How to square a linear space?

A story about invariant arrangements of linear spaces and their ideals

Papri Dey, Paul Görlach, Nidhi Kaihnsa

Max Planck Institute Mathematics in the Sciences, Leipzig (Germany)

Question

Given a linear space in projective space $L \subset \mathbb{P}_{\mathbb{C}}^{n}$, what is the set obtained by squaring each point of L coordinate-by-coordinate?

The coordinate-wise square
For a linear space $L \subset \mathbb{P}_{\mathbb{C}}^{n}$, denote by $L^{\circ 2} \subset \mathbb{P}_{\mathbb{C}}^{n}$ its coordinatewise square, i.e. the image of L under

$$
\varphi_{2}: \mathbb{P}_{\mathbb{C}}^{n} \rightarrow \mathbb{P}_{\mathbb{C}}^{n}, \quad\left[x_{0}: x_{1}: \ldots: x_{n}\right] \mapsto\left[x_{0}^{2}: x_{1}^{2}: \ldots: x_{n}^{2}\right]
$$

Figure 1: Coordinate-wise squares of two lines in \mathbb{P}^{2}

Motivation

Let $G \subset \operatorname{Aut}\left(\mathbb{P}^{n}\right)$ be the group generated by the coordinate hyperplane reflections. Consider the G-invariant arrangement of linear spaces $\mathcal{A}:=\cup_{g \in G} g L \subset \mathbb{P}^{n}$. The polynomial equations vanishing on \mathcal{A} form an ideal I in the invariant ring $\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{\mathbb{Z}_{2}^{n+1}}=\mathbb{C}\left[y_{0}, \ldots, y_{n}\right]$, where $y_{i}=x_{i}^{2}$.
Describing $I \subset \mathbb{C}[\mathbf{y}]$ is the same as finding defining equations for the coordinate-wise square $L^{\circ 2} \subset \mathbb{P}^{n}$.

Squaring hyperplanes

The coordinate-wise square of a hyperplane $V(f) \subset \mathbb{P}^{n}$ is a hypersurface in \mathbb{P}^{n} whose equation is computed as follows:

- Form the product over the orbit of $f \in \mathbb{P}\left(\mathbb{C}[\mathbf{x}]_{1}\right)$ under the action of \mathbb{Z}_{2}^{n+1} on $\mathbb{P}\left(\mathbb{C}[\mathbf{x}]_{1}\right)$.
- The resulting polynomial lies in $\mathbb{C}\left[x_{0}^{2}, \ldots, x_{n}^{2}\right]$. Replace each occurrence of x_{i}^{2} in it by x_{i}.

$\mathcal{A}=\bigcup_{g \in G} g L \subset \mathbb{P}^{3}$

$L^{\circ 2} \subset \mathbb{P}^{3}$

Figure 2: Factoring out the symmetry of the G-invariant arrangement $\mathcal{A}=\bigcup_{g \in G} g L \subset \mathbb{P}^{n}$ gives the coordinate-wise square $L^{\circ 2}$, illustrated here for $L=V\left(x_{0}+x_{1}+x_{2}+x_{3}\right) \subset \mathbb{P}^{3}$.

The degree of $L^{\circ 2}$ as a matroid invariant
The combinatorial information how a linear space $L \subset \mathbb{P}^{n}$ lies relative to the coordinate hyperplanes is captured in its linear matroid:

$$
\mathcal{M}_{L}:=\left\{I \subset\{0,1, \ldots, n\} \mid L \cap V\left(\left\{x_{i} \mid i \notin I\right\}\right)=\emptyset\right\} .
$$

(collection of independent sets of the matroid). Some purely combinatorial definitions:

- An index $i \in\{0,1, \ldots, n\}$ is a coloop of the matroid if $I \in \mathcal{M}_{L} \Leftrightarrow I \cup\{i\} \in \mathcal{M}_{L}$. * A subset $E \subset\{0,1, \ldots, n\}$ is a component of the matroid if there is no non-trivial partition $E=E_{1} \sqcup E_{2}$ with $I \in \mathcal{M}_{L} \Leftrightarrow I \cap E_{1}, I \cap E_{2} \in \mathcal{M}_{L}$, and E is maximal with this property

Degree of the coordinate-wise square
Proposition. Let $L \subset \mathbb{P}^{n}$ be a linear space of dimension k. Then

$$
\operatorname{deg} L^{\circ 2}=2^{k+s-t+1}
$$

where $s:=\#\left\{\right.$ coloops of $\left.\mathcal{M}_{L}\right\}$ and $t:=\#\left\{\right.$ components of $\left.\mathcal{M}_{L}\right\}$.

There exist planes $L_{1}, L_{2} \subset \mathbb{P}^{5}$ with $\mathcal{M}_{L_{1}}=\mathcal{M}_{L_{2}}$ such that the ideal of defining equations of $L_{1}^{\circ 2}$ is minimally generated by 7 cubic forms, the ideal of $L_{2}^{\circ 2}$ by 6 quadratic forms. The structure of the defining equations of $L^{\circ 2}$ depends on more than just the linear matroid of L.

Squaring via geometry of finite points
Let $L=\operatorname{im}\left(\mathbb{P}^{k} \xlongequal{\left[\ell_{0} \cdots \ell_{n}\right]} \mathbb{P}^{n}\right)$ with $\ell_{i} \in\left(\mathbb{C}^{k+1}\right)^{*}$ and consider the finite set of points

$$
Z:=\left\{\left[\ell_{i}\right] \in\left(\mathbb{P}^{k}\right)^{*} \mid \ell_{i} \neq 0\right\} \subset\left(\mathbb{P}^{k}\right)^{*} .
$$

Then $L^{\circ 2}$ only depends on the set of quadrics containing Z.

Theorem. If $Z \subset\left(\mathbb{P}^{k}\right)^{*}$ does not lie on any quadric or it lies on a unique quadric of rank $\neq 3$, then $L^{o 2} \subset \mathbb{P}^{n}$ is cut out by the vanishing of linear and quadratic forms.

Line arrangements
Proposition. The coordinate-wise square of a line $L \subset \mathbb{P}^{n}$ is an embedded plane conic if $|Z|>2$, and a line otherwise.

Plane arrangements

Theorem. Depending on the geometry of $Z \subset\left(\mathbb{P}^{2}\right)^{*}$, the ideal of the coordinate-wise square of a plane $L \subset \mathbb{P}^{n}$ is minimally generated by:

($n-5$) linear forms,

$(n-2)$ linear forms

($n-3$) linear forms,

P. Dey, P. Görlach, and N. Kaithsa: "Coordinate-wise Powers of Algebraic Varieties", arXiv:1807.03295

