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Abstract
In the year 1851 in Paris, the apparent change of the plane of oscillation of
a linear pendulum was observed by Léon Foucault. In the same year, at the
same place, the unequal duration of the oscillations of a right- and left-handed
conical pendulum was observed by Bravais. Today, the Foucault pendula are
common at universities, the Bravais pendula not at all. We have revisited and
experimentally tested Bravais’s method and found it worthy of revitalization in
student labs.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In 1851, Léon Foucault in Paris raised an idea that a simple linear pendulum, in keeping with
the laws of mechanics, should maintain its plane of oscillation in the direction in which it
was started. It meant that the oscillating pendulum could supply direct evidence of the axial
rotation of the Earth.

Foucault immediately began his promising experiments with a pendulum not more than 2
m long. However, he found the results unsatisfactory. In the second attempt, he increased the
length to 11 m, but there were no radical improvements. Finally, under the great dome of the
Pantheon, Foucault set up the famous 67 m long pendulum, and positive results were reported
[1]. It was the first simple proof of the Earth’s rotation in an easy-to-see experiment (without
watching for apparent movement of heavenly bodies).

Foucault did not report very high accuracy in his measurements. The pendulum
exhibited somewhat unexpected movement, which was beyond the limits of the author’s
prior expectations. Nevertheless, his contemporaries recognized Foucault’s pendulum project
as a very good idea. Longden wrote: ‘The pendulum experiment of Léon Foucault . . . is held
in reverence by physicists and astronomers, not simply as one of the successful experiments
of the nineteenth century, but as one of the brilliant experiments of all time’ [2].
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Soon a wave of building various linear pendula ‘à la Foucault’ arose in many countries
around the world. Out of these numerous pendula the ones which are very long and,
furthermore, are in places with a rather large latitude, work plausibly—they are the real
attractions that permanently play a considerable pedagogical and tourist role. A good example
of this was the Foucault pendulum in Saint Petersburg, exposed in Saint Isaac’s Cathedral
(pendulum length 98 m; installation removed in the 1990s)1. The list of carefully designed
Foucault pendula around the world (mainly at universities, museums and planetaria) is rather
impressive2. Some years ago, Physics World published an interesting ranking of physical
experiments ever carried out [3]; physicists who were asked to nominate the most beautiful
experiment of all time included Foucault’s pendulum in the top 10 winners.

Soon after ‘the beautiful experiment of Foucault on the deviation of the plane of oscillation’
was carried out, Bravais observed that the unequal duration of the vibrations of a right- and
left-handed pendulum should be a necessary consequence [4]. To test his idea, Bravais made
a pendulum 10 m long with a weight of 10.5 kg. He diligently used it to operate as a conical
pendulum sensitive to the Earth’s rotation. The results appeared to be quite satisfactory; in
the author’s own words: ‘when the pendulum rotates from west to east, the angular velocity
at Paris is retarded 11′′.4 per second of time; on the other hand, when the motion is from east
to west, the velocity is increased by the same amount.’ What happened afterwards?

The Bravais pendulum differs from the Foucault pendulum: the deviation in azimuth
cannot be observed in conical oscillations—there is only a change in the period of oscillation.
Now, many people believe it is a simple psycho-physiological fact that a variation of space
appeals more to human senses than one of time. The astronomer W F Rigge wrote in his popular
review article ‘Experimental proofs of the Earth’s rotation’ [5]: ‘The Bravais pendulum never
met with popular favor, and seems to have been set up only once, and that by the inventor
himself.’

This way or another, the conclusion is rather plain and could be stated as follows: in
today’s world, for the purposes of detecting the Foucault effect (the direct observation of the
Earth’s rotation), we see a lot of linear or mathematical pendula, and only few (if any) conical
pendula. Foucault’s work is celebrated, and Bravais’ variant is forgotten.

In order to enlighten this intricate point, we have undertaken a project to revisit Bravais’s
method and eventually learn more on pro and contra arguments. Here, we report our actions
and conclusions.

2. Conical pendulum

We set up a pendulum in the hall of the Faculty of Science in the town of Kragujevac, Republic
of Serbia; the latitude of Kragujevac is λK = 44◦ 1′N and the longitude δ = 20◦ 55′ E.

We attached a ball to a string as sketched in figure 1. The effective length of the string
(from the point of suspension P on the ceiling to the centre of the leaden ball) is L = 14.1 m.
The leaden ball (m = 23 kg) is 15.7 cm in diameter.

We shall use this pendulum in the conical mode of operation. The ball revolves in a
horizontal circle of radius A (just above the floor) with constant speed v0. Let T0 be the period
of revolution. In the applied inertial frame of reference, two forces govern the behaviour
of the physical system: the force #T exerted by the string, and the weight m#g. The vertical
component T cosα must balance the weight (inset, figure 1). The radial component T sinα
provides centripetal acceleration; hence, we have for the speed v =

√
Ag tanα. Let us insert

1 On the occasion of my (VMB) short scientific visit to the Ioffe Institute in 1973, I took advantage of the opportunity
to see this scientific shrine; I attended a series of demonstrations and found the spectacle impressive.
2 The Internet site List of Foucault pendulums.
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Figure 1. Conical pendulum and corresponding free body diagram.

here A = L sinα. The ball travels the circumference of the circular path in a time equal to the
period of the pendulum and we obtain

T0 = 2π

√
h

g
, (1)

because L cosα is the height of the pendulum, h.
In our measurements we have strictly worked in the small-angle regime, limiting the

maximal radius of the ball orbit to Amax = 50 cm. The half-angle of the cone (α) is then
0.035 rad, or 2◦. Accordingly, we can assume T0 ≈ 2π

√
L/g and ω0 =

√
g/L (the angular

frequency of the pendulum). Thus, our pendulum is actually in the isochronous regime of
oscillation. For example, with the chosen initial radius A = 45 cm, the computed period
is 7.53 s. The radius falls slightly in the course of rotation, and after hundreds of complete
revolutions reads A = 39 cm (as we observed in the experiments). Nevertheless, the figure of
the period stays practically unchanged.

Bravais recommends a special mechanism, a kind of clockwork, to start the pendulum
weight around in a circle. We proved this clever method to be effective. However, one can
easily practise launching the ball by hand. Let us imagine that one has pushed the ball from
point E (the east point of the horizontal circular trajectory, figure 1) normally to the west–east
direction. If the gained impulse is right, the ball should cross the direction south–north in
the north point N—the conical motion is correctly initiated. In two or three attempts one
could realize a satisfactory circular orbit. We do believe that the necessary manipulations in
achieving conical oscillations should not be too sophisticated, and convenience is important
for everyday demonstrations of the Earth’s rotation.

3. Theoretical background

We will now give (1) a brief mathematical treatment of the assumed physical picture and (2)
expectations in experiments.

(1) Imagine now that the ball of the conical pendulum is moving over the horizontal plane
(floor). The point of suspension of the pendulum is on the z-axis. From the kinematic
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point of view one could reason as follows. As part of the Earth’s surface this plane rotates
with the constant angular velocity

#& = #ez&T sin λ, (2)

where &T is the Earth’s rotation and λ is the latitude. The pendulum oscillates in the
‘absolute space’ (inertial frame of reference) with an angular frequency ω0. This circular
motion remains circular too for the observer on the plane (rotating frame of reference).
For this observer, however, the apparent frequency of the left-handed pendulum (counter-
clockwise (ccw) rotation in the northern hemisphere) is slightly decreased:

ω− = ω0 −&, (3)

and for the right-hand pendulum (clockwise (cw) direction of rotation) is slightly
increased:

ω+ = ω0 + &. (4)

In the first case, the observer moves away from the ball and sees a frequency ω− that
is lower than the ‘source’ frequency ω0; he could call it ‘slow pendulum mode’. In the
second case, the observer approaches the ball and sees a frequency ω+ that is greater than
ω0; he could call it the ‘fast pendulum mode’. These facts motivate us to recognize the
phenomenon as the Doppler effect for the rotational motion [6].

Now we shall describe the motion of the pendulum as seen from the non-inertial,
rotational reference frame. (The rigorous, detailed treatments of the subject can be found
in many textbooks; we recommend [7–9].)

Newton’s second law in the rotating frame takes the form

m#̈r =
∑

#Frf +
∑

#Fff . (5)

Here m is the mass of a body being acted upon by these forces. The first term represents
all relevant real forces (forces from physical interactions). The second term is the sum of
fictitious forces that include the Coriolis force, the centrifugal force and the Euler force.
In our task, there is no Euler force (the frequency is constant). Further, we shall ignore
the terms that are proportional to the square power of the Earth’s rotation. The exception
is the quadratic term multiplied by the Earth’s radius RT = 6.378 × 106 m. However,
this component combines with the gravitational acceleration #g0 to give apparent free fall
acceleration #g. So, the equation of motion we must deal with turns out to be

m#̈r = #T + m#g − 2m( #&T × #̇r). (5′)

Here, #T is the force exerted by the pendulum string. Let us introduce Cartesian coordinates
with the centre at K, as shown in figure 2; x and y lay in the horizontal plane, z is in the
direction of #g—vertically upwards. Suppose the angle between the string and the vertical
is small; in that case the approximations Tx ≈ −mgx/L, Ty ≈ −mgy/L and Tz ≈ mg

are valid. In addition, the component ż is much smaller than either ẋ or ẏ.
Owing to these assumptions, from the vector equation (5′) it follows that the horizontal

coordinates (x, y) of the pendulum satisfy the set of equations

ẍ − 2&ẏ + ω2
0x = 0, (6)

ÿ + 2&ẋ + ω2
0y = 0. (7)

The equations are coupled. Note that one can introduce dimensionless variables x/L,
y/L h/L and t

√
g/L, dividing by ω2

0 = g/L.
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Figure 2. A pendulum in the rotating frame of the Earth.

Now we define the variable ρ = x + iy, the complex position of the mass (as
recommended, for instance, in [6], [10]). The idea has a simple graphical interpretation:
a plot of ρ is a bird’s eye view of the pendulum projected onto the horizontal (x, y) plane.
From equations (6) and (7) we obtain the equation for the complex position

ρ̈ + 2i&ρ̇ + ω2
0ρ = 0. (8)

There are several methods of solving this equation. A popular way is to try a solution of

the form ρ (t) = exp (iγ t). This assumption is only valid if we allow γ = &±
√
&2 + ω2

0.

Because &2 (order of magnitude 10−10 s–1) is much smaller than ω2
0 (order of magnitude

102 s–1) the approximation γ = & ± ω0 is quite satisfactory. We obtain the general
solution to the pendulum differential equation

ρ (t) = A0 exp(iω−t) + B0 exp(−iω+t). (9)

The solution is composed of two circular polarizations. The parameters A0 and B0 are
dependent on initial conditions. In fact, the frequencies of pendulum oscillations are
modified by the Earth’s rotation, as we have anticipated in (3) and (4).

(2) Repeat our basic assumptions: the coordinates (x, y, z) belong to the rotating reference
frame and the coordinates (ξ, η, ζ ) to an inertial reference frame. The rotation is about
the z-axis with an angular velocity &. The two reference frames coincide at time t = 0.
The frames are aligned at t = 0.

Choosing the initial conditions ρ (0) = R and ρ̇ (0) = iRω0, we activate the left-handed
pendulum (i.e. launch the circular motion of the ball in the ccw direction, as seen from the
ceiling; an almost forgotten idiom is sinistroral revolution). This mode of oscillation has
the period T− (in the Earth’s frame of reference). Afterwards, we launch the right-handed
pendulum (cw rotation; dextrorsal revolution) according to the conditions ρ (0) = R and
ρ̇ (0) = −iRω0. This opposite mode of oscillation has the period T+. In the inertial frame
of reference (ξ, η) both left- and right-hand polarizations have the same period of rotation
T0 = 2π/ω0. In the Earth’s frame of reference (x, y) the two periods are not equal: T− > T0

and T+ < T0. The product ω−T0 is less than 2π , and ω+T0 is greater than 2π ; these facts are
illustrated in figure 3 (left-handed pendulum) and figure 4 (right-handed pendulum). The start
point on each hodograph is ρ (0) = R, and the end point ρ (T0) ≈ −iR&T0 = −iRθ . (We
have abbreviated θ = &T0.)



1082 V M Babović and S Mekić

Figure 3. Ball positions in two reference frames in relative motion, for the time interval (0, T0).
‘Slow’ mode case.

Figure 4. Ball positions in two reference frames in relative motion, for the time interval (0, T0).
‘Fast’ mode case.

Evidently, these figures are simple consequences of the fact that 2& = (ω+ − ω−).
Straightforwardly we achieve a method of how to infer the Earth’s axial rotation from
measurable time intervals. Let us compute the period difference -T of the two circular
motions:

-T = T− − T+ = 2π
ω0 −&

− 2π
ω0 + &

. (10)

As we have already seen, the approximation & ( ω0 is well satisfied, and we obtain

-T ≈ 2T0
&

ω0
, (11)

from whence the (local) frequency can be found to be

& = π

T 2
0

-T . (12)

Here we shall enter a small digression. The ball moves along a circular path of radius
R. Let v0 be its tangential (linear) velocity. That is, we can use the relation T0 = (2πR/v0).
Note that the quantity πR2 is equal to the area S of the circle. Consequently, we obtain from
equation (12) the alternative formula

& = v2
0

4S
-T . (12′)

If v0 is replaced by c0 (velocity of light), we arrive at the conclusion that 4S& = c2
0-T . And

this is the basic statement of the equivalent optical Sagnac effect [11].



The Bravais pendulum: the distinct charm of an almost forgotten experiment 1083

Figure 5. Opto-electronic device for time-interval measuring.

The period of each mode of rotation is a measurable quantity; thus, the time interval -T

can be immediately calculated from the experimental data. The parameter T0 is known from
the expression T0 = 2π

√
h/g, or at least as the approximation T0 ≈

√
T−T+.

So, equation (12) offers a good base for the determination of the Earth’s rotation. Now
we shall describe and analyse our tests of Bravais’s method.

4. Chronometer

Surely, modern electronic chronometers give us an advantage over the time-measuring devices
of Bravais’s age. We have realized a time-measuring system according to the scheme shown
in figure 5.

First, let us remark that contemporary mobile phone stopwatch software provides
resolutions of 1/100 s, or even better. The problem occurs when one tries to start and
stop the stopwatch manually—a reflex action is needed to create a movement in response to
a stimulus. Reaction time (RT) is the time from the onset of a stimulus until the organism
responds. For example, we have to press a button as soon as a light appears. So-called
simple RT is the time in which we respond to the presence of the visual stimulus. Mean RT for
college-age individuals is about 190 ms to detect visual stimulus. This process could introduce
impermissible errors for our purposes. However, an experimenter has a chance, because of
the random nature of RT, to obtain measured time intervals of tolerable uncertainties. Our
measurements show that in 70 cases out of 100 attempts, a mobile phone stopwatch gives the
right sign for the Earth’s rotation, and in 40 cases results are with errors never greater than
15%.

Second, we will give some details about our chronometer. We have assembled a time-
measuring system according to the scheme in figure 5. In fact, we use a standard stopwatch
which can be found in every student lab. It is a sufficiently precise instrument for our purpose.
All we have to change is to improve its start and stop performances. Our simple automatic
system removes possible uncertainties caused by (unsteady) human reflexes. The electronic
circuit is tuned to count the number of ball revolutions and to command a small relay to
start and stop the stopwatch counter. The digital stopwatch is directly connected to the relay
contacts.

In the heart of the electronic circuit, we place the micro chip (AT MEGA8) which could
be programmed for specific tasks. It communicates with external devices via a number of
input and output ports. One of the input port pins is connected to the photo couple located
across the ball path. Each time a spike at the bottom of the ball intersects the optical beam
between two optoelectronic elements, an impulse is generated and transmitted to the control
chip. The command coil of relay is connected to the output pins. The CPU sends signals
through the coil to start and stop the stopwatch counter.
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Figure 6. Experimental results: time difference versus number of pendulum turns.

We proved that the device works reliably; it precisely gives the elapsed times t+ and t−
for any prescribed number of ball revolutions N in advance.

5. Measurements and results

We have carried out four series of measurements, for four total number of ball revolutions:
N1 = 50, N2 = 75, N3 = 100 and N4 = 125. For each Ni , the chronometer registers
t− (the time elapsed in the right-hand mode of operation) and t+ (the time elapsed in the
left-hand mode of operation), and afterwards we compute the time difference -t = t+ − t−.
Actually, we always repeated the two procedures 10 times, finally finding the mean value
-t = 0.1 ·

∑10
1 -ti. The set of discrete events of measured time intervals -ti tend to cluster

around the mean value; the distribution function resembles a normal distribution.
Figure 6 summarizes our results. The straight line -t = qN represents the best fit of

experimental points if the coefficient q equals 0.9 ms. Uncertainty bars show the 2σ 2 limits
(σ 2 is the standard deviation).

According to equation (12), the Earth’s angular velocity deduced from the experiments
with a conical pendulum in Bravais’s sense is

&B = 1
4π

q

sin λ
g

h
. (13)

The latitude of Kragujevac is λK = 44◦ 1′ and therefore sin λK = 0.6946. Inserting
g = 9.81 m s−2, q = 0.0009 s, as well as the pendulum height h = 14.09 m, we get
&B = 7.18 × 10−5 rad s−1. So, our result is only 1.5% smaller than the standard sidereal rate
of rotation of our planet &T = 7.29 × 10−5 rad s−1, and could be understood as a quantitative
proof of the Earth’s rotation.

6. Comments

To plan, make and use the Foucault pendulum is not an easy job. Experimenters usually
encounter two major difficulties: imperfections in the suspension and imperfections of initial
conditions. These imperfections, independently or together, quickly develop an oval motion
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of the ball [12]. Ellipticity induced from the outside, as well as from the inside, efficiently
masks the pendulum precession due to the Earth’s rotation [2]. The rate of rotation (in degrees
per h) of the polarization plane of the real Foucault pendulum follows the expression

&F = 15
[
1 − 3

8β
2] sin λ. (14)

Here β is the oscillation amplitude of the pendulum ball divided by the string length, β = A/L.
The length given, short amplitudes diminish the undesirable second term in brackets (the limit
β → 0 leads to the ideal pendulum). However, long amplitudes provide better measurements
of angles. A compromise in β is needed. The lack of tall rooms inspired some physicists
to build short [13] and even very short [14] pendula. Such setups require pendulum path
corrections. One could regret this, but any new electronic or mechanical element in the setup
which directly affects the free motion of the ball deteriorates the beauty of the demonstration;
sometimes, maybe the final result could no longer be called obvious.

The Bravais pendula have, as the experts already stated [5], two points of superiority over
the Foucault pendula: (a) it is reversible—may be given a dextrorsal or sinistrorsal revolution,
and (b) the time of revolution may be lengthened or shortened at will.

In our measurements we have also found this flexibility of Bravais’s method quite practical.
Usually, no specific problems are encountered during the experiments. The students claim
that the time-interval measurements are not less attractive than those of angles. With some
amusement they note that a mobile telephone chronometer secures qualitative proof of the
Earth’s diurnal rotation, in the sense that the left-handed rotation (statistically convincing)
lasts longer than the coupled right-handed rotation. In addition, the analogies with some of
the physical effects in other branches of physics [12, 15] are pedagogically valuable.

Bravais himself designed the pendulum according to his own idea, with carefully
conducted measurements3, and finally wrote the paper in a somewhat laconic manner but
with logical rigour. However, at a point in the past, and we don’t know how, the Bravais
pendulum seems to have lost its good reputation. We believe that Bravais’s sane idea is worthy
of revitalization.

We are sure the Bravais pendulum can enrich many student laboratories, at least as a
mechanics lab project. It could also be an elegant demonstration experiment installation in
museums and planetaria.
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[5] Rigge W F 1913 Experimental proofs of the Earth’s rotation Pop. Astronom. 21 208–16
[6] Zel’dovich B Ya and Soileau M J 2004 Bi-frequency pendulum on a rotary platform: modeling various optical

phenomena Phys.-Usp. 47 1239
[7] Landau L D and Lifshitz L M 1973 Course of Theoretical Physics (in Russian)—Vol 1: Mechanics 3rd edn

(Moscow: Nauka)
[8] Hand L N and Finch J D 1998 Analytical Mechanics (Cambridge: Cambridge University Press)
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