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Extended Abstract

Local search techniques are useful tools for solving discrete optimization problems. Popu-
lar heuristics like simulated annealing and tabu search are based on such techniques. These
methods depend on an underlying neighborhood structure. Usually, the quality of the neigh-
borhood structure has some important influence on the methods.

Our approach is to improve methods by replacing neighborhood structures by secondary
neighborhood structures derived form the original ones. We apply these ideas to some NP-
hard scheduling problems.

A discrete optimization problem can be described as follows. For a given finite set S and
a given function ¢ : S — R one has to find a solution s* € § with

c(s*) < ¢(s) for all s € S.

'S is called feasible set.

Local search is an iterative procedure which moves from one solution s € S to another
solution repeating this step as long as it seems to be necessary. The possible moves from s
to the next solutions are restricted by a set OP(s) of possible operators op : § — S. Thus,

N(s) := {op(s) | op € OP(s)}

is the set of all possible neighbors of s. The operator sets OP(s),s € S define a neighbor-
hood structure - :

N(s) se§
on the set S.

The simplest local search method is the method of iterative improvement which chooses
the best solution in A/(s) as the solution to move to from s. It stops if no solution in A'(s)
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improves the solution s. In this case sisa local optimum. Unfortunately the value c(s) of
a local optimum may be far away from the optimal value. To avoid this problem simulated
annealing and tabu search allow moves to nonimproving solutions. Sull a disadvantage of
these methods is an ozillation around local optima which results in a slow convergence.

Our approach to overcome these difficulties is to replace the original feasible set Sy by the

" subset S, of all s € S; which are locally optimal with respect to a neighborhood structure’

Ni(s),s € S; on the set S;. Furthermore, we construct new operator sets OPy(s),s € 52
which define a new neighborhood structure A5(s), s € S on the set S

The advantages of such an approach are

e the search space is reduced considerably
o local search methods can be still applied (at a higher level)

e ozillations, appear only at a higher level.

Furthermore, the construction of the operator sets O P,(s) is problem specific, i.e. structural
properties are taken into consideration. A disadvantage is that the method is not a general
purpose method. Different problems have to be treated differently.

A neighborhood structure is connected if for any two feasible solutions s; and s; solution
s, is reachable from solution s; by a sequence of moves. Experiments have shown that in
general a good neighborhood structure must be connected. All neighborhood structures we
are considering are connected.

We apply this approach to the following NP-hard scheduling problems with corresponding
neighborhood structures. ‘

(a) P2 || Cras
P2 || Cmax denotes the problem of scheduling n jobs ¢ = 1,...,n with processing
times pi(i = 1,...,n) on two identical parallel machines such that the makespan 1s
minimized. A feasible solution of this scheduling problem is given by a partitioning of
the job set I = {1,...,n} into two disjoint sets I, and I,. We denote such a partitioning
by (I1,13). 1, is the set of jobs to be processed on machine A, (v = 1,2). Forv=1,2

let s, := Y pi be the total processing time on machine M,. Then max{s;, sz} is the
iel,
makespan of the schedule defined by (I, 1;). We have to find a partitioning (/1, )

such that
max{s;, s;} = max {Z Dis ZP:}

1€l 1€l

is minimized. The problem is show to be NP-hard by a simple reductions from the
partitioning problem. '

For this problem a neighborhood N, is defined by the set S; of all feasible solutions
(I, I;) and the operators move (¢) (i = 1,...,n). move (2) moves job : from the
machine on which 7 is scheduled to the other machine, i.e. :

. [ (I\{i}, Lu{z}) ifie
move(1)(hr, [r) = { (hU{i}, \()) ifie L.
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(b) 1 |precip C

1| prec| Y C: denotes the problem of scheduling n jobs 1,...,n with processing times
p; (¢ = 1,...,n) on one machine such that the mean flow time is minimized. Between
the jobs precedence relations — are given (a precedence relation ¢ — j expresses that
¢ has to be processed before j). A feasible schedule for this problem is given by a
feasible sequence (permutation) = = (m,...,m,) of the jobs which is compatible with
the precedence relation. The corresponding completion times for the job =; is given by
Ci=3Y'_ps, (i=1,....,n). We have to find a feasible sequence 7 such that

Sa=3 3

1=1 i=1 j=1
is minimized.
For this problem a neighborhood is defined by the set S of all feasible sequences 7 and
by the operators ezchange(z), (i = 1,...,n). The operator ezchange(:) will exchange
the jobs which are scheduled in position ¢ and i+1, i.e the sequence 7’ = ezxchange(t)(r)

is defined by
iy k=1

7‘('2.2{71',' fk=141

Tk else

The operator exchange(i) maps a feasible schedule = € S; into a feasible schedule iff
there does not exist a precedence relation =; — 7,4

We define the neighborhood N;(7) by the set of operators

OP,(r) = {exchange(i) |1 =1,..,n = 1; m — 7,4 is not a precedence relation}

(e) 1| X1T
1 ]| 3 |T: denotes the problem of scheduling n jobs 1,...,n on a single machine such
that the total tardiness ) _ T, is minimized. T; = max{0, C; — d} is the tardiness of job
: and C; denotes its completion time. We assume that d; < d, < ... < d,. Then the
following lemma holds.

Lemma 1: Let 1,k be two jobs thh pi < pr and ¢ < k. Then there exists an optimal
solutions where job 1 is processed before job k.

Hence, we can establish a precedence constraint : — k between job i and k if the
condition of Lemma 1 holds. We need only consider the set S; of sequences whlch are
compatible with all constraints established by Lemma 1.

For the problem 1 || _ |T; the neighborhood is now defined on the set of the feasible
sequences S in the same way as in the previous section.

For each neighborhood defined in connection with problems (a), (b) and (c) we will

¢ characterize the local optima
o define a new neighborhood on the set of the local optima

s prove that the new neighborhood is connected.

More details will be discussed in Part 2 of this paper.
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