
SOLVING AN INVESTMENT OPTIMIZATION PROBLEM BY AN IMPROVED
GRAPHICAL APPROACH

Abstract ID: 121

Evgeny R. Gafarova, Alexandre Dolguib, Alexander A. Lazareva, Frank Wernerc

a Institute of Control Sciences of the Russian Academy of Sciences, Profsoyuznaya st. 65, 117997 Moscow, Russia,
b Ecole Nationale Superieure des Mines, FAYOL-EMSE, CNRS:UMR6158, LIMOS, F-42023 Saint-Etienne, France,

c Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg, PSF 4120, 39016 Magdeburg, Germany

Abstract
In this paper, a graphical algorithm (GrA) is presented for an investment optimization problem. This algorithm is
based on the same Bellman equations as the best known dynamic programming algorithm (DPA) for the problem
but the GrA has several advantages in comparison with the DPA. Based on this GrA, a fully-polynomial time
approximation scheme is proposed having the best known running time. The idea of the GrA presented can also
be used to solve some similar scheduling or lot-sizing problems in a more effective way.

Keywords: Algorithm, Knapsack Problem, Investment Problem, Scheduling

1 Introduction

The Project Investment Problem can be formulated as
follows. A set N of n potential projects and an invest-
ment budget (amount) A > 0, A ∈ Z, are given. For each
project j, j = 1, . . . , n, a profit function fj(x), x ∈ [0, A],
is given, where the value fj(x

′) denotes the profit re-
ceived if the amount x′ is invested into the project j. The
objective is to determine an amount xj ∈ [0, A], xj ∈ Z,
for each project j ∈ N such that

∑n
j:=1 xj ≤ A and the

total profit
∑n

j:=1 fj(xj) is maximized.
In this paper, we deal with piecewise linear functions

fj(x). Suppose that the interval [0, A] can be written as

[0, A] = [t0j , t
1
j]
⋃

(t1j , t
2
j]
⋃

. . .
⋃

(tk−1
j , tkj]

⋃

. . .
⋃

(t
kj−1
j , t

kj

j]

such that the profit function has the form fj(x) =
bkj + uk

j (x − tk−1
j) for x ∈ (tk−1

j , tkj], where k is the
number of the interval, bjk is the value of the function
at the beginning of the interval, and uk

j is the slope of
the function. Without loss of generality, assume that
b1j ≤ b2j ≤ . . . ≤ b

kj

j , tkj ∈ Z, j ∈ N, k = 1, 2, . . . , kj , and
that tkj

j = A, j = 1, 2, . . . , n.
A special case of this problem is similar to the well-

known bounded knapsack problem:

maximize
∑n

j:=1 pjxj

s.t.
∑n

j:=1 wjxj ≤ A,

xj ∈ [0, bj], xj ∈ Z, j = 1, 2, . . . , n,

(1)

for which a dynamic programming algorithm (DPA) of
time complexity O(nA) is known [3].

The following problem is also similar to the problem

under consideration:

minimize
∑n

j:=1 fj(xj)

s.t.
∑n

j:=1 xj ≥ A,

xj ∈ [0, A], xj ∈ Z, j = 1, 2, . . . , n,

(2)

where fj(xj) are piecewise linear as well. For this prob-
lem, a DPA with a running time of O(

∑
kjA) [4] and

a fully polynomial-time approximation scheme (FPTAS)
with a running time of O((

∑
kj)

3/ε) [5] are known.
In this paper, we present an alternative solution algo-

rithm with a running time of O(
∑

kjA) and an FPTAS
based on this solution algorithm with a running time of
O(

∑
kjn log log n/ε).

The remainder of the paper is as follows. In Section
2, we present the Bellman equations to solve the problem
under consideration. In Section 3, a graphical algorithm
(GrA) is presented. In Section 4, an FPTAS based on
this GrA is derived.

2 Dynamic programming algo-
rithm

In this section, we present a DPA for the problem consid-
ered. For any project j and any state t ∈ [0, A], we de-
fine Fj(t) as the maximal profit incurred for the projects
1, 2, . . . , j, when the remaining budget available for the
projects j + 1, j + 2, . . . , n is equal to t. Thus, we have:

Fj(t) = max
∑j

h:=1 fh(xh)

s.t.
∑j

h:=1 xh ≤ A− t,

xh ≥ 0, xh ∈ Z, h = 1, 2, . . . , j.

(3)

We define Fj(t) = 0 for t /∈ [0, A]. Then we have the
following recursive equations:

Fj(t) = maxx∈[0,A−t]{fj(x) + Fj−1(t+ x)}
= max

1≤k≤kj

max
x∈(tk−1

j ,tkj]
⋂
[0,A−t]

{bkj − uk
j t

k−1
j + uk

j · x+ Fj−1(t+ x)},
j = 1, 2, . . . , n.

(4)

Lemma 1 All functions Fj(t), j = 1, 2, . . . , n, are non-
increasing on the interval [0, A].

The proof of this lemma immediately follows from the
definition of the functions Fj(t).

The running time of the DPA using such a type of
Bellman equations is O(

∑
kjA) if we use an idea from

[4].

3 Graphical algorithm
In this section, we present a GrA which constructs the
functions Fj(t), j = 1, 2, . . . , n, in a more effective way
in comparison with the DPA. Below we prove that the
functions Fj(t), j = 1, 2, . . . , n, constructed in the GrA
are piecewise linear (see Lemma 4).

Any piecewise linear function ϕ(x) considered in this
paper can be defined by three sets of numbers: a set of
break points I (at each break point, a new linear segment
of the piecewise linear function begins), a set of slopes U
and a set of values of the function at the beginning of the
interval B. Let the notation I[k] denote the k-th element
in the ordered set I. The same notations will be used for

the sets U and B as well. The notation ϕ.I[k] denotes
the k-th element of the set I of the function ϕ(x). Then,
for example, for x ∈ (tk−1

j , tkj] = (fj .I[k − 1], fj .I[k]], we
have

fj(x) = fj .B[k] + fj .U [k](x− fj .I[k]).

Note that

ϕ.I[k] < ϕ.I[k+1], k = 1, . . . , |ϕ.I|−1 and kj = |fj .I|.

In each step j, j = 1, 2, . . . , n, of the subsequent algo-
rithm, the temporary piecewise linear functions Ψi

j and
Φi

j are constructed. Recall that the functions Fj(t), j =
1, 2, . . . , n, constructed in the GrA are piecewise linear
as well. For t ∈ Z, their values are equal to the values of
the functions Fj(t) considered in the DPA.

Let ϕ.I[−1] = 0 and ϕ.I[|ϕ.I|+1] = A. Remind that
ϕ.I[|ϕ.I|] = A. The points t ∈ ϕ.I and the other end
points of the intervals with the piecewise linear functions
considered in this article will be called break points. To
construct a function in the GrA means to compute their
sets I, U and B.

Graphical algorithm

1. Let F0(t) = 0, i.e., F0.I := {A}, F0.U := {0}, F0.B := {0};
2. FOR j := 1 TO n DO

2.1. FOR k := 1 TO kj DO

2.1.1. Construct the temporary function Ψk
j (t) = fj .B[k] − fj .U [k] · fj .I[k − 1] + fj .U [k] · t + Fj−1(t)

according to Procedure 2.1.1.;
2.1.2. Construct the temporary function Φk

j (t) = max
x∈(fj .I[k−1],fj .I[k]]

⋂
[0,A−t]

{Ψk
j (t + x) − fj .U [k] · t} ac-

cording to Procedure 2.1.2.;
2.1.3. IF k = 1 THEN Fj(t) := Φk

j (t) ELSE Fj(t) := max{Fj(t),Φ
k
j (t)}.

2.2. Modify the sets I, U,B of the function Fj(t) according to Procedure 2.2.

3. The optimal objective function value is equal to Fn(0).

Procedure 2.1.1.

Given are k and j;

Ψk
j .I = ∅, Ψk

j .U = ∅ and Ψk
j .B = ∅.

FOR i := 1 TO |Fj−1.I| DO

add the value Fj−1.I[i] to the set Ψk
j .I;

add the value fj .B[k]− fj .U [k] · fj .I[k − 1] + fj .U [k] · Fj−1.I[i] + Fj−1.B[i] to the set Ψk
j .B;

add the value fj .U [k] + Fj−1.U [i] to the set Ψk
j .U ;

In Procedure 2.1.1., we shift the function Fj−1(t) up by the value fj .B[k] − fj .U [k] · fj .I[k − 1] and increase all
slopes in its diagram by fj .U [k]. If all values t ∈ Fj−1.I are integer, then all values from the set Ψi

j .I are integer as
well. It is obvious that Procedure 2.1.1. can be performed in O(|Fj−1.I|) time.

Before describing Procedure 2.1.2., we present Procedure FindMax in which the maximum function ϕ(t) of two
linear fragments ϕ1(t) and ϕ2(t) is constructed.

Procedure FindMax

1. Given are the functions ϕ1(t) = b1 + u1 · t and ϕ2(t) = b2 + u2 · t and an interval (t′, t′′]. Let u1 ≤ u2;

2. IF t′′ − t′ ≤ 1 THEN RETURN ϕ(t) = max{ϕ1(t
′′), ϕ2(t

′′)}+ 0 · t defined on the interval (t′, t′′];

3. Find the intersection point t∗ of ϕ1(t) and ϕ2(t);

4. IF t∗ does not exist OR t∗ /∈ (t′, t′′] THEN

IF b1 + u1 · t′ > b2 + u2 · t′ THEN RETURN ϕ(t) = ϕ1(t) defined on the interval (t′, t′′];

ELSE RETURN ϕ(t) = ϕ2(t) defined on the interval (t′, t′′];

5. ELSE

IF t∗ ∈ Z THEN

ϕ(t) := ϕ1(t) on the interval (t′, t∗];
ϕ(t) := ϕ2(t) on the interval (t∗, t′′];
RETURN ϕ(t);

ELSE IF t∗ /∈ Z THEN

ϕ(t) := ϕ1(t) on the interval (t′, bt∗c];
ϕ(t) := b2 + u2 · bt∗c+ 0 · t on the interval (bt∗c − 1, bt∗c];
ϕ(t) := ϕ2(t) on the interval (bt∗c, t′′];
RETURN ϕ(t);

If t∗ exists but t∗ /∈ (t′, t′′], then ϕ1(t
′) > ϕ1(t

′), since u1 ≤ u2. So, if both points t′ and t′′ are integer, then ϕ.I
contains only integer break points t. The running time of Procedure FindMax is constant.

Procedure 2.1.2.

2.1.2.1. Given are k, j and Ψk
j (t);

2.1.2.2. Φk
j .I := ∅, Φk

j .U := ∅ and Φk
j .B := ∅;

2.1.2.3. s′ := 0, tleft := s′ + fj .I[k − 1], tright := min{s′ + fj .I[k], A};
2.1.2.4. Let T ′ = {Ψk

j .I[v],Ψ
k
j .I[v + 1], . . . ,Ψk

j .I[w]} be the maximal subset of Ψk
j .I, where tleft < Ψk

j .I[v] < . . . <

Ψk
j .I[w] < tright,

Let T := {tleft}
⋃
T ′ ⋃{tright};

2.1.2.5. WHILE s′ ≤ A DO

2.1.2.6. IF T ′ = ∅ THEN let
w + 1 = argmaxi=1,2,...,|Ψk

j .I|{Ψk
j .I[i]|Ψk

j .I[i] > tright}
and v = argmaxi=1,2,...,|Ψk

j .I|{Ψk
j .I[i]|Ψk

j .I[i] > tleft};
2.1.2.7. IF w + 1 is not defined THEN let w + 1 = |Ψk

j .I|;
2.1.2.8. IF v is not defined THEN let v = |Ψk

j .I|;
2.1.2.9. IF tleft < A THEN εleft := Ψk

j .I[v]− tleft ELSE εleft := A− s′;

2.1.2.10. IF tright < A THEN εright := Ψk
j .I[w + 1]− tright ELSE εright := +∞;

2.1.2.11. ε := min{εleft, εright};

2.1.2.12. IF tleft < A THEN

bleft := Ψk
j .B[v] + Ψk

j .U [v] · (tleft −Ψk
j .I[v − 1])− fj .U [k] · s′

ELSE bleft := 0;

2.1.2.13. IF tright < A THEN

bright := Ψk
j .B[w + 1] + Ψk

j .U [w + 1] · (tright −Ψk
j .I[w])− fj .U [k] · s′

ELSE bright := 0;

2.1.2.14. IF T ′ = ∅ THEN binner := 0 ELSE

binner := max
s=v,v+1,...,w

{Ψk
j .B[s] + Ψk

j .U [s] · (Ψk
j .I[s]−Ψk

j .I[s− 1])} − fj .U [k] · s′;

2.1.2.15. Denote function ϕleft(x) := bleft − (fj .U [k]−Ψk
j .U [v]) · x. IF tleft = A THEN ϕleft(x) := 0;

2.1.2.16. Denote function ϕright(x) := bright− (fj .U [k]−Ψk
j .U [w+1]) ·x. IF tright = A THEN ϕright(x) := 0;

2.1.2.17. Denote function ϕinner(x) := binner − fj .U [k] · x. IF T ′ = ∅ THEN ϕinner(x) := 0;

2.1.2.18. Construct the piecewise linear function

ϕmax(x) := max
x∈[0,ε]

{ϕleft(x), ϕright(x), ϕinner(x)}

according to Procedure FindMax;

2.1.2.19. add the values from ϕmax.I increased by s′ to the set Φk
j .I;

2.1.2.20 add the values from ϕmax.B to the set Φk
j .B;

2.1.2.21. add the values from ϕmax.U to the set Φk
j .U ;

2.1.2.22. IF ε = εleft THEN exclude Ψk
j .I[v] from the set T and v := v + 1;

2.1.2.23. IF ε = εright THEN include Ψk
j .I[w + 1] to the set T and w := w + 1;

2.1.2.24. s′ := s′ + ε.

2.1.2.25. tleft := s′ + fj .I[k − 1], tright := min{s′ + fj .I[k], A};
2.1.2.26. Modify the function Φk

j according to Procedure 2.2.

In fact, in Procedure 2.1.2., we do the following.
When we shift s′ to the right, we shift the interval
I ′ = [tleft, tright] of the length fj .I[k] − fj .I[k − 1]. We
have to use the values Ψk

j (x) for x ∈ T ′ to calculate
Φk

j (t) at the point t = s′. Since Ψk
j (x) is piecewise lin-

ear, it is only necessary to consider the values Ψk
j (x) at

the break points belonging to T ′ and at the end points of
the interval T ′. So, if we shift s′ to the right by a small
value x ∈ [0, ε] such that all the break points remain the
same, then the value Φk

j (t) will be changed according to
the value ϕmax(x). Procedure 2.1.2. uses the following
Procedure 2.2.

Procedure 2.2.
Given is Fj(t);
FOR k := 1 TO |Fj .I| − 1 DO

IF Fj .U [k] = Fj .U [k+1] AND Fj .U [k] · (Fj .U [k]−
Fj .U [k − 1]) + Fj .B[k] = Fj .B[k + 1] THEN

Fj .B[k + 1] := Fj .B[k];

Delete the kth elements from Fj .B, Fj .U and
Fj .I;

So, in Procedure 2.2., we combine two adjoining linear
fragments that are in the same line. That means that,
if we have two adjacent linear fragments which are de-
scribed by the values (slopes) Fj .U [k], Fj .U [k + 1] and
Fj .B[k], Fj .B[k + 1], where

Fj .U [k] · (Fj .U [k]−Fj .U [k− 1])+Fj .B[k] = Fj .B[k+1],

(i.e., these fragments are on the same line), then, to re-
duce the number of intervals |Fj .I| and thus the running
time of the algorithm, we can join these two intervals
into one interval.

Lemma 2 Procedure 2.1.2. has a running time of
O(|Fj−1.I|).
Proof. Step [2.1.2.14] has to be performed with the use
of a simple data structure. Let {q1, q2, . . . , qr} be a max-
imal subset of T ′ having the following properties:

q1 < q2 < . . . < qr;

there is no j ∈ T ′ such that qi ≤ j < qi+1 and
Ψi

j .B[j] ≥ Ψi
j .B[qi+1], i = 1, . . . , r − 1.

We can keep track of the set {q1, q2, . . . , qr} by stor-
ing its elements in increasing order in a Queue Stack,
i.e., a list with the property that elements at the begin-
ning can only be deleted while at the end, elements can
be deleted and added [2]. This data structure can easily
be implemented such that each deletion and each addi-
tion requires a constant time. So, step [2.1.2.14] can be
performed in constant time.

Each of the steps [2.1.2.6]–[2.1.2.25] can be performed
in constant time. The loop [2.1.2.5.] can be performed
in O(|Ψk

j .I|) time, where |Ψk
j .I| = |Fj−1(t).I|, since each

time a break point from |Ψk
j .I| is added or deleted. So,

the lemma is true. ¤
We remind that in the DPA, the functional equations

(4) are considered. In fact, in Procedure 2.1.1., we con-
struct the function

bkj − uk
j t

k−1
j + uk

j · (t+ x) + Fj−1(t+ x)

and in Procedure 2.1.2., we construct the function

Φk
j (t) = max

x∈(tk−1
j ,tkj]

⋂
[0,A−t]

{bkj −uk
j t

k−1
j +uk

j ·(t+x)−uk
j ·t

+Fj−1(t+ x)}.
Unlike the DPA, to construct Φk

j (t) in the GrA, we do
not consider all integer points x ∈ (tk−1

j , tkj]
⋂
[0, A − t],

but only the break points from the interval, since only
they influence the values of Φk

j (t) (and in addition tleft,
tright). Step [2.1.3.] can be performed according to Pro-
cedure FindMax as well, i.e., to construct the function
Fj(t) := max{Fj(t),Φ

i
j(t)}, their linear fragments have

to be compared in each interval, organized by their break
points. It is easy to see that we do the same operation
with the integer points t as in the DPA. So, the values
Fj(t), t ∈ Z, are the same for the GrA and the DPA,
and we can state the following:

Lemma 3 The values Fj(t), j = 1, 2, . . . , n, at the
points t ∈ [0, A]

⋂
Z are equal to the values of the func-

tions Fj(t) considered in the DPA.

Lemma 4 All functions Fj(t), j = 1, 2, . . . , n, are piece-
wise linear on the interval [0, A] with integer break points.

Proof. For F0(t), the lemma is true. In Procedure
2.1.1., all break points from the set Ψi

1.I are integer as
well (see the comments after Procedure 2.1.1.). Since
all points from f1.I are integer, we have ε ∈ Z and
as a consequence, s′ ∈ Z. According to the Proce-
dure FindMax, all points ϕmax.I considered in Pro-
cedure 2.1.2. are integer. So, all break points from

Φi
j .I, i = 1, 2, . . . , kj , are integer as well. Thus, the

break points of the function F1(t) := max{F1(t),Φ
i
1(t)}

are integer, if we use Procedure FindMax to compute the
function max{F1(t),Φ

i
1(t)}. Analogously, we can prove

that all break points of F2(t) are integer, etc.
Thus, it is obvious that all functions Fj(t), j =

1, 2, . . . , n, constructed in the GrA are piecewise linear.
¤
Theorem 1 The GrA finds an optimal solution of the
problem in

O

(∑
kj min{A, max

j=1,2,...,n
{|Fj .B|}}

)

time.

Proof. Analogously to the proof of Lemma 4, after
each step [2.1.3.] of the GrA, the function Fj(t), j =
1, 2, . . . , n, has only integer break points from the in-
terval [0, A]. Each function Φi

j .I, j = 1, 2, . . . , n, i =
1, 2, . . . , kj , has only integer break points from [0, A] as
well. So, to perform step [2.1.3.], we need to perform
Procedure FindMax on no more than A + 1 intervals.
Thus, the running time of step [2.1.3.] is O(A). Accord-
ing to Lemmas 1 and 2, the running time of steps [2.1.1.]
and [2.1.2.] is O(Fj .I), where Fj .I ≤ A. The running
time of step [2.2.] is O(Fj .I) as well.

Analogously to the comments after the DPA, it is easy
to show that Fj(t), j = 1, 2, . . . , n, is a non-increasing
function in t. Thus,

Fj .B[k] ≥ Fj .B[k + 1]

(j = 1, 2, . . . , n, k = 1, 2, . . . , |Fj .I| − 1). Then, accord-
ing to Procedure 2.2., there are no more than 2 · Fj .B[0]
different values in the set Fj .I, where Fj .B[0] is the max-
imal value in the set Fj .B.

Thus, the running time of the GrA is

O

(∑
kj min{A, max

j=1,2,...,n
{|Fj .B|}}

)
.

¤
In [10], we illustrate the idea of the GrA by means of

a numerical example in more detail.

4 An FPTAS based on the GrA
In this section, a fully polynomial-time approximation
scheme (FPTAS) is derived based on the GrA presented
in Section 3.

Let LB = max
j=1,...,n

fj(A) be a lower bound and UB =

n ·LB be an upper bound on the optimal objective func-
tion value.

The idea of the FPTAS is as follows. Let δ = εLB
n .

To reduce the time complexity of the GrA, we have to di-
minish the number of columns |Fj .B| considered, which
corresponds to the number of different objective function

values b ∈ Fj .B, b ≤ UB. If we do not consider the orig-
inal values b ∈ Fj .B but the values b which are rounded
up or down to the nearest multiple of δ values b, there are
no more than UB

δ = n2

ε different values b. Then we will
be able to approximate the function Fj(t) into a similar
function with no more than 2n2

ε break points. Further-
more, for such a modified table representing a function
F j(t), we will have

|Fj(t)− Fj(t)| < δ ≤ εF (π∗)
n

.

If we do the rounding and modification after each step
[2.2.], the cumulative error will be no more than nδ ≤
εF (π∗), and the total running time of the n runs of the
step [2.2.] will be

O

(
n2

∑
kj

ε

)
,

i.e., an FPTAS is obtained.
In [8], a technique was proposed to improve the com-

plexity of an approximation algorithm for optimization
problems. This technique can be described as follows. If
there exists an FPTAS for a problem with a running
time bounded by a polynomial P (L, 1

ε ,
UB
LB), where L

is the length of the problem instance and UB, LB are
known upper and lower bounds, and the value UB

LB is not
bounded by a constant, then the technique enables us to
find in P (L, log log UB

LB) time values UB0 and LB0 such
that

LB0 ≤ F ∗ ≤ UB0 < 3LB0,

i.e., UB0

LB0
is bounded by the constant 3. By using such

values UB0 and LB0, the running time of the FPTAS
will be reduced to P (L, 1

ε), where P is the same polyno-
mial. So, by using this technique, we can improve the
FPTAS to have a running time of

O

(
n ·∑ kj

ε
(1 + log log n)

)
.

A detailed description of an FPTAS based on a GrA
for some single machine scheduling problems has been
presented in [6].

5 Concluding Remarks
In this paper, we used a graphical approach to improve a
known pseudo-polynomial algorithm for the Investment
Optimization Problem and to derive an FPTAS with the
best known running time.

The graphical approach can be applied to problems,
where a pseudo-polynomial algorithm exists and Boolean
variables are used in the sense that yes/no decisions
have to be made. However, for the knapsack problem,
the graphical algorithm mostly reduces substantially the

number of states to be considered but the time complex-
ity of the algorithm remains pseudo-polynomial. For the
single machine problem of maximizing total tardiness,
the graphical algorithm improved the complexity from
O(n

∑
pj) to O(n2) [7]. Thus, the graphical approach is

not only of a practical but also of a theoretical impor-
tance.

References
[1] Lazarev, A.A. and Werner, F., 2009. A Graphical

Realization of the Dynamic Programming Method
for Solving NP-hard Problems. Computers & Math-
ematics with Applications. 58(4), 619 – 631.

[2] Aho, A.V., Hopcroft, J.E., and Ullman, J.D., 1983.
Data Structures and Algorithms, Addison-Wesley,
London.

[3] Kellerer, H., Pferschy, U., and Pisinger, D., 2004.
Knapsack Problems, Springer-Verlag, Berlin.

[4] Shaw, D.X., and Wagelmans, A. P. M., 1998. An Al-
gorithm for Single-Item Capacitated Economic Lot
Sizing with Piecewise Linear Production Costs and
General Holding Costs. Management Science. 44(6),
831–838.

[5] Kameshwaran, S., and Narahari, Y., 2009. Noncon-
vex Piecewise Linear Knapsack Problems. European
Journal of Operational Research, 192, 56–68.

[6] Gafarov, E.R., Dolgui, A., and Werner, F., 2012.
Dynamic Programming Approach to Design FPTAS
for Single Machine Scheduling Problems. Research
Report LIMOS UMR CNRS 6158.

[7] Gafarov, E.R., Lazarev, A.A., and Werner, F., 2012.
Transforming a Pseudo-Polynomial Algorithm for
the Single Machine Total Tardiness problem into
a Polynomial One. Annals of Operations Research.
196, 247 – 261.

[8] Chubanov, S., Kovalyov, M.Y., and Pesch, E., 2006.
An FPTAS for a Single-Item Capacitated Economic
Lot-Sizing Problem with Monotone Cost Structure.
Math. Program., Ser. A. 106, 453 – 466.

[9] Schmelev, K., Delorme, X., Dolgui, A., Grimaud,
F., and Kovalev, M.Y., 2012. Lot-Sizing on a Single
Machine, ILP Models (submitted in May 2012).

[10] Gafarov, E.R., Lazarev, A.A., Dolgui, A., and
Werner, F., 2013. Solving an Investment Opti-
mization Problem by an Improved Graphical Ap-
proach, Preprint 02/13, FMA, Otto-von-Guericke-
Universität Magdeburg, 20 pages.

