A story about invariant arrangements of linear spaces and their ideals

Given a linear space in projective space $L \subset \mathbb{P}^n_{\mathbb{C}}$, what is the set obtained by squaring each point of L coordinate-by-coordinate?

The coordinate-wise square

For a linear space $L \subset \mathbb{P}^n_{\mathbb{C}}$, denote by $L^{\circ 2} \subset \mathbb{P}^n_{\mathbb{C}}$ its **coordinate**wise square, i.e. the image of L under

 $\varphi_2 \colon \mathbb{P}^n_{\mathbb{C}} \to \mathbb{P}^n_{\mathbb{C}}, \quad [x_0 : x_1 : \ldots : x_n] \mapsto [x_0^2 : x_1^2 : \ldots : x_n^2].$

Figure 1: Coordinate-wise squares of two lines in \mathbb{P}^2

Motivation

Let $G \subset \operatorname{Aut}(\mathbb{P}^n)$ be the group generated by the coordinate hyperplane reflections. Consider the G-invariant arrangement of linear spaces $\mathcal{A} := \bigcup_{q \in G} gL \subset \mathbb{P}^n$. The polynomial equations vanishing on \mathcal{A} form an ideal I in the invariant ring $\mathbb{C}[x_0, \dots, x_n]^{\mathbb{Z}_2^{n+1}} = \mathbb{C}[y_0, \dots, y_n], \text{ where } y_i = x_i^2.$

Describing $I \subset \mathbb{C}[\mathbf{y}]$ is the same as finding defining equations for the coordinate-wise square $L^{\circ 2} \subset \mathbb{P}^n$.

Squaring hyperplanes

The coordinate-wise square of a hyperplane $V(f) \subset \mathbb{P}^n$ is a hypersurface in \mathbb{P}^n whose equation is computed as follows:

- Form the product over the orbit of $f \in \mathbb{P}(\mathbb{C}[\mathbf{x}]_1)$ under the action of \mathbb{Z}_2^{n+1} on $\mathbb{P}(\mathbb{C}[\mathbf{x}]_1)$.
- The resulting polynomial lies in $\mathbb{C}[x_0^2, \ldots, x_n^2]$. Replace each occurrence of x_i^2 in it by x_i .

How to square a linear space?

Papri Dey, Paul Görlach, Nidhi Kaihnsa

Max Planck Institute *Mathematics in the Sciences*, Leipzig (Germany)

Question

 $\xrightarrow{\varphi_2}$

Figure 2: Factoring out the symmetry of the G-invariant arrangement $\mathcal{A} = \bigcup_{g \in G} gL \subset \mathbb{P}^n$ gives the coordinate-wise square $L^{\circ 2}$, illustrated here for $L = V(x_0 + x_1 + x_2 + x_3) \subset \mathbb{P}^3$.

The degree of $L^{\circ 2}$ as a matroid invariant

The combinatorial information how a linear space $L \subset \mathbb{P}^n$ lies relative to the coordinate hyperplanes is captured in its **linear matroid**:

$$\mathcal{M}_L := \{ I \subset \{0, 1, \dots, n\} \mid L \cap$$

(collection of independent sets of the matroid). Some purely combinatorial definitions: • An index $i \in \{0, 1, \ldots, n\}$ is a **coloop** of the matroid if $I \in \mathcal{M}_L \Leftrightarrow I \cup \{i\} \in \mathcal{M}_L$. • A subset $E \subset \{0, 1, \ldots, n\}$ is a **component** of the matroid if there is no non-trivial partition $E = E_1 \sqcup E_2$ with $I \in \mathcal{M}_L \Leftrightarrow I \cap E_1, I \cap E_2 \in \mathcal{M}_L$, and E is maximal

- with this property.

Degree of the coordinate-wise square

Proposition. Let $L \subset \mathbb{P}^n$ be a linear space of dimension k. Then $\deg L^{\circ 2} = 2^{k+s-t+1},$

where $s := \#\{\text{coloops of } \mathcal{M}_L\}$ and $t := \#\{\text{components of } \mathcal{M}_L\}$.

There exist planes $L_1, L_2 \subset \mathbb{P}^5$ with $\mathcal{M}_{L_1} = \mathcal{M}_{L_2}$ such that the ideal of defining equations of $L_1^{\circ 2}$ is minimally generated by 7 cubic forms, the ideal of $L_2^{\circ 2}$ by 6 quadratic forms. The structure of the defining equations of $L^{\circ 2}$ depends on more than just the linear matroid of L.

 $L^{\circ 2} \subset \mathbb{P}^3$

 $\cap V(\{x_i \mid i \notin I\}) = \emptyset\}.$

Squaring via geometry of finite points

finite set of points

Theorem. If $Z \subset (\mathbb{P}^k)^*$ does not lie on any quadric or it lies on a unique quadric of rank $\neq 3$, then $L^{\circ 2} \subset \mathbb{P}^n$ is cut out by the vanishing of linear and quadratic forms.

Proposition. The coordinate-wise square of a line $L \subset \mathbb{P}^n$ is an embedded plane conic if |Z| > 2, and a line otherwise.

Theorem. Depending on the geometry of $Z \subset (\mathbb{P}^2)^*$, the ideal of the coordinate-wise square of a *plane* $L \subset \mathbb{P}^n$ is minimally generated by:

(n-2) linear forms

P. DEY, P. GÖRLACH, AND N. KAIHNSA: "Coordinate-wise Powers of Algebraic Varieties", arXiv:1807.03295

Let $L = \operatorname{im}(\mathbb{P}^k \xrightarrow{[\ell_0:\ldots:\ell_n]} \mathbb{P}^n)$ with $\ell_i \in (\mathbb{C}^{k+1})^*$ and consider the

 $Z := \{ [\ell_i] \in (\mathbb{P}^k)^* \mid \ell_i \neq 0 \} \subset (\mathbb{P}^k)^*.$

Then $L^{\circ 2}$ only depends on the set of quadrics containing Z.

Line arrangements

Plane arrangements

1 quartic forms

1 quadratic forms.