
A Graphical Approach for Solving Single
Machine Scheduling Problems

Approximately �

Evgeny R. Gafarov ∗ Alexandre Dolgui ∗∗
Alexander A. Lazarev ∗ Frank Werner ∗∗∗

∗ Institute of Control Sciences of the Russian Academy of Sciences,
Profsoyuznaya st. 65, 117997 Moscow, Russia (e-mail: axel73@mail.ru,

lazarev@ipu.ru).
∗∗ Ecole Nationale Superieure des Mines, FAYOL-EMSE,

CNRS:UMR6158, LIMOS, F-42023 Saint-Etienne, France (e-mail:
dolgui@emse.fr)

∗∗∗ Fakultät für Mathematik, Otto-von-Guericke-Universität
Magdeburg, PSF 4120, 39016 Magdeburg, Germany (e-mail:

frank.werner@mathematik.uni-magdeburg.de).

Abstract: For five single machine total tardiness problems a fully polynomial-time approxima-
tion scheme (FPTAS) based on a graphical algorithm is presented. The FPTAS has the best
running time among the known approximation schemes for these problems.

Keywords: Scheduling algorithms, Dynamic programming, FPTAS

1. INTRODUCTION

We consider several single machine total tardiness prob-
lems which can be formulated as follows. We are given
a set N = {1, 2, . . . , n} of n independent jobs that must
be processed on a single machine. Job preemption is not
allowed. The machine can handle only one job at a time.
All jobs are assumed to be available for processing at time
0. For each job j ∈ N , a processing time pj > 0, a weight
wj > 0 and a due date dj > 0 are given.

A feasible solution is described by a permutation π =
(j1, j2, . . . , jn) of the jobs of the set N from which the
corresponding schedule can be uniquely determined by
starting each job as early as possible. Let Cjk (π) =∑k

l=1 pjl be the completion time of job jk in the schedule
resulting from the sequence π. If Cj(π) > dj , then job j is
tardy. If Cj(π) ≤ dj , then job j is on-time. Moreover, let
Tj(π) = max{0, Cj(π) − dj} be the tardiness of job j in
the schedule resulting from sequence π and let GTj(π) =
min{max{0, Cj(π)− dj}, pj}.
In the weighted total tardiness minimization problem the
objective is to find an optimal job sequence π∗ that mini-
mizes weighted total tardiness, i.e., F (π) =

∑n
j=1 wjTj(π).

Similarly, for the total tardiness problem the objective
function F (π) =

∑n
j=1 Tj(π) and for the total late work

problem the objective function F (π) =
∑n

j=1 GTj(π) have
to be minimized. The following special cases of the prob-
lems are also considered:

� Partially supported by RFBR (Russian Foundation for Basic
Research): 11-08-01321, 11-08-13121. The authors are also grateful
to Prof. V. Strusevich for his idea to use the GrA as a base for an
FPTAS.

- minimizing weighted total tardiness when all due
dates are equal, i.e., dj = d, j = 1, 2, . . . , n. This
problem is denoted by 1|dj = d|∑wjTj ;

- the special case B − 1 of the total tardiness problem
1||∑Tj , where p1 ≥ p2 ≥ . . . ≥ pn, d1 ≤ d2 ≤ . . . ≤
dn and dn − d1 ≤ pn;

- the special case B − 1G of the problem 1||∑Tj with
dmax − dmin ≤ pmin, where dmax = maxj∈N{dj},
dmin = minj∈N{dj} and pmin = minj∈N{pj}.

For the NP-hard problem of maximizing weighted total
tardiness 1(no-idle)||max

∑
wjTj, the objective is to find

an optimal job sequence that maximizes weighted total
tardiness, where each feasible schedule starts at time 0
and there is no idle time between the processing of jobs.
Such problems with the maximum criterion have practical
interpretations and applications, but their investigation is
also a theoretically significant task.

All the problems and special cases mentioned above are
NP-hard in the ordinary sense (Gafarov et al. (2012)).
For the special case B − 1, an FPTAS with a running
time of O(n3 logn+n3/ε) is known, see Koulamas (2010).
An FPTAS for the total weighted late work problem with
the same running time was presented in Kovalyov et al.
(1994). An FPTAS for the problem 1|dj = d|∑wjTj with
a running time of O((n6 log

∑
wj)/ε

3) was presented in
Kellerer et al. (2006). These problems can be considered
as particular cases when a complex function Ψ(t)+F (π, t)
has to be minimized. The function F (π, t) corresponds to
one of the above mentioned functions F (π) if the jobs
are processed not from time 0, but from time t. As an
alternative, we have to partition the t-axis into intervals
with the same optimal schedule. For example, the single
machine problem of minimizing the number of late jobs,

when the starting time of the machine is variable, was
consid ered in Hoogeveen et al. (2012). The same situation
arises when it is known that some jobs have to be scheduled
one by one in a ”batch” from an unknown time point
t ∈ [t1, t2], e.g., a set N contains two subsets N1, N2

and an optimal job sequence can be represented as a
concatenation (π1, π2, π3), where {π1}

⋃{π3} = N1 and
{π2} = N2. The jobs from N2 have to be scheduled
according to one of the functions mentioned above. The
graphical and approximation algorithms presented in this
paper can be used both for the initial problems and for
the problems with variable starting time.

Since the main topic of this paper is that of an analy-
sis of approximation algorithms, we recall some relevant
definitions. For the scheduling problem of minimizing a
function F (π), a polynomial-time algorithm that finds a
feasible solution π′ such that F (π′) is at most ρ ≥ 1
times the optimal value F (π∗) is called a ρ-approximation
algorithm; the value of ρ is called a worst-case ratio bound.
If a problem admits a ρ-approximation algorithm, it is
said to be approximable within a factor ρ. A family of ρ-
approximation algorithms is called a fully polynomial-time
approximation scheme, or an FPTAS, if ρ = 1+ ε for any
ε > 0 and the running time is polynomial with respect to
both the length of the problem input and 1/ε.

For a practical realization of some pseudo-polynomial
algorithms with Boolean variables (e.g. a job can be on-
time or tardy) one can use a modification called a graphical
algorithm (GrA) which we present for the problem 1|dj =
d|∑wjTj as well as an FPTAS based on this GrA with a
running time of O(n3/ε). Modifications of these GrA and
FPTAS for the cases B − 1, B − 1G and the problems
1||∑GTj and 1(no-idle)||max

∑
wjTj are also presented.

2. DYNAMIC PROGRAMMING FOR THE PROBLEM
1|DJ = D|∑WJTJ

Lemma 1. There exists an optimal job sequence π for
problem 1|dj = d|∑wjTj that can be represented as a
concatenation (G, x,H), where all jobs j ∈ H are tardy
and Sj ≥ d for all j ∈ H, and all jobs i ∈ G are on-time.
All jobs from set G are processed in non-increasing order
of the values

pj

wj
and all jobs from set H are processed in

non-decreasing order of the values
pj

wj
. The job x starts

before time d and is completed no earlier than time d.

The job x is called straddling. Assume that the jobs are
numbered as follows: p2

w2
≤ p3

w3
≤ . . . ≤ pn

wn
, (*)

where the job with number 1 is the straddling job.

As a corollary from Lemma 1, there is a straddling job
x ∈ N, to which the number 1 will be assigned, such that
for each l ∈ {1, 2, . . . , n}, there exists an optimal schedule
in which all jobs j ∈ {1, 2, . . . , l} are processed from time t
one by one, and there is no job i ∈ {l+1, l+2, . . . , n} which
is processed between these jobs. Thus, we can present a
dynamic programming algorithm (DPA) based on Lemma
1. For each x ∈ N, we number the jobs from the setN \{x}
according to (*) and perform Algorithm 1. Then we choose
a best schedule among the n constructed schedules. At
each stage l, 1 ≤ l ≤ n, of Algorithm 1, we construct a
best partial sequence πl(t) for the set of jobs {1, 2, . . . , l}

and for each possible starting time t of the first job (which
represents a possible state in the DPA). Fl(t) denotes the
weighted total tardiness value for the job sequence πl(t).
Φ1(t) and Φ2(t) are temporary functions, which are used
to compute Fl(t).

Algorithm 1

1. Number the jobs according to order (*);
2. FOR t := 0 TO

∑n
j=2 pj DO

π1(t) := (1), F1(t) := w1 max{0, p1 + t− d};
3. FOR l := 2 TO n DO

FOR t := 0 TO
∑n

j=l+1 pj DO

π1 := (l, πl−1(t+ pl)), π
2 := (πl−1(t), l);

Φ1(t) := wl max{0, pl+ t− d}+Fl−1(t+ pl);

Φ2(t) := Fl−1(t) +wl max{0,
l∑

j=1

pj + t− d};
IF Φ1(t) < Φ2(t) THEN Fl(t) := Φ1(t) and
πl(t) := π1,
ELSE Fl(t) := Φ2(t) and πl(t) := π2;

4. πn(0) is an optimal job sequence for the chosen job x
with the objective function value Fn(0).

Theorem 2. By using Algorithm 1 for each x ∈ N, an
optimal job sequence of the type described in Lemma 1
can be found in O(n2

∑
pj) time.

It is obvious that for some chosen job x ∈ N, in the job
sequence πn(0), the job x cannot be straddling (i.e., either
Sx ≥ d or Cx < d). This means that there exists another
job x′ ∈ N for which the value Fn(0) will be less.

Algorithm 1 can be modified by considering for each
l = 1, 2, . . . , n, only the interval [0, d − pl] instead of the

interval [0,
n∑

i=l+1

pi] since for each t > d − pl, job j is

tardy in any partial sequence πl(t) and the partial sequence
π2 := (πl−1(t), l) is optimal. Thus, the time complexity of
the modified Algorithm 1 is equal toO(nd), and an optimal
schedule can be found in O(n2d) time.

Let UB be an upper bound on the optimal function value
for the problem which is found by the 2-approximation
algorithm of Fathi and Nuttle, i.e., UB ≤ 2F (π∗). If for
some tUB

l ∈ (−∞,+∞) we have Fl(t
UB
l) = UB, then for

each t > tUB
l we have Fl(t) > UB (since t denotes the

starting time of an optimal schedule obtained from the
job sequence πl(t) for jobs 1, 2, . . . , l and Fl(t) denotes the
corresponding value of the monotonic objective function).
So, the states t > tUB

l seem to be unpromising, i.e., for
any job sequence π constructed using these states, we will
have F (π) > UB, i.e., π is not optimal. Thus, we need
to consider different values Fl(t) only for t ∈ [0, tUB

l] and
assume Fl(t) = +∞ for t ∈ (tUB

l ,+∞). If all parameters
pj , wj for all j ∈ N and d are integer, then there are at
most UB + 2 different values Fl(t).

In addition, if there is a point t′ ∈ (−∞,+∞) such that
Fl(t

′) = 0 and Fl(t
′ + 1) > 0, then Fl(t) = 0 for all t ≤ t′

and Fl(t) < Fl(t+1) for all t ≥ t′+1, since all the functions
Fl(t) are monotonic. Thus, we can modify Algorithm 1
as follows. If we will save at each stage l instead of all
states t ∈ [0, t′] only one state t′, then the number of
saved states will be restricted by UB, since for all saved
states t we have Fl(t) < Fl(t + 1). The running time of

Fig. 1. Function Fl(t) in the GrA and in Algorithm 1

the modified algorithm is O(nmin{d, UB}). If we consider
only the states t ∈ [d−∑n

j=1 pj, d] instead of [0, d] at each
stage l, l = 1, 2, . . . , n, then we obtain an optimal solution
for the chosen straddling job for each possible starting time
t ∈ (−∞, tUB

n) in O(nUB) time.

Let π′ be a job sequence, where all n jobs are processed in
non-decreasing order of the values

pj

wj
. Denote by F (π′, d)

the weighted total tardiness for the job sequence π′, where
the processing of the jobs starts at time d. It is obvious that
for this starting time the schedule π′ is optimal. Then, by
using the modified Algorithm 1, we can obtain an optimal
solution for each possible starting time t ∈ (−∞,+∞) in
O(n2F (π′, d)) time. We note that the inequality Fl(t) <
Fl(t + 1) does not necessarily hold for all t > t′ in the
problem 1||∑GTj , i.e., the running time of Algorithm 1
is not restricted by UB for the problem 1||∑GTj .

3. GRA FOR PROBLEM 1|DJ = D|∑WJTJ

The GrA is a modification of Algorithm 1, in which
function Fl(t) is defined for any t ∈ (−∞,+∞) (not only
for integer t). However, we need to compute these values
only at the break points separating intervals in which
function Fl(t) is a linear function of the form Fl(t) =

F k
l (t) = uk

l · (t− tk−1
l)+ bkl . Fl(t) is a continuous piecewise

linear function whose parameters can be described in a
tabular form.

Namely, in each step of the GrA, we store the information
on function Fl(t) for a number of intervals (characterized
by the same best partial sequence and by the same total
weight of tardy jobs) in a tabular form as given in Table 1.

Table 1: Function Fl(t)

k 1 2 ... ml + 1 ml + 2

int. (−∞, t1l] (t1l , t
2
l] ... (tml

l , tml+1
l] (tml+1

l , ∞)

bkl 0 b2l ... bml+1
l ∞

uk
l 0 u2

l ... uml+1
l 0

πk
l π1

l π2
l ... πml+1

l (1, 2, . . . , l)

In Table 1, k denotes the number of the current interval
whose values range from 1 to ml + 2 (where the number
of intervals ml + 2 is defined for each l = 1, 2, . . . , n),

(tk−1
l , tkl] is the kth interval (where t0l = −∞, tml+2

l = +∞
and tml+1

l = tUB
l), bkl , u

k
l are the parameters of the linear

function F k
l (t) defined in the kth interval, and πk

l is the
best sequence of the first l jobs if they are processed from
time t ∈ (tk−1

l , tkl].

These data mean the following. For each above interval,
we store the parameters bkl and uk

l for describing function
Fl(t) and the resulting best partial sequence if the first job

starts in this interval. For each starting time t ∈ (tk−1
l , tkl]

(t0l = −∞) of the first job, we have a best partial sequence
πk
l of the jobs 1, 2, . . . , l with a total weight of the tardy

jobs uk
l and the function value Fl(t) = uk

l ·(t−tk−1
l)+bkl (see

Fig. 1(a)). We have Fl(t) = 0 for t ∈ (t0l , t
1
l]. Recall that

function Fl(t) is defined not only for integers t, but also for
real numbers t. For simplicity of the following description,
we consider the whole t-axis, i.e., t ∈ (−∞,+∞). This
table describes a function Fl(t) which is a continuous,
piecewise-linear function in the interval (−∞, tUB

l]. The

points t1l , t
2
l , . . . , t

ml+1
l are called break points, since there

is a change from value uk−1
l to uk

l (which means that
the slope of the piecewise-linear function changes). Note
that some of the break points tkl can be non-integer. To
describe each linear segment, we store its slope uk

l and its

function value bkl = Fl(t) at the point t = tk−1
l . So, in

the table b1l = b2l < b3l < . . . < bml+1
l < UB holds, since

t1l < t2l < . . . < tml+1
l .

In the GrA, the functions Fl(t) reflect the same func-
tional equations as in Algorithm 1, i.e., for each t ∈
Z
⋂
[0,

∑n
j=2 pj], the function Fl(t) has the same value

as in Algorithm 1 (see Fig. 1), but these functions are
now defined for any t ∈ (−∞,+∞). As a result, often a
large number of integer states is combined into one interval
(describing a new state in the resulting algorithm) with the
same best partial sequence. In Fig. 1 (a), the function Fl(t)
from the GrA is presented and in Fig. 1 (b), the function
Fl(t) from Algorithm 1 is displayed.

The function Φ1(t) is obtained from Fl−1(t) by the follow-
ing operations. We shift the diagram of function Fl−1(t)
to the left by the value pl and in the table for Fl−1(t)
and add a column which results from the new break point
t′ = d − pl. If tsl−1 − pl < t′ < ts+1

l−1 − pl, s ≤ ml−1,

then we have two new intervals of t in the table for Φ1(t):
(tsl−1 − pl, t

′] and (t′, ts+1
l−1 − pl] (for s = ml−1 + 1, we

have (tUB
l−1 − pl, t

′] and (t′,+∞)). This means that we first

replace each interval (tkl−1, t
k+1
l−1] by (tkl−1 − pl, t

k+1
l−1 − pl]

in the table for Φ1(t), and then replace the column with
the interval (tsl−1 − pl, t

s+1
l−1 − pl] by two new columns with

the intervals (tsl−1 − pl, t
′] and (t′, ts+1

l−1 − pl]. Moreover,

we increase the values us+1
l−1 , u

s+2
l−1 , . . . , u

ml−1+1
l−1 by wl, i.e.,

the total weight of tardy jobs (and thus the slope of the
function) increases. The corresponding partial sequences
π1 are obtained by adding job l as the first job to each
previous partial sequence.

The function Φ2(t) is obtained from function Fl−1(t) by
the following operations. In the table for Fl−1(t), we add
a column which results from the new break point t′′ = d−∑l

i=1 pi. If t
h
l−1 < t′′ < th+1

l−1 , h ≤ ml−1, then there are

two new intervals of t in the table for Φ2(t): (thl−1, t
′′]

and (t′′, th+1
l−1] (for h = ml−1 + 1, we have (tUB

l−1, t
′′] and

(t′′,+∞)). This means that we replace the column with the

interval (thl−1, t
h+1
l−1] by two new columns with the intervals

(thl−1, t
′′] and (t′′, th+1

l−1].

Moreover, we increase the values uh+1
l−1 , u

h+2
l−1 , . . . , u

ml−1+1
l−1

by wl, i.e., the total weight of tardy jobs increases. The
corresponding partial sequences π2 are obtained by adding
job l at the end to each previous partial sequence. We
construct a table that corresponds to the function Fl(t) =
min{Φ1(t),Φ2(t)} as follows. We consider functions Φ1(t)
and Φ2(t) on all resulting intervals from both tables and
search for intersection points of the diagrams of these
functions.

To be more precise, we construct a list t1, t2, . . . , te, t1 <
t2 < . . . < te, of all break points t from the tables for
Φ1(t) and Φ2(t), which are left / right boundary points
of the intervals given in these tables. Then we consider
each interval (ti, ti+1], i = 1, 2, . . . , e−1, and compare the
two functions Φ1(t) and Φ2(t) over this interval. Let the
interval (ti, ti+1] be contained in (tz−1, tz] from the table
for Φ1(t) and in (ty−1, ty] from the table for Φ2(t). Then
Φ1(t) = (t− tz−1) ·uz + bz and Φ2(t) = (t− ty−1) ·uy + by.
Choose the column from both tables corresponding to
the maximum of the two functions in (ti, ti+1] and insert
this column into the table for Fl(t). If there exists an
intersection point t′′′ of Φ1(t) and Φ2(t) in this interval,
then insert two columns with the intervals (ti, t

′′′] and
(t′′′, ti+1]. This step requires O(ml−1) operations.

Let m be the number of columns in the resulting table
of Fl(t) and for k, 1 ≤ k < ml, the inequality bkl <

UB ≤ bk+1
l holds. From the equality UB = (tUB

l −
tk−1
l)uk

l + bkl , we compute the value tUB
l . In the column

with the interval (tk−1
l , tkl] (column k), assign tkl = tUB

l and
substitute all the columns k+1, k+2, . . . ,m, by one column
with the interval (tUB

l ,+∞), bk+1
l = +∞, uk+1

l = 0 and

πk+1
l = (1, 2, . . . , l). So, in the resulting table, there will

be no more then UB + 2 columns if all the parameters of
the problem are integer.

In the table corresponding to function Fn(t) we determine
the column (tkn, t

k+1
n], where tkn < 0 ≤ tk+1

n . Then we have
an optimal sequence π∗ = πk+1

n for the chosen job x and
the optimal function value F (π∗) = bk+1

n + (0− tkn) · uk+1
n .

Theorem 3. By using the GrA for each x ∈ N, an optimal
job sequence of the type described in Lemma 1 can be
found in O(n2F ∗) time, where F ∗ is the optimal objective
function value.

4. ADVANTAGES OF GRA FOR 1|DJ = D|∑WJTJ

In each step l = 1, 2, . . . , n of the GrA, we do not
consider all points t ∈ [0, d], t ∈ Z, but only points
from the interval in which the optimal partial solution
changes or where the resulting functional equation of the
objective function changes. So, the main difference is that
we operate not with independent values F in each of
the points t, but with functions which are transformed in
each step analytically (according to their analytical form),
which can have obvious advantages. For example, let us
minimize a function Ψ(t) + F (π, t), where the function
F (π, t) corresponds to a function F (π) when the jobs are
processed not starting from time 0, but from time t. If the
function F (t) is presented analytically (not in a tabular
form (t, F)) and the function Ψ(t) is presented analytically
as well, then the search for the minimum of Ψ(t)+F (π, t)
can be made in shorter time.

Moreover, such an approach has the following advantages
when compared with Algorithm 1 (DPA):

1. GrA can solve instances, where (some of) the param-
eters pj , wj , j = 1, 2, . . . , n or/and d are not in Z.

2. The running time of the GrA for two instances with
the parameters {pj, wj , d} and {pj · 10const ± 1, wj ·
10const±1, d·10const±1}, const > 1, is the same while
the running time of the DPA will be 10const times
larger in the second case. Thus, one can usually solve
considerably larger instances with the GrA.

3. Properties of an optimal solution can be taken into
account, and sometimes the GrA has even a polyno-
mial time complexity, or we can at least essentially
reduce the complexity of the standard DPA.

4. Unlike DPA, it is possible to construct a FPTAS
based on GrA easily which is presented in Section
5.

Let us consider another type of a DPA. This algorithm
generates iteratively some sets of states. In every iteration
l, l = n, n−1, . . . , 1, a set of states is generated. Each state
can be represented by a string of the form (t, F), where t
is the completion time of the last known job scheduled
in the beginning of a schedule and F is the value of the
function, provided that the early jobs start at time 0 and
the last known late job completes exactly at time

∑n
j=1 p.

This algorithm can be described as follows:

Alternative DPA

1. Number the jobs according to order (*);
2. Put the state (0, 0) into the set of states Vn+1.
3. FOR l := n TO 1 DO

FOR each state (t, F) from the set of states Vl+1

DO
Put a state [t+pl, F +wl max{0, t+pl−d}];
Put a state [t, F + wl max{0,∑n

j=1 pj −
(
∑l−1

j=1 pj − t)− d}];
4. Find F ∗ = min{F |(t, F) ∈ V1}.

We need to consider only states, where t ≤ d and F ≤ UB.
If in a list Vl, there are two states with the same objective
function value (t1, F

′) and (t2, F
′) and t2 > t1, then the

state (t2, F
′) can be removed from consideration. So, the

running time of the Alternative DPA is O(nmin{d, F ∗})
which corresponds to the running time of the GrA (note
that the GrA can be easily modified to consider only points
t ∈ [0, d]). However, in the GrA some of the possible but
unpromising states are not considered and, in contrast to
the alternative DPA, the GrA finds all optimal schedules
for all t ∈ [−∞, tUB

n] in O(nF ∗) time. So, the alternative
DPA is not effective for the problems of minimizing a
complex function Ψ(t) + F (π, t).

5. AN FPTAS FOR PROBLEM 1|DJ = D|∑WJTJ

The idea of the FPTAS is as follows. Let δ = εUB
2n .

To reduce the time complexity of the GrA, we have to
diminish the number of columns considered, which is the
number of different objective function values 0 = b1l =

b2l , b
3
l , . . . , b

ml+1
l = UB. If we consider not the original

values bkl but the values bkl which are rounded up or down
to the nearest multiple of δ values bkl , there are no more

than UB
δ = 2n

ε different values bkl . Then we will be able to
convert the table Fl(t) into a similar table with no more
than 4n

ε columns. Furthermore, for such a modified table

(function) F ′(t), we will have |F (t)− F ′(t)| < δ ≤ εF (π∗)
n .

If we do the rounding and modification after each stage of
the GrA, then the cumulative error will be no more than
nδ ≤ εF (π∗), and the total running time of n runs of the

GrA will be O(n
3

ε), i.e., an FPTAS is obtained.

By transforming the GrA, we save the approximated
functions FA

l (t) in the same tabular form but without the
last row describing an optimal partial job sequence πk

l .

FPTAS (as a modification of the GrA).

Assume that we have obtained a table for a function
Fl(t) after stage l with the objective function values

b1l , b
2
l , . . . , b

ml+1
l . If ml > 4n

ε , then do the following. Round

all the values bkl from Table 1 to the nearest multiple

of δ. Let the values b1l , b
2
l , . . . , b

ml+1
l be obtained, where

b1l ≤ b2l ≤ . . . ≤ bml+1
l . We modify the table FA

l (t) as

follows. Assume that, for k1 < k2, we have bk1

l < bk1+1
l =

. . . = bk2

l < bk2+1
l . We substitute the columns which

correspond to the values bk1

l , . . . , bk2−1
l for the two columns

presented in Table 2.

Table 2: Substitution of columns

int. k ... (tk1−1
l , tk1

l] (tk1

l , tk2−1
l] ... (tUB

l ,∞)

bkl ... bk1

l bk2

l ... ∞
uk
l ... u =

b
k2
l

−b
k1
l

t
k1
l

−t
k1−1

l

0 ... 0

In fact, in the modification we substitute some linear
fragments which follow one by one and are close (in terms
of the absolute error which is ≤ δ/2) to the same line by
this line. Let F ′

l (t) be the function obtained at stage l
in the modified algorithm before rounding and let FA

l (t)
describe the rounded function.

Lemma 4. For all t ∈ (tk1−1
l , tk2−1

l], we have |FA
l (t) −

F ′
l (t)| < δ/2.

Before the next stage l + 1, we assign F ′
l (t) := FA

l (t).
Assume that functions Fl(t), l = 1, 2, . . . , n, are exact and
constructed by the original GrA. Similarly, FA

l (t), l =
1, 2, . . . , n, are approximated functions constructed by the
modified algorithm.

Lemma 5. For each l, l = 1, 2, . . . , n, and all t ∈
(−∞,+∞), we have |FA

l (t)− Fl(t)| ≤ l · δ/2.
Let π∗ be an optimal job sequence for the chosen strad-
dling job x.

Lemma 6. Inequality F (π′) − F (π∗) ≤ n · δ ≤ n 2ε·F (π∗)
2n

holds.

Theorem 7. By using the modified GrA for each x ∈ N, a
job sequence π′ of the type described in Lemma 1 will be

found in O(n
3

ε) time, where F (π′) ≤ (1 + ε)F (π∗).

The running time O(n
3

ε) is obtained as follows. The
modified GrA is used n times for each job x ∈ N . The
running time of the modified GrA depends on n and the

number of columns in the tables which describe functions
FA
l (t). The number of columns does not exceed O(nε).

6. ALGORITHMS FOR THREE SPECIAL CASES

Lemma 8. There exists an optimal job sequence π for
the special case B − 1G that can be represented as a
concatenation (G, x,H), where all jobs j ∈ H are tardy
and all jobs i ∈ G are on-time. All jobs from set G are
processed in non-increasing order of the values pj (LPT
order) and all jobs from set H are processed in non-
decreasing order of the values pj (SPT order).

The job x is called straddling.

Lemma 9. (Gafarov et al. (2012)) There exists an optimal
job sequence π for the special case B − 1 that can be
represented as a concatenation (G,H). All jobs from the
set G are processed in LPT order and all jobs from the set
H are processed in SPT order.

Assume that for the case B − 1G, the jobs are numbered
as follows: p1 ≥ p2 ≥ . . . ≥ pn.

Lemma 10. For the special cases B − 1 and B − 1G
and a job sequence πSPT = (n, n − 1, . . . , 1), inequality
F (πSPT) ≤ 3F (π∗) holds.

Without loss of generality, we will consider only cases
where in a job sequence πSPT at least two jobs are tardy.

Lemma 11. (Gafarov et al. (2012)) There exists an op-
timal job sequence π for the problem 1||∑GTj that can
be represented as a concatenation (G,H), where all jobs
j ∈ H are tardy and GTj(π) = pj. For all jobs i ∈ G,
we have 0 ≤ GTi(π) < pi. All jobs from the set G are
processed in EDD (earliest due date) order and all jobs
from the set H are processed in LDD (last due date) order.

Let for the problem 1||∑GTj the jobs be numbered as
follows: d1 ≤ d2 ≤ . . . ≤ dn and let πEDD = (1, 2, . . . , n).
Denote by T ∗ the maximal tardiness of a job in the
sequence πEDD, i.e., T ∗ = maxj∈N{GTj(πEDD)}.
Lemma 12. For problem 1||∑GTj , the following inequal-
ity holds: F (πEDD) ≤ nF (π∗).
Lemma 13. (Gafarov et al. (2012)) There exists an opti-
mal job sequence π for the problem 1(no-idle)||max

∑
wjTj

that can be represented as a concatenation (G,H), where
all jobs j ∈ H are tardy and all jobs i ∈ G are on-time. All
jobs from the set G are processed in non-increasing order
of the values

wj

pj
and all jobs from the set H are processed

in non-decreasing order of the values
wj

pj
.

For problem 1(no-idle)||max
∑

wjTj, the value LBmaxTT

= maxj∈N (wj(
∑n

i=1 pi − dj)) is a lower bound. Then
UBmaxTT = nLBmaxTT is an upper bound on the optimal
objective function value. To solve these problems, Algo-
rithms 1, GrA and FPTAS can be modified as follows.

For the special case B − 1G:

- DPA. Use the fact described in Lemma 8. In Al-
gorithm 1, we number the jobs according to the
order p2 ≤ p3 ≤ . . . ≤ pn. Assume that F1(t) :=
max{0, p1 + t − d1}, Φ1(t) := max{0, pl + t − dl} +

Fl−1(t+pl) and Φ2(t) := Fl−1(t)+max{0,
l∑

j=1

pj+t−

dl}. All other steps of the algorithm remain the same.
Remember that wj = 1 for all j ∈ N for the problem
1||∑Tj . The running time of the modified Algorithm
1 is O(ndmax). Since it is necessary to consider n
straddling jobs x ∈ N , an optimal job sequence can
be found in O(n2dmax) time by using the modified
Algorithm 1;

- GrA. The GrA remains the same. The parameters
uk
l denote the number of tardy jobs which is equal to

the total weight of the tardy jobs, since wj = 1 for all
j ∈ N . In addition, assume that UB = F (πSPT). By
using the GrA, an optimal schedule can be found in
O(n2 min{dmax, F

∗}) time;

- FPTAS. In the FPTAS, assume that δ = εF (πSPT)
3n .

Since the GrA is without changes, the time complex-
ity of the FPTAS based on the GrA for the special
case B − 1G has a running time of O(n3/ε), which is
less than the running time O(n7/ε) of the FPTAS for
the general case presented by Lawler.

For the special case B − 1:

- DPA. Use the fact described in Lemma 9. Algo-
rithm 1 is modified as for the special case B − 1G.
The running time of the modified Algorithm 1 is
O(ndmax). Since there is no straddling job, an optimal
job sequence can be found in O(ndmax) time by using
the modified Algorithm 1 only once;

- GrA. The GrA remains the same as for the special
case B − 1G. By the GrA, an optimal schedule can
be found in O(nmin{dmax, F

∗}) time;
- FPTAS. The FPTAS remains the same as for the
special case B − 1G. Since there is no straddling job,
the FPTAS for the special case B − 1 has a running
time of O(n2/ε), which is less than the running time
of O(n3 logn + n3/ε) of the FPTAS mentioned by
Koulamas.

For the problem 1||∑GTj:

- DPA. Use the fact described in Lemma 11. In
Algorithm 1, we number the jobs according to
the order d1 ≥ d2 ≥ . . . ≥ dn. Assume that
F1(t) := min{p1,max{0, p1 + t − d1}}, Φ1(t) :=
min{pl,max{0, pl+t−dl}}+Fl−1(t+pl) and Φ2(t) :=

Fl−1(t)+min{pl,max{0,
l∑

j=1

pj+t−dl}}. The running
time of the modified Algorithm 1 is O(ndmax). Since
there is no straddling job, an optimal job sequence
can be found in O(ndmax) time by using the modified
Algorithm 1 only once;

- GrA. The GrA remains almost the same. In addi-
tion to the break points t′ and t′′, two new break

points τ ′ = dl and τ ′′ = dl −
l−1∑
j=1

pj are considered.

The slope uk
l of the function Fl(t) is changed ac-

cording to the function min{pl,max{0, pl + t − dl}}.
By the GrA, an optimal schedule can be found in
O(nmin{dmax, nF

∗}) time, since UB = F (πEDD) ≤
nF (π∗) and there are at most 2UB + 2 columns in
each table Fl(t) considered in the GrA;

- FPTAS. Here, we assume that δ = εF (πEDD)
n2 . So, the

FPTAS has a running time of O(n3/ε).

For the problem 1(no-idle)||max
∑

wjTj :

- DPA. We use the fact described in Lemma 13. In
Algorithm 1, we enumerate the jobs according to the
order w1

p1
≤ w2

p2
≤ . . . ≤ wn

pn
. We assume that F1(t) :=

w1 max{0, p1 + t − d1}, Φ1(t) := wl max{0, pl +
t − dl} + Fl−1(t + pl) and Φ2(t) := Fl−1(t) +

wl max

{
0,

l∑
i=1

pi + t− dl

}
. Since total tardiness is

maximized, we have Fl(t) := max{Φ1(t),Φ2(t)}.
The running time of the modified Algorithm 1 is
O(ndmax). Since there is no straddling job, an optimal
job sequence can be found in O(ndmax) time by using
the modified Algorithm 1 only once;

- GrA. The GrA remains the same as for the problem
1|dj = d|∑wjTj. We have Fl(t) = max{Φ1(t),Φ2(t)}.
It is known (Gafarov et al. (2012)) that the functions
Fl(t) represent continuous, piecewise-linear and con-
vex functions. By the GrA, an optimal schedule can
be found in O(nmin{dmax, nF

∗,
∑

wj}) time.

- FPTAS. In the FPTAS, assume that δ = εUBmaxTT

n2 .

So, the FPTAS has a running time of O(n3/ε).

In Gafarov et al. (2012), GrA for 8 scheduling problems
and FPTAS for 6 scheduling problems are presented.

7. CONCLUSION

In this paper, an FPTAS was presented, which can be
used with some simple modifications for several single
machine problems. The FPTAS is based on a graphical
approach. The idea of such a modification of graphical
algorithms enables us to construct an FPTAS easily. The
graphical approach can be applied to problems, where a
pseudo-polynomial algorithm exists and Boolean variables
are used in the sense that yes/no decisions have to be
made (e.g., a job may be completed on-time or not). For
the single machine problem of maximizing total tardiness,
the graphical algorithm improved the complexity from
O(n

∑
pj) to O(n2). Thus, the graphical approach has not

only a practical but also a theoretical importance.

REFERENCES

E.R. Gafarov, A. Dolgui and F. Werner. Dynamic Pro-
gramming Approach to Design FPTAS for Single Ma-
chine Scheduling Problems. CNRS Report, 26 pp.
(2012).

C. Koulamas. The Single-Machine Total Tardiness
Scheduling Problem: Review and Extensions. European
Journal of Operational Research, 202, 1 – 7 (2010).

M. Y. Kovalyov, C. N. Potts and L. N. van Wassenhove. A
Fully Polynomial Approximation Scheme for Scheduling
a Single Machine to Minimize Total Weighted Late
Work. Mathematics of Operations Research, Vol. 19,
No. 1, 86–93 (1994).

H. Hoogeveen and V. T’Kindt. Minimizing the Number
of Late Jobs When the Starting Time of the Machine is
Variable. Proceedings PMS, 235 – 238 (2010).

H. Kellerer and V.A. Strusevich. A Fully Polynomial
Approximation Scheme for the Single MachineWeighted
Total Tardiness Problem with a Common Due Date.
Theoretical Computer Science, 369, 230 – 238 (2006).

