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In this paper, the problem of scheduling jobs on a set of identical parallel 
machines with a single server (robot) is considered. Models having these 
features are common in network computing. We survey recent advances in the 
development of mathematical models and heuristic algorithms for such 
problems. The major focus is on own results by the authors obtained in the last 
years. 
 

Introduction 
 

The problem considered can be formulated as follows. A set of n 
independent jobs },,{ 1 nJJ   has to be scheduled on two identical parallel 
machines 1M  and 2M  without preemptions. Each machine can process at 
most one job at a time. For each job jJ , there is given its processing time jp . 
Before processing any job, say jJ , on a machine, say qM , job jJ  has to be 
loaded on qM  by a single server. During such a setup, the job jJ , the 
machine qM  and the server are involved into this process for js time units, 
i.e., no other job can be processed on this machine or can be loaded by the 
server during this setup. 

A schedule specifies each job on one machine for one time interval. 
Throughout such an interval the prescribed job has to be loaded and processed 
on the prescribed machine. A schedule is feasible if no two intervals on the 
same machine overlap. Given a schedule s , one can compute for any job jJ , 
the completion time .jC The optimality criteria we are focussing on in this 
study are the minimization of the maximum completion time or makespan, 

},,max{ 1max nCCC = , the total completion time ∑ =
n
j jC1 and the total 



weighted completion time 1 .n
j jj w C

=∑  Using the common notation, the 
problems max||1,2 CSP , ∑ jCSP ||1,2  and jjCwSP ∑||12,  are considered. 
Problem max||1,2 CSP is strongly NP-hard since already problem P2,S1 | sj = s 
| Cmax is strongly NP-hard [4]. Problem ∑ jCSP ||1,2  is strongly NP-hard 
since already problem ∑= jj CssSP ||1,2 is strongly NP-hard [4]. 

Mathematical Models 

For problem max||1,2 CSP , two mixed integer linear programming 
(MILP) formulations and two variants of a branch-and-price scheme were 
developed in [3]. Computational experiments have shown that for small 
instances with n ∈{8, 20}, one of the MILP formulations was the best 
whereas for the larger instances with n ∈{50, 100}, the branch-and-price 
scheme worked better. 

For the same problem, three MILP models were proposed in [5]. The 
first model M0 is based on the idea of using the linear order of loading in the 
optimal schedule. The other two models M1 and M2 are based on the idea of 
the block structure of an optimal schedule. We briefly describe the latter two 
models. 

It is easy to see that any schedule for the problem maxCSP ||12,  can be 
considered as a unit of blocks ,,,1 zBB   where nz ≤ . Each block kB  can be 
completely defined by the first level job aJ  and a set of second level jobs 

},,{ 1 aka JJ  , where inequality akaakaa ppssp +++++≥  11  holds. The binary 
variable jfkB ,,  is used for a block. We have 1=,, jfkB  if job jJ  is scheduled 
in level f  in the k -th block, otherwise 0=,, jfkB . The index nk ,1,=   
indicates the serial number of the block. The index {1,2}∈f  indicates the 
level, i.e., we have 1=f  if the level is the first one, and 2=f  if the level is 
the second one. The index nj ,1,=   indicates the job. kST and kPT  indicate 
the loading and processing part of block kB , respectively. [ ]ch j denotes the 
maximal number of second level jobs for the same block. Model M1 can be 
described as follows. 
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Model M2 (in contrast to model M1) does not contain the last inequality. 

This allows to use model M2 also for problems with }250,200,100{∈n . The 
developed models clearly outperform all existing models in the literature.  

      For problem ∑ jCSP ||1,2 , two MILP models were developed in 
[9]. Here we describe the best model M2 in more detail. Suppose one has a 
staggered schedule s  defined by a job list π . Let the variable jiN , define the 
position of the job j  in the list π , i.e., 1, =jiN if job j  is i -th scheduled and 
otherwise jiN , = 0. Let the variable ift  be the time of completing the i -th job 
j  in the list π . Moreover, let ist  be the starting time of loading the i -th job j  

in the list π , and let imt  be the completion time of loading the i-th job j  in 
the list π . Then, the minimization of ∑ jC is equivalent to the minimization 
of ∑

i
ift . Since each position in the list π  can be occupied by only one job, 

the equality ∑ =
i

jiN 1,  holds. Since each job has to be placed at some position 

in the list π , the equality ∑ =
j

jiN 1,  holds. The inequality 

∑ +≥−
j

jjjiii psNstft )(, holds since between the starting time ist  and the 

finishing time ift  of the i -th job j , one has to load and to process the job j . 
The inequality ∑≥−

j
jjiii sNstmt , holds since between the starting time ist  

and the finishing time imt  of the i -th job j , one has to load the job .j  The 
inequality 1−≥ ii mtst  holds since the list π  defines the order for loading all the 
jobs. The inequality 2−≥ ii ftst  holds since we consider schedules where all 
jobs are processed in a staggered order, i.e., jobs are processed alternately on 
the two machines. Thus, the model M2 can be described in the following way: 
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 1−≥ ii mtst , ;,...,2 ni =      2−≥ ii ftst , .,...,3 ni =  
Here jiN ,  are binary variables; ift , ist  and imt  are positive variables. 

Testing the models for the instances with up to 100 jobs showed that the 
obtained solutions are rather close to the optimal ones. 

Heuristic Algorithms 

Since the problems considered are strongly NP-hard, the development 
of heuristic algorithms is required. For problem max||1,2 CSP , in [1] two 
simple backward/forward O(n log n) heuristics were given.  Two versions of a 
greedy heuristic, a genetic algorithm and a version of the Gilmory-Gomory 
algorithm were proposed and tested in [2] for problem max||1,2 CSP . In [6], a 
simulated annealing algorithm and a genetic algorithm were presented for the 
problem maxCSP ||12, . The performance of these algorithms is evaluated for 
instances with up to 1000 jobs. The results are compared with existing 
algorithms from the literature. It is observed that both these heuristic 
algorithms show an excellent behavior and that the objective function values 
obtained are very close to a lower bound. The superiority over existing 
algorithms is obtained by using a composite neighborhood (mutation), 
generating several neighbors from sub-neighborhoods with different 
probabilities and taking the best solution as generated neighbor. Recently, two 
fast constructive algorithms with a complexity of O(n2) have been presented 
in [11], which have an excellent performance for instances with up to 10,000 
jobs. This superiority is obtained by sequencing the jobs on the two machines 
such that the machine idle time and the server waiting time are mimimized. 

We only note that for the closely related problem of minimizing forced 
idle time (interference problem) a heuristic was given in [7] which has been 
tested on instances with even up to 100,000 jobs. The computational results 
indicate an excellent performance even for the large instances, and often an 
optimal solution was obtained. 

For problem ∑ jCSP ||1,2 , two heuristics (simulated annealing and a 
hybridization of simulated annealing and harmony search) were given in [8]. 
Computational experiments have been done for instances with up to 250 jobs. 

Finally, we give some comments on approximation algorithms. For the 

problem jjCwSP ∑||1,  a )1(5
m

− - approximation algorithm was given in 

[12]. In [10], a )1(3
m

− - approximation algorithm is proposed for the same 

problem. In fact, the same approach as known from the literature was used, 
i.e., the original problem is replaced by a relaxed problem, which can be 
easily solved and thus, an optimal order of the completion times can be found. 
Then, in the original problem, the jobs are scheduled in the order determined 
and the improved performance bound was derived. 
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