
Scheduling Jobs with Equal Processing
Times

Svetlana A. Kravchenko ∗ Frank Werner ∗∗

∗ United Institute of Informatics Problems, Minsk, 220012 Belarus
(Tel: 375-17-2842125; e-mail: kravch@newman.bas-net.by).
∗∗ Fakultät für Mathematik, Otto-von-Guericke-Universität,

Magdeburg, 39106 Germany (Tel: +49 391 6712025;
frank.werner@mathematik.uni-magdeburg.de)

Abstract: Whereas the overwhelming majority of scheduling problems appears to be NP-hard,
models with equal processing time jobs form a remarkable case which is still open for most
problems but it intuitively looks polynomially solvable. The basic scheduling problem we are
dealing with is the following. There are n jobs, each requiring an identical execution time p.
There are associated a release time rj and a deadline Dj with each job. All data are assumed
to be integers. The aim is to construct a feasible schedule so as to minimize a given criterion. In
this paper, we survey existing approaches for the problem considered, and for various machine
environments.

1. INTRODUCTION

Whereas the overwhelming majority of scheduling prob-
lems appears to be NP-hard, problems with equal pro-
cessing time jobs form a remarkable case which is still
open for most problems. Intuitively, such problems look
polynomially solvable. The basic scheduling problem we
are dealing with is the following. There are n jobs, each
requiring an identical execution time p. With each job,
there are associated a release time rj and a deadline Dj .
All data are assumed to be integers. The objective is to
construct a feasible schedule so as to minimize a given
criterion for various machine environments.

Due to the possibility to enumerate the possible places
of the jobs in an optimal schedule, the model reminds
an assignment problem. Therefore, one can intuitively
suppose the existence of a polynomial algorithm for any
monotonous criterion. Nevertheless, since prime conflicts
are caused by overlapping intervals most of the problems
have an open complexity status.

In this paper, we survey existing approaches for the
considered model and expose problems with an open
complexity status.

A special case is the model with p = 1. For most criteria,
this model can be solved by a network flow algorithm.
However, this approach cannot be applied to the general
model with arbitrary p, rj , and Dj since, in the case of
p = 1, the main conflicts among overlapping places for
processing jobs disappear. We refer the reader to Baptiste
and Brucker [2004] for a survey.

2. CLASSIC CRITERIA

If the processing times can be arbitrary, problem 1|rj , Dj |−
is NP-hard in the strong sense by a polynomial reduction
from the 3-partition problem, see Lenstra et al. [1977].

In Garey et al. [1981], an O(n log n) algorithm has been
proposed for problem 1|rj , pj = p, Dj , prec|Cmax. More
precisely, they consider a problem with unit processing
times and arbitrary rational release dates and deadlines.
However, by an appropriate scaling one can show that
these two models are equivalent. They show that it is
possible to modify the release times and deadlines so as to
reflect the partial order (i.e., for the problem considered
the constraint prec is irrelevant) by assigning

rj := max{{rj} ∪ {ri + 1 | Ti ≺ Tj}}
and

Dj := min{{Dj} ∪ {Di − 1 | Tj ≺ Ti}}.
After such an assignment condition, Ti ≺ Tj implies
ri < rj and Di < Dj . By straightforward interchange
arguments, one can show that any schedule for problem
1 | rj , pj = p, Dj | Cmax can be transformed into a
schedule for problem 1 | rj , pj = p,Dj , prec | Cmax

without changing the Cmax-value.

To solve problem 1 | rj , pj = p, Dj | Cmax, Garey
et al. [1981] proposed the concept of forbidden regions
(intervals), i.e., open intervals where no job can start. The
set of all forbidden regions is formed iteratively. The main
used observation is the following.

Assume that one knows the set of forbidden regions in
the interval [ri, Dj], and let J1, . . . , Jk be the set of jobs
with release times and deadlines from the interval [ri, Dj].
Now ignoring all the values r1, . . . , rk and D1, . . . , Dk, i.e.,
supposing that all r1, . . . , rk are equal to ri and all D1,
. . . , Dk are equal to Dj , we find the largest value of e
such that all jobs J1, . . . , Jk can be scheduled in [e,Dj]
under the condition that no job can start in the forbidden
intervals. In other words, we schedule k jobs of duration p
in [e,Dj] under the condition that some intervals in [e,Dj]
are forbidden for starting the jobs and try to maximize the
value of e. This can be done in O(n) steps. Now, if e < ri,
then there is no feasible schedule for the original problem
1 | rj , pj = p, Dj | Cmax. However, if ri ≤ e < ri + 1, then

Preprints of the 13th IFAC Symposium on
Information Control Problems in
Manufacturing, Moscow, Russia, June 3 - 5,
2009

Th-C2.1

1245

]e − 1, ri[is declared as a forbidden region, since in any
feasible schedule a job starting in]e − 1, ri[is not from
{J1, . . . , Jk} and hence, the set {J1, . . . , Jk} is finished
after Dj .

After forming the set of all forbidden regions, the imple-
mentation of the earliest deadline scheduling rule gives an
optimal schedule.

In Ullman [1975], it has been shown that problem P |pj =
1, Dj , prec|− is NP-hard in the strong sense by a polyno-
mial reduction from the 3-satisfiability problem.

Lenstra and Rinnooy Kan [1978] have shown that even
problem P | pj = 1, Dj = 3, prec | − is NP-hard in
the strong sense. Note that problem P | pj = 1, Dj =
2, prec | − can be polynomially solved in O(n) time.
The important question about the complexity status of
problem P3 | pj = 1, prec | Cmax is still open, whereas
problem P2 | pj = 1, prec | Cmax was solved in O(n3)
time by Fujii et al. [1969] by a reduction of the problem
to the maximum matching problem.

In Brucker et al. [1977], an O(n log n) algorithm has been
proposed for problem P | rj , pj = p, outtree | Cmax and it
has been shown that problem P | rj , pj = p, intree | Cmax

is NP-hard in the strong sense.

In Simons [1983], a polynomial algorithm with complexity
O(n3 log log n) has been developed for problem P |rj , pj =
p, Dj |−. The algorithm is based on an analysis of the
structural properties of an optimal schedule. The main
features of the optimal structure used in that paper are
the following:

1. Any schedule is completely defined by the set of time
slots (1, t1), (2, t2), . . . , (n, tn), where i = 1, . . . , n is
the slot number and ti is the starting time of slot i.

2. If we know the set of all occupied time slots, then an
optimal schedule can be constructed by the earliest
deadline scheduling procedure.

3. If the earliest deadline scheduling procedure gener-
ates a sequence (1, t1), . . . , (k, tk), such that job Jl

processed in (k, tk) is late, then job Jl cannot be
scheduled in (k, tk) and has to be scheduled earlier. To
provide this, one of the slots (1, t1), . . . , (k− 1, tk−1)
has to be pulled right. To this end, Simons chooses
the closest to (k, tk) slot which is occupied by a job
whose deadline exceeds Dl.

It has been shown that the use of these principles leads
to the construction of an optimal schedule for problem
P |rj , pj = p, Dj |−. The same algorithm solves the prob-
lems P |rj , pj = p, Dj |Cmax and P |rj , pj = p, Dj |

∑
Cj .

In Simons [1978], a polynomial time algorithm was pro-
posed for problem P | rj , pj = p, Dj | Lmax. It is based on
a binary search technique and on the fact that the number
of possible starting points is polynomial in the problem
size.

In Simons and Warmuth [1989], an O(mn2) time algorithm
was proposed for problems P |rj , pj = p, Dj |−, P |rj , pj =
p, Dj |Cmax, and P |rj , pj = p, Dj |

∑
Cj . The algorithm is

substantially based on the ideas from Simons [1983] and
Garey et al. [1981].

Let xji be equal to the amount of job Jj processed in the
interval Ii, where

{Ii | i ∈ {1, . . . , z}}
= {[rj + kp, rj + kp + p [| k ∈ {−n, . . . ,−1, 0, 1, . . . , n}},
and

y = max{k | Ii+1 ∩ . . . ∩ Ii+k 6= ∅, i ∈ {0, . . . , z − k}}.

Then, see Brucker and Kravchenko [2008], the following
linear programming formulation can be proposed for prob-
lem P |rj , pj = p, Dj |−:

z∑
i=1

xji = p, j = 1, . . . , n (1)

n∑
j=1

xj,i+1 + . . . +
n∑

j=1

xj,i+y ≤ mp, i = 0, . . . , z − y (2)

xji = 0 if Ii 6⊆ [rj , Dj [, i = 1, . . . , z, j = 1, . . . , n (3)

0 ≤ xji ≤ p, i = 1, . . . , z, j = 1, . . . , n (4)

In the above system, the polyhedron (1) and for each
i = 0, . . . , z − y, with e such that i + ey ≤ z holds, the
polyhedron

n∑
j=1

xj,i+1 + . . . +
n∑

j=1

xj,i+y ≤ mp

n∑
j=1

xj,i+y+1 + . . . +
n∑

j=1

xj,i+2y ≤ mp

· · ·
n∑

j=1

xj,i+(e−1)y+1 + . . . +
n∑

j=1

xj,i+ey ≤ mp

is integer, since the corresponding matrices are network
matrices and therefore, they are totally unimodular. Nev-
ertheless, their intersection is not an integer polyhedron
and therefore, the obtained solution is not necessarily
integer.

Using an obtained solution x∗ji, one can construct an
optimal schedule in two equivalent ways, namely:

1. With the help of x∗ji, it is possible to find the intervals
which are occupied in a feasible schedule. Then the
earliest deadline scheduling procedure generates an
optimal schedule.

2. It is possible to transform the obtained solution x∗ji

into the form x∗ji ∈ {0, p} in a straightforward way
without marking the occupied intervals. The obtained
vector gives an optimal solution for problem P |
rj , pj = p, Dj | −.

In both cases, the following property of an optimal solution
holds: If k = min{i | x∗ji 6= 0, j = 1, . . . , n} for the optimal
solution, then the time slot Ik is occupied in an optimal
schedule.

The proposed algorithm is not so fast as the algorithm
given in Simons and Warmuth [1989] but it can be applied
to more general problems.

It has been shown that, to solve problem P |rj , pj =
p,Dj |

∑
Cj , it is sufficient to solve the following linear

programming problem:

1246

Minimize
z∑

i=1

n∑
j=1

D(Ii)xji

subject to (1), (2), (3), (4).

Here D(Ii) is the right endpoint of the interval Ii.

In Dürr and Hurrand [2006], the proposed linear pro-
gramming formulation was transformed by means of the
substitution

gt =
t∑

s=1

n∑
j=1

xjs

into the following form:

Minimize
z∑

i=1

D(Ii)(gi − gi−1)

subject to
gz − g0 = n

gi − gi−1 ≥ 0, i = 1, . . . , n

gi − gi−y+1 ≤ m, i = y, . . . , n

g0 = 0.

They have shown that this model can be solved in O(n4)
time.

To solve problem P |rj , pj = p|
∑

wjCj , see Brucker and
Kravchenko [2008], it is sufficient to solve the following
linear program:

Minimize
z∑

i=1

n∑
j=1

wjD(Ii)xji

subject to (1), (2), (3), (4).

In this case Dj is any large number, for instance Dj =
maxj{rj} + np.

In Brucker and Kravchenko [2005], it has been shown that,
in order to solve problem P |rj , pj = p|

∑
Tj , it is sufficient

to minimize
z∑

i=1

n∑
j=1

max{0, D(Ii) − dj} xji

subject to (1), (2), (3), (4).

In Baptiste et al. [2004], a polynomial time algorithm
with the complexity O(n6m+1) was proposed for problem
Pm | rj , pj = p |

∑
wjUj . The algorithm is based on the

following observations and definitions:

1. It is possible to restrict the set of starting times by
{rj + kp | k ∈ {0, . . . , n}, j ∈ {0, . . . , n}}.

2. If the set of time slots (1, t1), . . . , (n, tn) is known in
advance for an optimal schedule, where i = 1, . . . , n
is a slot number and ti is the starting time of slot i,
then the desired schedule can be constructed by the
earliest due date rule.

3. The only situation when job Jj follows Ji with dj < di

is the situation when Ji is processed within]rj−p, rj+
p[, i.e., the starting time of Ji is before rj .

4. A profile is defined as a vector (a1, . . . , am), where
ai ∈ {rj + kp | k ∈ {0, . . . , n}, j ∈ {0, . . . , n}},
and max{a1, . . . , am} − min{a1, . . . , am} ≤ p. For an

optimal schedule, if job Jj starts at tj , there is a
corresponding profile a with tj ∈ {a1, . . . , am}.

5. k[a, b] is defined as the set of early jobs from
{J1, . . . , Jk} scheduled between the profiles a and b,
and Wk[a, b] is the maximal weight for such a set.

Now, dynamic programming can be applied by using the
formulas

Wk[a, b] = max{W ′
k[a, b],Wk−1[a, b]}

if
max{a1, . . . , am} − p ≤ rk < min{b1, . . . , bm},

and
Wk[a, b] = Wk−1[a, b]

if
rk 6∈ [max{a1, . . . , am} − p, min{b1, . . . , bm}[,

where
W ′

k[a, b] = max{Wk−1[a, x] + wk + Wk−1[x′, b]}.
In the last formula the maximum is taken over all such x
for which min{x1, . . . , xm} ∈ [rk, dk − p] and the profile x′

is obtained from profile x by adding one job.

In Chrobak et al. [2006], an O(n5) algorithm was proposed
for problem 1 | rj , pj = p |

∑
Uj . Their algorithm

is analogous to the algorithm of Baptiste et al. [2004],
however, they do not use Wk[a, b] but wk[a,B], i.e., for
the given wk, k, a, they minimize B. For the single machine
case, B is the length of the considered subschedule. Thus,
they define:

1. k[a, ·] is the set of jobs from {J1, . . . , Jk} such that
rj ≥ a holds,

2. wk[a,B] equals the minimal value B such that it is
possible to execute w jobs from k[a, ·] in the time
interval [a + p, b].

3. SOME GENERALIZATIONS

In Baptiste [2000], a dynamic programming approach was
used to solve polynomially problem Pm | rj , pj = p |

∑
fj ,

where
∑

fj is an objective function depending on the
completion times Cj , such that

1. fj is non-decreasing,
2. fi − fk is monotonic.

Note that both classical criteria
∑

wjCj and
∑

Tj can
be described in such a way. In that paper, the following
observations and definitions are used:

1. Jobs J1, . . . , Jn are ordered in such a way that for any
pair i > j, function fi − fj is non-decreasing.

2. The starting times of the jobs in an optimal schedule
belong to the set

{rj + kp | k ∈ {0, . . . , n}, j ∈ {0, . . . , n}}.
3. Note that here the profile a indicates the number of

machines available at each time point in the interval
[a1, am].

4. The set Uk(a, b) is defined as the set
{Jj | j ≤ k, rj ∈ [am − p, b1[}.

5. Fk(a, b) is defined as the minimal value of∑
Jj∈Uk(am−p,b1)

fj(Cj)

among all possibilities of scheduling all jobs from the
set Uk(am − p, b1) between the two profiles a and b.

1247

Then dynamic programming is realized by the following
formulas:

Fk(a, d) = Fk−1(a, d) if rk 6∈ [am − p, d1[
and

Fk(a, d) =
min

b
{Fk−1(a, b) + Fk−1(c, d) + fk(b1 + p) |

rk < b1, c = (b2, . . . , bm, b1 + p)}
if rk ∈ [am − p, d1[.

The overall complexity of the proposed algorithm is
O(n3m+4).

In Kravchenko and Werner [2009], a linear programming
approach was proposed for problem P | rj , pj = p |

∑
fj ,

where
∑

fj is the objective function from Baptiste [2000].
Here fj depends on the completion time Cj , such that fj is
non-decreasing, and fi− fk is monotonic. For problem P |
rj , pj = p, Dj | max ϕj , ϕj is any non-decreasing function
in the completion time Cj . The classical scheduling criteria
described as max ϕj(Cj) are the minimization of maximum
lateness Lmax = maxj{Cj − dj} and maximum tardiness
maxj{Tj} = maxj{Lj , 0}.
The approach for problem P | rj , pj = p |

∑
fj is

analogous to that from Brucker and Kravchenko [2005]
and consists in minimizing

z∑
i=1

n∑
j=1

fj(D(Ii))xji

subject to
z∑

i=1

xji = p, j = 1, . . . , n

n∑
j=1

xj,i+1 + . . . +
n∑

j=1

xj,i+y ≤ mp, i = 0, . . . , z − y

xji = 0 if R(Ii) < rj , i = 1, . . . , z, j = 1, . . . , n

xji ≥ 0, i = 1, . . . , z, j = 1, . . . , n.

Here R(Ii) is the left endpoint of the interval Ii.

A polynomial algorithm for problem P | rj , pj = p, Dj |
max ϕj(Cj) can be briefly described as follows.

Note that the number of intervals available for process-
ing can be polynomially bounded. Therefore, the possi-
ble number of different values ϕj(D(Ii)) is polynomially
bounded, too. Take any F = ϕj(D(Ii)) for some i and j.
Consider the following feasibility problem:

z∑
i=1

xji = p, j = 1, . . . , n

n∑
j=1

xj,i+1 + . . . +
n∑

j=1

xj,i+y ≤ mp, i = 0, . . . , z − y

xji = 0 if R(Ii) < rj i = 1, . . . , z, j = 1, . . . , n

xji = 0 if ϕj(D(Ii)) > F

xji ≥ 0, i = 1, . . . , z, j = 1, . . . , n

It is possible to find a solution for the above problem such
that xji ∈ {0, p}. At the same time the obtained solution
can be considered as a solution for problem P | rj , pj =
p,Dj | max ϕj(Cj) ≤ F . Applying the same procedure
for all different values of F = ϕj(D(Ii)), we can choose
the minimal value of F. Since the number of different
values ϕj(D(Ii)) is polynomially bounded, the proposed
algorithm is polynomial.

In Simons and Sipser [1984], the following problem has
been considered. There are n jobs, each requiring an
identical execution time p without preemptions. With each
job, a set of intervals is associated. Each interval has a
starting time and a finishing time. All data are assumed
to be integers. The goal is to construct a feasible schedule
so that each job is processed only in one of the prescribed
intervals. It has been shown that the considered problem
is NP -hard in the strong sense for the case of one machine
and two prescribed intervals for each job by a polynomial
reduction from the 3-satisfiability problem. From our point
of view, this result is surprising since in the case of one
prescribed interval the problem is polynomially solvable.
We give an NP -hardness proof for a weaker problem,
namely when the number of prescribed intervals is not
limited.

The 3-satisfiability problem consists of a set of Boolean
variables and a set of clauses. It is easy to make the number
of occurrences of variable a is equal to the number of
occurrences of variable ā by adding clauses (a ∨ a ∨ ā)
or (ā ∨ ā ∨ a) to the problem.

1. Let p = 2 and na be the number of occurrences of
variable a in the set of clauses, i.e., equality na = nā

holds. For each pair of variables a and ā, we create a
set of intervals {[ta, ta + 2[, [ta + 1, ta + 3[, . . . , [ta +
2na−1, ta+2na+1[}. Each interval [ta+2k, ta+2k+2[
is prescribed to some occurrence of variable a. Each
interval [ta + 2k + 1, ta + 2k + 2 + 1[is prescribed to
some occurrence of variable ā.

2. For each clause c, we have a job Jc which can be
processed in any of three intervals prescribed to the
variables from the clause c.

3. For each set {[ta, ta + 2[, [ta + 1, ta + 3[, . . . , [ta +
2na − 1, ta + 2na + 1[}, we create a job Ja which
can be processed in one of two intervals, either in
[ta − 1, ta + 1[or in [ta + 2na, ta + 2na + 2[.

4. Besides we have
∑

a na−z jobs that can be scheduled
in any of the intervals {[ta, ta + 2[, [ta + 1, ta +
3[, . . . , [ta +2na +1, ta +2na[}, where z is the number
of clauses.

Now choose ta such that the sets of intervals

{[ta − 1, ta + 1[, [ta, ta + 2[, . . . , [ta + 2na, ta + 2na + 2[}

do not overlap each other.

Thus, we have 2
∑

a na +
∑

a 2 intervals and
∑

a na +
∑

a 1
jobs.

One can prove that, if there is a solution to the 3-
satisfiability problem, then the scheduling problem under
consideration has a solution:

1248

If variable a is true, then job Ja is processed in [ta +
2na, ta + 2na + 2[, otherwise job Ja is processed in
[ta−1, ta +1[. For each clause c, job Jc is processed in
one of the intervals prescribed to some true variable.
All other jobs are scheduled in any feasible way.

However, if there is a solution to the scheduling problem
considered, then for each variable a either intervals pre-
scribed to a or intervals prescribed to ā will be occupied.
Moreover, for each clause, there is at least one interval
corresponding to the true variable. Therefore, there is a
solution to the 3-satisfiability problem.

In Kravchenko and Werner [2007], the following problem
has been considered. There are n jobs J1, . . . , Jn which
have to be processed on a set of identical parallel ma-
chines. For each job Jj , j = 1, . . . , n, a processing time
pj = p, which is equal for all jobs, a release date rj ,
and a deadline Dj are given. Each machine can process
only one job at a time. Besides we suppose that the time
interval [minj{rj}, maxj{Dj}[is divided into several inter-
vals [t1, t2[, [t2, t3[, . . . , [tT−1, tT [, where minj{rj} = t1 ≤
t2 ≤ . . . ≤ tT = maxj{Dj}, such that for each interval
[tg, tg+1[the number of available machines mg+1 is known
in advance. Note that we do not fix the concrete set of
mg+1 machines, i.e., at two different points of [tg, tg+1[,
one can use different sets of mg+1 machines. Preemption
of processing is not allowed, i.e., the processing of any job
started at time t on one of the identical machines will be
completed at time t + p on the same machine. We want to
find a feasible schedule such that the maximal number of
machines used by J1, . . . , Jn is minimal.

The problem is reduced to the following linear program-
ming problem.

minimize M

subject to
z∑

i=1

xji = p, j ∈ {1, . . . , n}

n∑
j=1

xj,i+1 + . . . +
n∑

j=1

xj,i+q ≤ min{M,mk+1}p,

where i ∈ {0, . . . , z − q}, q ∈ {1, . . . , y},
k ∈ {1, . . . , T − 1},
Ii+1 ∩ . . . ∩ Ii+q ∩ [tk, tk+1[6= ∅

xji = 0 if R(Ii) < rj , i = 1, . . . , z, j = 1, . . . , n

xji = 0 if Dj < D(Ii), i = 1, . . . , z, j = 1, . . . , n

xji ≥ 0, i = 1, . . . , z, j = 1, . . . , n.

If we set xji equal to the amount of job Jj processed in
the interval Ii and M is the number of machines we want
to minimize, then any feasible schedule for the scheduling
problem under consideration can be described as a feasible
solution of the above linear programming problem.

On the other hand, the solution (x∗,M∗) obtained for the
linear programming problem can be transformed into an
optimal solution of the scheduling problem considered in
polynomial time.

In Dessouky et al. [1990], the case with identical jobs and
uniform parallel machines has been considered, i.e., when
each machine has some given speed. It has been shown how
to solve problems Q|pj = p|

∑
ϕj and Q|pj = p|max ϕj in

O(n2) time, where

max ϕj = max
1≤j≤n

ϕj(Cj),

and ϕj , j = 1, . . . , n, are non-decreasing functions in the
job completion times. They also indicated how to reduce
the complexity for classic criteria and solved problems
Q|rj , pj = p|Cmax and Q|rj , pj = p|

∑
Cj in O(n log n)

and O(mn2m+1) time, respectively.

4. CONCLUSIONS

In the following table, we give an overview on the results
for classic criteria.

1|rj , Dj |− NP-hard
Lenstra et al. [1977] in the strong sense

1|rj , pj = p, Dj , prec|Cmax O(n log n)
Garey et al. [1981]

P |pj = 1, Dj , prec|− NP-hard
Ullman [1975] in the strong sense

P2|pj = 1, prec|Cmax O(n3)
Fujii et al. [1969]

P | pj = 1, Dj = 3, prec | − NP-hard
Lenstra and Rinnooy Kan [1978] in the strong sense

P | pj = 1, Dj = 2, prec | − O(n)
Lenstra and Rinnooy Kan [1978]

P | rj , pj = p, outtree | Cmax O(n log n)
Brucker et al. [1977]

P | rj , pj = p, intree | Cmax NP -hard
Brucker et al. [1977] in the strong sense

P |rj , pj = p, Dj |− O(n3 log log n)
Simons [1983]

P |rj , pj = p, Dj |Lmax O(mn4)
Simons [1978]

P |rj , pj = p, Dj |− O(mn2)
Simons and Warmuth [1989]

P |rj , pj = p, Dj |Cmax O(mn2)
Simons and Warmuth [1989]

P |rj , pj = p, Dj |
∑

Cj O(mn2)
Simons and Warmuth [1989]

P |rj , pj = p, Dj |− LP
Brucker and Kravchenko [2008]

1249

P |rj , pj = p, Dj |
∑

Cj LP
Brucker and Kravchenko [2008]

P |rj , pj = p, Dj |
∑

Cj O(n4)
Dürr and Hurrand [2006]

P |rj , pj = p|
∑

wjCj LP
Brucker and Kravchenko [2008]

P |rj , pj = p|
∑

Tj LP
Brucker and Kravchenko [2005]

Pm | rj , pj = p |
∑

wjUj O(n6m+1)
Baptiste et al. [2004]

1 | rj , pj = p |
∑

Uj O(n5)
Chrobak et al. [2006]

Q|rj , pj = p|Cmax O(n log n)
Dessouky et al. [1990]

Q|rj , pj = p|
∑

Cj O(mn2m+1)
Dessouky et al. [1990]

Q|pj = p|Cmax and Q|pj = p|
∑

Cj O(n + m log m)
Dessouky et al. [1990]

Q|pj = p|
∑

wjCj , Q|pj = p|Lmax

Q|pj = p|
∑

Tj , Q|pj = p|
∑

wjUj O(n log n)
Dessouky et al. [1990]

Q|pj = p|max wjTj O(n log2 n)
Dessouky et al. [1990]

The most interesting open problems are the following ones:

• P3 | pj = 1, prec | Cmax,
• P | rj , pj = p |

∑
Uj ,

• P | rj , pj = p, Dj |
∑

wjCj ,
• Q | rj , pj = p, Dj | −,
• Q | rj , pj = p |

∑
Cj for an arbitrary number of

machines.

ACKNOWLEDGEMENTS

This work was partially supported by the Alexander von
Humboldt Foundation.

REFERENCES

P. Baptiste, P. Brucker, S. Knust, and V. G. Timkovsky.
Ten notes on equal-processing-time scheduling. 4OR, 2:
111–127, 2004.

P. Baptiste, and P. Brucker. Scheduling equal processing
time jobs: a survey. In Y.T. Leung, editor, Handbook
of Scheduling: Algorithms, Models, and Performance
Analysis, pages 78–96. CRC Press LLC, Boca Raton,
FR, 2004.

P. Baptiste. Scheduling equal-length jobs on identical
parallel machines. Discrete Appl. Math., 103:21–32,
2000.

P. Brucker, M. R. Garey, and D. S. Johnson. Scheduling
equal-length tasks under tree-like precedence constraints
to minimize maximum lateness. Math. Oper. Res., 2:
275–284, 1977.

P. Brucker, S.A. Kravchenko. Scheduling jobs with equal
processing times and time windows on identical parallel
machines. J. Scheduling, 11:229–237, 2008.

P. Brucker, S.A. Kravchenko. Scheduling jobs with release
times on parallel machines to minimize total tardiness.
Universität Osnabrück, Preprint Heft 258, 13 p., 2005.

M. Chrobak, C. Dürr, W. Jawor, L. Kowalik, and M.
Kurowski. A note on scheduling equal-length jobs to
maximize throughput. J. Scheduling, 9:71–73, 2006.

M.I. Dessouky, B.J. Lageweg, J.K. Lenstra, and S.L. van
de Velde. Scheduling identical jobs on uniform parallel
machines. Stat. Neerlandica, 44:115–123, 1990.

C. Dürr, M. Hurrand. Finding total unimodularity in
optimization problems solved by linear programs. Proc.
of the 14th Annual European Symposium on Algorithms
(ESA), 315–326, 2006.

M. Fujii, T. Kasami, and K. Ninomiya. Optimal sequenc-
ing of two equivalent processors. SIAM J. Appl. Math.,
17:234–248, 1969.

M.R. Garey, D.S. Johnson, B.B. Simons, and R.E. Tarjan.
Scheduling unit-time tasks with arbitrary release times
and deadlines. J. Comput., 10:256–269, 1981.

S.A. Kravchenko, F. Werner. Minimizing the number
of machines in a unit-time scheduling problem. Otto-
von-Guericke-Universität Magdeburg, FMA, Preprint
25/07, 8 p., 2007.

S.A. Kravchenko, F. Werner. On a parallel machine
scheduling problem with equal processing times. Dis-
crete Appl. Math., 157:848–852, 2009.

J.K. Lenstra, A.G.H. Rinnooy Kan, and P. Brucker. Com-
plexity of machine scheduling problems. Ann. Discrete
Math., 1:343–362, 1977.

J.K. Lenstra, A.H.G. Rinnooy Kan. Complexity of
scheduling under precedence constraints. Oper. Res.,
26:22–35, 1978.

B. Simons. A fast algorithm for single processor schedul-
ing. Proc. IEEE 19th Annual Symposium on Founda-
tions of Computer Science (FOCS’78), 246–252, 1978.

B. Simons. Multiprocessor scheduling of unit-time jobs
with arbitrary release times and deadlines. SIAM J.
Comput., 12:7–9, 1983.

B.B. Simons, M. Sipser. On scheduling unit-length jobs
with multiple release time/deadline intervals. Oper.
Res., 32:80–88, 1984.

B.B. Simons, M.K. Warmuth. A fast algorithm for mul-
tiprocessor scheduling of unit-length jobs. SIAM J.
Comput., 18:690–710, 1989.

J.D. Ullman. NP-complete scheduling problems. J.
Comput. System Sci., 10:384–393, 1975.

1250

