial of degree 3 cor-
responding to the polynomial mapping

N1(X)R → R, α 7→ α3.

Note that h is irreducible, as N does not split.
If we write

h = h3 +W · h2 +W 2 · h1 + γW 3

with γ ∈ R, hi ∈ R[U, V ] homogeneous of degree i, then hi ◦
ϕ|〈u,v〉 = hi (for i = 1, 2, 3).

The vanishing set of h3 in 〈u, v〉 is the union of one, two or
three lines, because h3 6= 0 by irreducibility of h. This vanishing
set can therefore only be preserved by rotation by 2π/3 if it is the
union of three lines given by h3 = αV (V 2−3U2) for some α ∈ R×
(after rotating the basis u, v accordingly).

The vanishing set of h1 and h2 in 〈u, v〉 cannot consist of one
or two lines, as this would not be preserved by ϕ|〈u,v〉. This shows
h1 = 0 and either h2 = 0 or h2 is a homogeneous quadratic
polynomial in R[U, V ] without real zeroes. For ϕ|〈u,v〉 to preserve
h2, we must have h2 = β(U2 + V 2) for some β ∈ R. Thus,

h = αV (V 2 − 3U2) + βW (U2 + V 2) + γW 3).

Because of h(w) > 0 (as w is ample), we must have γ > 0 and
after rescaling w, we can assume γ = 1. Similarly, we can rescale
u and w by a common factor to guarantee α = 1. This shows the
claim.

�



CHAPTER 5

Diophantine Approximation problems for Nef(X)

In this final chapter, we will provide an instance how arithmetic
arguments may provide restrictions on the structure of the nef cone.
The main idea behind this is to possibly exclude that the nef cone con-
tains certain irrational extremal rays which are too well approximable
by rational rays in the sense of simultaneous Diophantine Approxima-
tions. In fact, we have already seen in Proposition 4.13 an indication
how rational approximations of an irrational rays may guarantee that
the irrational ray cannot be contained in Nef(X).

We will raise a natural question in the context of Diophantine Ap-
proximations (Question 5.2) and we will see how it would imply the
existence of rational curves on all simply-connected Calabi–Yau three-
folds of Type I, extending Theorem 4.20.

The treatment will be based on Lemma 4.11 together with the fol-
lowing finiteness result by Szendrői [Sze99].

Theorem 5.1 ([Sze99]). Let X be a Calabi–Yau threefold and fix an
integer K. Then there are only finitely many ample divisors H with
H3 ≤ K up to the action of Aut(X).

We raise the following question about Diophantine Approximations:

Question 5.2. Let α1, α2 ∈ R be real numbers. Given any w1, w2 ∈ R,
are there infinitely many (p1, p2, q) ∈ Z3 with q > 0 satisfying the
following inequalities: ∣∣∣∣∣p1

q
− α1

∣∣∣∣∣ ≤ 1
q3/2 ,∣∣∣∣∣p2

q
− α2

∣∣∣∣∣ ≤ 1
q3/2 ,

w1 ·
(
p1

q
− α1

)
+ w2 ·

(
p2

q
− α2

)
≥ 0?

Remark 5.3. Without the last condition (i.e. for w1 = w2 = 0) this is
the well-known Dirichlet’s Approximation Theorem in two dimensions,
see for example [HW08, Theorem 200]. We also observe that the
question has a trivially positive answer if α1 = a1

b1
and α2 = a2

b2
are
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rational: The points (ka1b2, ka2b1, kb1b2) ∈ Z3 are solutions for all
k > 0.

Note that in the case of “one-dimensional” Diophantine approxima-
tion, an analogous statement holds true:

Proposition 5.4. Let α ∈ R be a real number. Then there are infin-
itely many (p, q) ∈ Z2 with q > 0 satisfying

p

q
− α ≤ 1

q2 .

Similarly, there are infinitely many (p, q) ∈ Z2 with q > 0 satisfying
p

q
− α ≥ 1

q2 .

Proof. This is remarked in [HW08, p. 202]. It follows from the
fact that for irrational α the partial continued fractions of α give corre-
sponding rational approximations, [HW08, Theorem 171], and alter-
nate between approximating α from below and from above, [HW08,
Theorem 167]. �

From this, we can confirm Question 5.2 in a simple case:

Proposition 5.5. Question 5.2 has an affirmative answer for those
α1, α2 ∈ R such that 1, α1, α2 are linearly dependent over Q.

Proof. If both α1 and α2 are rational, then this is trivial as ob-
served in Remark 5.3.

We may now assume that α1 ∈ R \ Q. By the linear dependence,
there exist integers a, b, c such that

aα2 = bα1 + c

and we may assume that a > 0.
For any points (p0, q0) ∈ Z2 with q > 0 satisfying∣∣∣∣∣p0

q0
− α1

∣∣∣∣∣ ≤ 1
q2

0

we can consider q := aq0, p1 := ap0 and p2 := bp0 + cq0.
Then ∣∣∣∣∣p1

q
− α1

∣∣∣∣∣ =
∣∣∣∣∣p0

q0
− α1

∣∣∣∣∣ ≤ 1
q2

0
.

and ∣∣∣∣∣p2

q
− α2

∣∣∣∣∣ =
∣∣∣∣∣ ba ·

(
p0

q0
− α1

)∣∣∣∣∣ ≤ |b|aq2
0
.
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Moreover,

w1 ·
(
p1

q
− α1

)
+ w2 ·

(
p2

q
− α2

)
=
(
aw1 + bw2

a

)
·
(
p0

q0
− α1

)
.

By Proposition 5.4, there are infinitely many (p0, q0) ∈ Z2 such that
the sign of p0

q0
− α1 is such that(

aw1 + bw2

a

)
·
(
p0

q0
− α1

)
≥ 0.

Moreover, we can exclude the finite number of (p0, q0) such that q0 < a3

or q0 < a3b2. Then for the corresponding (p1, p2, q), the above identities
give ∣∣∣∣∣p1

q
− α1

∣∣∣∣∣ ≤ 1
q2

0
≤ 1
q3/2 ,∣∣∣∣∣p2

q
− α2

∣∣∣∣∣ ≤ |b|aq2
0
≤ 1
q3/2 ,

w1 ·
(
p1

q
− α1

)
+ w2 ·

(
p2

q
− α2

)
=
(
aw1 + bw2

a

)
·
(
p0

q0
− α1

)
≥ 0.

This concludes the proof. �

Proposition 5.6. If Question 5.2 has an affirmative answer, then any
simply-connected Calabi–Yau threefold of Type I contains a rational
curve.

Proof. LetX be a simply-connected Calabi–Yau threefold of Type I.
If A+(X) ∼= Z, then X contains a rational curve by Theorem 4.20, so
we may assume A+(X) ∼= Z/3. We use the notation from Proposi-
tion 4.16.

If
Nef(X) ( R≥0u+ R≥0v + R≥0w,

then ∂ Nef(X) contains a rational big divisor according to Proposi-
tion 4.5. This implies the existence of rational curves by Proposi-
tion 4.19.

The other case to consider is

Nef(X) = R≥0u+ R≥0v + R≥0w.

According to Proposition 4.16, either the non-trivial subspaces ofN are
all rational or all irrational. When they are rational, then in particular
some non-zero multiple of u is rational and lies in ∂ Nef(X). As seen in
the proof of Proposition 4.21 we have u ·c2(X) > 0, so Proposition 4.19
implies the existence of rational curves on X in this case.
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We are left with the case that Nef(X) = R≥0u+R≥0v+R≥0w and
the subspaces of N are irrational. We show that this case does not
occur in the following Lemma, concluding the proof. �

Lemma 5.7. Let X be a Calabi–Yau threefold of Type I such that
the non-trivial subspaces of N are irrational. If Question 5.2 has an
affirmative answer, then

Nef(X) 6= R≥0u+ R≥0v + R≥0w

with u, v, w as in Proposition 4.16.

Proof. Assume for contradiction that Nef(X) = R≥0u + R≥0v +
R≥0w, so in particular u is nef.

We will roughly proceed as follows: Using the assumption on Ques-
tion 5.2, we construct an infinite sequence (αi) of integral classes such
that the rays R≥0αi accumulate towards the ray R≥0u and such that
|α3
i | is bounded by a constant. From this we deduce either the existence

of infinitely many integral ample classes with bounded self-intersection
or the existence of an effective divisor outside of the positive compo-
nent by using Lemma 4.11. In the latter case, we get a contradiction
to Big(X) = Amp(X), and in the former case, we get a contradiction
to Theorem 5.1.

We observe, that by Proposition 4.16 and Theorem 4.3, we are
necessarily in the case A+(X) = Z/3 and c2(X) 6= 0. We proceed in
several steps.

Step 1: Construction of the sequence (αi) in N1(X)Z.

We choose an integral basis x, y, z ∈ N1(X)Z such that x and y span
the plane {c2(X) = 0}. Up to rescaling u, we may assume u·c2(X) = 1,
so that there exist λ1, λ2 ∈ R with

u = λ1x+ λ2y + z.

To the basis (u, v, w) of N1(X)R we associate the dual basis (U, V,W )
of N1(X)∨R = N1(X)R and similarly, we denote by X, Y, Z ∈ N1(X)∨R
the dual basis to x, y, z ∈ N1(X)R.

We choose a, b > 0 and consider the plane {` = 0} for ` = aV +bW .
If possible, we choose a, b > 0 such that this plane is rational. (Note
that there is at most one such rational plane, as there cannot be two
distinct rational planes passing through the irrational line Ru.) Then
there are w1, w2, w3 ∈ R such that

`w1X + w2Y + w3Z.

Since we assume Question 5.2 to have a positive answer, there exists
an infinite sequence (p(i)

1 , p
(i)
2 , q

(i))i of tuples in Z3 with q(i) > 0 such
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that ∣∣∣∣∣∣p
(i)
1
q(i) − λ1

∣∣∣∣∣∣ ≤ 1
(q(i))3/2 ,∣∣∣∣∣∣p

(i)
2
q(i) − λ2

∣∣∣∣∣∣ ≤ 1
(q(i))3/2 ,

w1 ·

p(i)
1
q(i) − λ1

+ w2 ·

p(i)
2
q(i) − λ2

 ≥ 0

We define αi := p
(i)
1 x + p

(i)
2 y + q(i)z ∈ N1(X)Z, which defines an

infinite sequence of integral classes. Some simple observations about
this sequence are:

(1) As i → ∞, the rays R≥0αi accumulate towards the ray R≥0u and
q(i) →∞.

(2) The classes αi lie in the half-space {` ≥ 0}.

Property (1) is an immediate consequence of the first two inequal-
ities from above, as the points αi/q(i) converge to u = λ1x + λ2y + z.
Property (2) follows from

`(αi) = w1p
(i)
1 + w2p

(i)
2 + w3q

(i))
≥ q(i) · (w1λ1 + w2λ2 + w3)
= q(i) · `(u) = 0.

Step 2: There exists a constant C > 0 such that |α3
i | ≤ C for all i ≥ 0.

By the description of N , we know that there is µ > 0 such that

α3
i = µ · U(αi) · V (αi) ·W (αi).

The set A := [−1, 1] · x+ [−1, 1] · y ⊂ N1(X)R is compact, so there
exists a constant C0 > 0 such that

|W (δ)| ≤ C0, |V (δ)| ≤ C0

for all δ ∈ A. By construction,

(q(i))3/2 ·
(
αi
q(i) − u

)
∈ A
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holds for all i, so using V (u) = W (u) = 0 we deduce

|α3
i | = µ ·

∣∣∣∣∣U
(
αi
q(i)

)∣∣∣∣∣ ·
∣∣∣∣∣V
(

(q(i))3/2
(
αi
q(i) − u

))∣∣∣∣∣ ·
∣∣∣∣∣W

(
(q(i))3/2

(
αi
q(i) − u

))∣∣∣∣∣
≤ µC2

0 ·
∣∣∣∣∣U
(
αi
q(i)

)∣∣∣∣∣ .
Since αi

q(i) → u as i→∞ and U(u) = 1, this shows that |α3
i | is bounded

by some constant C.

Step 3: We can assume that αi ∈ R>0u+ R>0v + R<0w.

Since the classes αi are integral and |α3
i | ≤ C, Theorem 5.1 tells us

that at most finitely many αi lie in Amp(X) = R>0u+ R>0v + R>0w.
We may exclude these αi from our sequence.

Since αi

q(i) converge to u, we have U(αi) > 0 for all i � 0. We
constructed αi such that `(αi) ≥ 0 for ` = aV + bW with a, b > 0, so
for i� 0 we have

αi ∈ R>0u+ R≤0v + R≤0w ∪ R>0u+ R≤0v + R≥0w.

We may assume that infinitely many αi lie in R>0u+R≤0v+R≤0w and
we can restrict to this subsequence.

Finally, the planes {V = 0} and {W = 0} are by assumption
irrational, so they contain each at most one rational line, which must
be distinct from the irrational line Ru. Hence, after possibly excluding
finitely many elements of the sequence (αi) we can assume that all αi
lie in

R>0u+ R>0v + R<0w.

Step 4: For any class δ ∈ R>0u+R>0v+R<0w, there exists an integral
ample class h such that δ · h2 > 0, δ2 · h > 0.

First, we observe that by continuity and rescaling it suffices to show
the existence of a real ample class h with the desired property. Writing
δ = ru + sv − tw with r, s, t > 0, we can choose h := εu + εv + w for
some ε� 1. Then

δ2 · h = 2rs− 2εst− 2εtr > 0,
δ · h2 = εr + εs− ε2t > 0.

Step 5: The classes αi are effective for i� 0 and this gives a contra-
diction.

Choose any integral class δ ∈ R>0u + R>0v + R<0w with `(δ) ≤ 0
and choose an integral ample class h as given by Step 4. Then by
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{` = 0}
+
−

B

u

v w

α1
α2

α3 α4

α5
α6

α7

δ

Figure 5.1. Illustration of the proof of Lemma 5.7

Lemma 4.11, there are finitely many integral curve classes γ1, . . . , γr ∈
N1(X)Z such that any class δ′ lying in

B := (R>0δ + Nef(X)) ∩ {x ∈ N1(X)R | x · γj ≥ 0 ∀j}
is effective if it satisfies δ′ · c2(X) + 2δ′3 > 0. See Figure 5 for an
illustration.

Note that any class δ′ ∈ R>0u + R>0v + R<0w with `(δ′) ≥ 0 lies
in R>0δ + Nef(X) if the ray R≥0δ

′ is sufficiently close to R≥0u. In
particular, αi ∈ R>0δ + Nef(X) for i� 0.

Note that Nef(X) lies in the half-plane {γj ≥ 0}. Since the ray
R≥0u is irrational, at most one of the rational planes {γj = 0} can pass
through Ru and if it does, it must coincide with ` by the choice of `.
This shows that for i � 0 we have αi · γj ≥ 0 for all j. We conclude
that αi ∈ B for i� 0.

Finally, we have αi

q(i) · c2(X)→ 1 as i→∞. Hence, αi · c2(X)→∞
as i→∞, but |α3

i | is bounded by Step 2. Hence,
αi · c2(X) + 2α3

i > 0
for i� 0. This implies αi ∈ Eff(X) for i� 0.

However, Big(X) is the interior of Eff(X) and R>0u + R>0v +
R>0w = Amp(X) lies in Big(X), so αi ∈ Eff(X) implies that R>0u +
R>0w is contained in Big(X). But R>0u + R>0w also lies in Nef(X)
and in N . This is a contradiction due to Lemma 4.8. This concludes
the proof. �

We also point out the following: A closer look at the proof of Theo-
rem 4.22 shows that the constructed fundamental domain for the Weak
Cone Conjecture for Type I has two exceptional faces only when the
ray R≥0u is nef and irrational, which is precisely the case we would
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exclude by the above argument. Hence, we also obtain the following
possible improvement of Theorem 4.22:

Corollary 5.8. If Question 5.2 has an affirmative answer, then on
threefolds of Calabi–Yau type of Type I the Weak Cone Conjecture for
Nef+ holds with a fundamental domain which has at most one excep-
tional face.
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