
Partial job order for solving the
two-machine flow-shop minimum-length
problem with uncertain processing times

Natalia M. Matsveichuk ∗ Yuri N. Sotskov ∗∗ Frank Werner ∗∗∗

∗ United Institute of Informatics Problems, Minsk, 220012 Belarus
(Tel: 375-17-2842125; e-mail: leshchenko@newman.bas-net.by).

∗∗ United Institute of Informatics Problems, Minsk, 220012 Belarus
(Tel: 375-17-2842120; e-mail: sotskov@newman.bas-net.by).
∗∗∗ Fakultät für Mathematik, Otto-von-Guericke-Universität,

Magdeburg, 39106 Germany (Tel: +49 391 6712025;
frank.werner@mathematik.uni-magdeburg.de)

Abstract: The flow-shop minimum-length scheduling problem with n jobs processed on two
machines is addressed where processing times are uncertain (only lower and upper bounds for
the random processing time are given, while the probability distribution between these bounds
is unknown). For such a problem, there often does not exist a dominant schedule that remains
optimal for all possible realizations of the job processing times, and so we look for a minimal
dominant set of schedules, which may be represented by a partial job order. We investigate
properties of this partial job order and show how to construct this order in polynomial time.
The approach based on a set of dominant schedules allows us to find special cases of the problem
when it is possible to find an optimal schedule in spite of the uncertainty of the numerical data.

Keywords: Scheduling; Flow-shop; Makespan; Uncertainty; Domination

1. INTRODUCTION

In the scheduling literature, the processing times are
mainly assumed to be either deterministic values (see part
1 of the book Pinedo [1995]) or random variables with a
given probability distribution (see part 2 of Pinedo [1995]).
Unfortunately, in many real-life scheduling situations, one
may have no sufficient information to characterize the
probability distribution for each processing time. In this
paper, we consider the two-machine minimum-length flow-
shop scheduling problem with uncertain processing times.

Let two machines M = {M1,M2} be given to process
n ≥ 2 jobs J = {J1, J2, ..., Jn} that have to follow the
same machine route: Each job Ji ∈ J has to be processed
by machine M1 and then by machine M2 without pre-
emption on each machine. All the n jobs are available
to be processed from time t0 = 0. Let Ci(π) denote the
completion time of job Ji ∈ J in schedule π, and the
criterion Cmax denotes the minimization of the schedule
length Cmax(π):

Cmax = min
π∈Ω

Cmax(π) = min
π∈Ω

{max{Ci(π) | Ji ∈ J }},

where Ω is a set of semi-active schedules with cardinality
|Ω| = (n!)2 (Tanaev et al. [1994]). In a semi-active sched-
ule, the processing of each job Ji ∈ J starts as early as
possible (provided that the order of the jobs J for process-
ing is fixed). In contrast to the conventional two-machine
minimum-length flow-shop problem F2||Cmax with fixed
processing times (see Pinedo [1995], Tanaev et al. [1994]),
it is assumed that the processing time pij of job Ji ∈ J
on machine Mj ∈ M is unknown before scheduling. In

the realization of the process, pij may take any real value
in the segment [pL

ij , pU
ij], where the lower bound pL

ij and
the upper bound pU

ij are fixed, but the probability dis-
tributions of the processing times between these bounds
are unknown. Such a two-machine minimum-length flow-
shop scheduling problem with uncertain processing times
is denoted by F2|pL

ij ≤ pij ≤ pU
ij |Cmax.

2. PRELIMINARIES

Let S = {π1, π2, . . . , πn!} be the set of all permutations of
n jobs from set J :
πk = (Jk1 , Jk2 , . . . , Jkn

), {k1, k2, . . . , kn} = {1, 2, . . . , n}.
The set S defines all permutation schedules that dominate
the set Ω of semi-active schedules for problem F2||Cmax:
There exists at least one optimal semi-active schedule
with the same sequence of jobs on both machines M1

and M2 (see Johnson [1954], Tanaev et al. [1994]). Since
each permutation πk ∈ S uniquely defines the set of
earliest completion times Ci(πk) of the jobs Ji ∈ J for
problem F2||Cmax, we identify a permutation πk ∈ S with
a permutation schedule defined by πk. Let T = {p | pL

ij ≤
pij ≤ pU

ij , Ji ∈ J , Mj ∈M} be the set of possible vectors
p = (p1,1, p1,2, . . . , pn1, pn2) of the job processing times.

For a fixed vector p ∈ T , problem F2|pL
ij ≤ pij ≤ pU

ij |Cmax

turns into the problem F2||Cmax associated with the
vector p of job processing times, and so for each vector
p ∈ T , it is sufficient to look for an optimal schedule among
the set S of permutation schedules. Thus, the set S of
permutation schedules is dominant for problem F2|pL

ij ≤

Preprints of the 13th IFAC Symposium on
Information Control Problems in
Manufacturing, Moscow, Russia, June 3 - 5,
2009

Fr-A2.3

1500

pij ≤ pU
ij |Cmax as well. The set of permutation schedules

has the cardinality |S| = n!. Next, we restrict further the
set of permutations that are sufficient to examine while
solving problem F2|pL

ij ≤ pij ≤ pU
ij |Cmax.

Johnson [1954] proved that permutation πi = (Ji1 , Ji2 , . . . ,
Jin) ∈ S (called a Johnson permutation) satisfying the
condition

min{pik1, pim2} ≤ min{pim1, pik2}, (1)

1 ≤ k < m ≤ n, is optimal for problem F2||Cmax.
In contrast to problem F2||Cmax with fixed processing
times, for problem F2|pL

ij ≤ pij ≤ pU
ij |Cmax with uncer-

tain processing times there often does not exist a single
permutation of the n jobs from J that remains optimal
for all possible realizations of the job processing times. So
a minimal dominant set of permutations has to be treated
as a solution to problem F2|pL

ij ≤ pij ≤ pU
ij |Cmax.

Definition 1. The set of permutations S(T) ⊆ S is called
a J-solution to problem F2|pL

ij ≤ pij ≤ pU
ij |Cmax, if for

each vector p ∈ T , the set S(T) contains at least one
permutation that is a Johnson one for problem F2||Cmax

associated with the vector p of job processing times. Any
proper subset of set S(T) is not a J-solution to problem
F2|pL

ij ≤ pij ≤ pU
ij |Cmax.

From Definition 1, it follows that set S(T) contains at least
one optimal schedule πk ∈ S(T) ⊆ S for each vector p ∈ T
of the job processing times and that set S(T) is a minimal
set (with respect to inclusion) which possesses such a
property. Thus, to solve problem F2|pL

ij ≤ pij ≤ pU
ij |Cmax,

one can restrict the search within the set S(T) which often
has an essentially smaller cardinality than set S.

Braun et al. [2002] (Braun et al. [2006]) used the stability
of a Johnson (Jackson) permutation for solving a two-
machine minimum-length flow-shop (job-shop) scheduling
problem with limited machine availability. A minimal
dominant set of schedules was investigated by Allahverdi
and Sotskov [2003], Lai and Sotskov [1999], Lai et al. [1997]
for the Cmax criterion, and by Allahverdi et al. [2003],
Lai et al. [2004], Sotskov et al. [2004] for the total flow
time criterion. In particular, Allahverdi and Sotskov [2003]
identified the following sufficient conditions (2) and (3) for
fixing the order Jv → Jw of the jobs Jv ∈ J and Jw ∈ J
while solving problem F2|pL

ij ≤ pij ≤ pU
ij |Cmax.

If
pU

v1 ≤ pL
v2 and pU

v1 ≤ pL
w1, (2)

then for each vector p ∈ T , there exists a permutation
πk = (s1, Jv, s2, Jw, s3) ∈ S that is a Johnson one for
problem F2||Cmax associated with the vector p of job
processing times.

If
pU

w2 ≤ pL
w1 and pU

w2 ≤ pL
v2, (3)

then for each vector p ∈ T , there exists a permutation
πk = (s1, Jv, s2, Jw, s3) ∈ S that is a Johnson one for
problem F2||Cmax associated with the vector p of job
processing times.

Leshchenko and Sotskov [2005] proved that, if both condi-
tions (2) and (3) do not hold, then there is no J-solution

Table 1. Lower and upper bounds for the
possible processing times for Example 1

Ji J1 J2 J3 J4 J5 J6 J7

pL
i1 2 1 4 6 9 7 4

pU
i1 5 3 8 8 10 9 5

pL
i2 8 10 6 7 9 6 2

pU
i2 9 12 7 7 10 8 3

S(T) with the same order Jv → Jw in all permutations
πi ∈ S(T). Summarizing, the following claim has been
proven.
Theorem 1. There exists a J-solution S(T) to problem
F2|pL

ij ≤ pij ≤ pU
ij |Cmax with the fixed order Jv → Jw

of jobs Jv ∈ J and Jw ∈ J in all permutations πk ∈ S(T)
if and only if at least one condition (2) or (3) holds.

3. A BINARY RELATION DEFINED BY SET S(T)

Let J × J denote the Cartesian product of set J . Due
to Theorem 1, by testing inequalities (2) and (3) for each
pair of jobs Jv ∈ J and Jw ∈ J , we can construct the
following binary relation A� ⊆ J ×J on set J : Inclusion
(Jv, Jw) ∈ A� holds, v 6= w, if and only if there exists
a J-solution S(T) to problem F2|pL

ij ≤ pij ≤ pU
ij |Cmax

such that job Jv ∈ J is located before job Jw ∈ J (i.e.,
Jv → Jw) in all permutations πk ∈ S(T).

The binary relation A� defines a digraph (J ,A�) with
vertex set J and arc set A�. Relation (Jv, Jw) ∈ A� will
also be represented as follows: Jv � Jw. It is clear that
it takes O(n2) time to construct the digraph (J ,A�) by
testing inequalities (2) and (3) for each pair of jobs from
set J . In the following, we consider the partition J = J0∪
J1 ∪J2 ∪J ∗, where J0 = {Ji ∈ J | pU

i1 ≤ pL
i2, p

U
i2 ≤ pL

i1},
J1 = {Ji ∈ J | pU

i1 ≤ pL
i2, p

U
i2 > pL

i1} = {Ji ∈ J \J0 | pU
i1 ≤

pL
i2}, J2 = {Ji ∈ J | pU

i1 > pL
i2, p

U
i2 ≤ pL

i1} = {Ji ∈ J \
J0 | pU

i2 ≤ pL
i1}, J ∗ = {Ji ∈ J | pU

i1 > pL
i2, p

U
i2 > pL

i1}.
For each job Jk ∈ J0, from the inequalities pU

k1 ≤ pL
k2 and

pU
k2 ≤ pL

k1, we obtain the equalities pL
k1 = pU

k1 = pL
k2 = pU

k2.
Thus, the processing times pk1 and pk2 are fixed and equal
for both machines: pk1 = pk2 = pk.

For illustration, we consider Example 1 of problem
F2|pL

ij ≤ pij ≤ pU
ij |Cmax with the job set J =

{J1, J2, J3, J4, J5, J6, J7}, where J1 = {J1, J2}, J ∗ =
{J3, J4, J5, J6} and J2 = {J7}. The segments of the possi-
ble processing times are given in Table 1. Due to Theorem
1, by testing inequalities (2) and (3) for each pair of jobs
from set J = {J1, J2, J3, J4, J5, J6, J7}, we can construct
the binary relation A� on set J , represented in Fig. 1.

In the general case, the binary relation A� may be not
transitive. However, we have proved the following claim.
Theorem 2. If J0 = ∅, then the binary relation A� is
transitive.

To illustrate the non-transitivity of a binary relation A�
in the case J0 6= ∅, we consider Example 2 of problem
F2|pL

ij ≤ pij ≤ pU
ij |Cmax with the job set J = {J1, J2, J3},

where J1 ∈ J ∗, J2 ∈ J ∗ and J3 ∈ J0. Let the following
conditions hold:

pL
1,1 < p3 < pL

1,2, (4)

pL
2,2 < p3 < pL

2,1. (5)

1501

Due to Theorem 1, by testing inequalities (2) and (3) for
each pair of jobs, one can construct the following binary
relationA� on the set J = {J1, J2, J3}, where J1 � J3 and
J3 � J2. Due to inequalities (4) and (5), neither inequality
(2) nor inequality (3) holds for v = 1 and w = 2 and for
v = 2 and w = 1. Thus, we obtain J1 6� J2 and J2 6� J1,
and the binary relation A� is not transitive (see Fig. 2).

In what follows, only the case J0 = ∅ will be considered.

Let J0 = ∅, i.e., J = J ∗∪J1∪J2. For the jobs Jv ∈ J1 and
Jw ∈ J1, it may happen that there exist both a J-solution
S(T) ⊂ S with job Jv located before job Jw (i.e., Jv → Jw)
in all permutations πk ∈ S(T) and a J-solution S′(T) ⊂ S
with job Jw located before job Jv (i.e., Jw → Jv) in all
permutations πl ∈ S′(T). In such a case, digraph (J ,A�)
has a circuit (Jv, Jw, Jv).

We consider the following Example 3 of problem F2|pL
ij ≤

pij ≤ pU
ij |Cmax which shows the occurrence of a circuit in

the digraph (J ,A�) with the job set J = {J1, J2}.
Let J1 ∈ J2, J2 ∈ J2 and condition

pL
1,2 = pU

1,2 = pL
2,2 = pU

2,2 (6)

hold. One of the possible realizations of equalities (6) is
shown in Fig. 3.

Due to Theorem 1, by testing inequalities (2) and (3) for
v = 1 and w = 2 and for v = 2 and w = 1, one can
construct the following binary relation A� on the set J :
J1 � J2 and J2 � J1. Therefore, the binary relation A�
contains a circuit (J1, J2, J1) (see Fig. 4).

��
��

��
��

��
��

��
��

��
��

��
��

��
��

J1

J2

J3

J4

J5

J6

J7

-

- -

@
@

@
@

@
@

@
@

@@R

HH
HHH

HHHj

HHH
HHH

HHj

HHH
HHH

HHj
���

���
��*

�
���

����*

@
@

@
@

@
@

@
@

@@R

�
�

�
�

�
�

�
�

���

Fig. 1. Digraph (J ,A�) (transitive arcs are omitted)
representing the binary relation A� on the set J for
Example 1.

��
��

��
��

��
��

J1 J3 J2
- -

Fig. 2. Non-transitivity of the binary relation A� on the
set J = {J1, J2, J3} for Example 2 with J0 6= ∅.

-

6

J1

J2

pij

u r rpL
1,2 = pU

1,2 pL
1,1 pU

1,1

u r rpL
2,2 = pU

2,2 pL
2,1 pU

2,1

Fig. 3. Possible realization of the data for Example 3.

Theorem 3. Digraph (J ,A�) has no circuits if and only if
set J = J ∗ ∪J1 ∪J2 includes no pair of jobs Ji ∈ Jk and
Jj ∈ Jk with k ∈ {1, 2} such that the following equalities
hold:

pL
ik = pU

ik = pL
jk = pU

jk. (7)

In the case J0 = ∅ under consideration, we define a binary
relation A≺ ⊆ A� ⊆ J ×J using the following agreement:
If Jv � Jw and Jw 6� Jv, then Jv ≺ Jw. If Jv � Jw and
Jw � Jv with v < w, then Jv ≺ Jw and Jw 6≺ Jv.

Since set J0 is empty, we obtain an antireflective, antisym-
metric (due to Theorem 3), and transitive (due to Theorem
2) binary relation A≺ on the set J , i.e., we obtain a strict
order. The strict order A≺ defines a digraph G = (J ,A≺)
with the vertex set J and the arc set A≺. We have proved
that all components of digraph G (except at most one) are
isolated vertices.
Theorem 4. Let J = J ∗ ∪ J1 ∪ J2. Then there exists at
most one component with a cardinality greater than one
in the digraph G.

A permutation πk = (Jk1 , Jk2 , . . . , Jkn
) ∈ S may be

considered as a total order of the jobs J . A total order
defined by permutation πk is called a linear extension
of a partial order A≺, if each inclusion (Jku

, Jkv
) ∈ A≺

implies inequality u < v. Let Π(G) denote the set of
permutations πk ∈ S defining all linear extensions of
the partial order A≺. In particular, if G = (J , ∅), then
Π(G) = S. On the other hand, if |A≺| = n(n−1)

2 , then
Π(G) = {πk}. Necessary and sufficient conditions for the
equality Π(G) = {πk} have been proved by Leshchenko
and Sotskov [2005]. We have proved the following claim.
Theorem 5. Let J = J ∗ ∪ J1 ∪ J2. For any vector p ∈ T ,
set Π(G) contains a Johnson permutation for problem
F2||Cmax associated with the vector p of job processing
times.

Due to Theorem 5, set Π(G) satisfies the first part of
Definition 1. However, this set may violate the second
part of Definition 1 since it may include a redundant

��
��

��
��

J1 J2

-
�

Fig. 4. Digraph (J ,A�) constructed for Example 3.

1502

permutation πk, i.e., set Π(G)\{πk} may also include at
least one Johnson permutation for any vector p ∈ T of
the job processing times. Obviously, after deleting from
set Π(G) all such redundant permutations, we obtain a set
Π∗(G) which coincides with a minimal dominant set S(T).
Thus, the following claim can be proven.
Corollary 1. If J = J ∗ ∪ J1 ∪ J2, then there exists a J-
solution S(T) to problem F2|pL

ij ≤ pij ≤ pU
ij |Cmax such

that S(T) ⊆ Π(G).

In the next section, we show how to construct the set
Π∗(G) = S(T).

4. HOW TO CONSTRUCT SET S(T) ⊆ Π(G)?

Let the pair of jobs Ji ∈ J and Jj ∈ J be called a conflict
pair of jobs, if neither relation Ji � Jj nor relation Jj � Ji

holds. We have proved the following three lemmas.
Lemma 1. Let J = J ∗ ∪ J1 ∪ J2. A permutation of
the form πg = (. . . , Ji, . . . , Jr, . . . , Jj , . . .) ∈ Π(G) is
redundant, if for a pair of jobs Ji ∈ Jk and Jj ∈ Jk with
k ∈ {1, 2} equalities (7) hold and job Jr creates a conflict
pair both with job Ji and with job Jj .

A redundant permutation defined in Lemma 1 will be
called a redundant permutation of type 1. Due to Lemma
1, testing whether set Π(G) contains a redundant per-
mutation of type 1 takes O(n2) time. In order to delete
all redundant permutations of type 1 from set Π(G), it is
sufficient to identify each pair of jobs Ji and Jj in digraph
G for which the condition of Lemma 1 holds. If GI is the
digraph obtained from digraph G = (J ,A≺) after such
an identification of vertices in the set J , then set Π(GI)
has no redundant permutations of type 1. Let inclusion
Jj ∈ J ∗ hold. We define two sets of jobs as follows:

J ′
j = {Jq ∈ J2 | min{pU

j1, p
U
j2} < pU

q2}⋃
{Jr ∈ J1 ∪ J ∗ | min{pU

j1, p
U
j2} ≤ pL

r1};
J ′′

j = {Jw ∈ J1 | min{pU
j1, p

U
j2} < pU

w1}⋃
{Ju ∈ J2 ∪ J ∗ | min{pU

j1, p
U
j2} ≤ pL

u2}.
Lemma 2. Let J = J ∗ ∪ J1 ∪ J2. If Jj ∈ J ∗, Jq ∈ J ′

j ,
Jw ∈ J ′′

j , then each permutation of the form πg =
(. . . , Jq, . . . , Jj , . . . , Jw, . . .) ∈ Π(G) is redundant.

A redundant permutation defined by the condition of
Lemma 2 will be called a redundant permutation of type 2.
Due to Lemma 2, testing whether permutation πg ∈ Π(G)
is a redundant permutation of type 2 takes O(n) time.

Let Π∗(G) denote the set of permutations left in the set
Π(G) after deleting all redundant permutations of type 1
and type 2.
Lemma 3. Let J = J ∗ ∪ J1 ∪ J2. If permutation πt ∈
Π(G) is redundant in set Π(G), then πt is a redundant
permutation either of type 1 or type 2.

Using Lemmas 1 - 3 and Theorem 5, the following claim
may be proven.
Theorem 6. If set J = J ∗ ∪ J1 ∪ J2 does not contain a
pair of jobs Ji ∈ Jk and Jj ∈ Jk, k ∈ {1, 2}, such that
condition

max{pL
i,3−k, pL

j,3−k} < pL
ik = pU

ik = pL
jk = pU

jk <

min{pU
i,3−k, pU

j,3−k} (8)

holds, then Π∗(G) = S(T).

It is clear that testing the condition of Theorem 6 takes
O(n) time. Due to Theorem 6 and Lemma 3, if set J =
J ∗ ∪ J1 ∪ J2 does not contain a pair of jobs Ji ∈ Jk and
Jj ∈ Jk, k ∈ {1, 2}, such that condition (8) holds, then
a J-solution may be constructed by deleting all redundant
permutations of types 1 and 2 from set Π(G). Since the
obtained set Π∗(G) is uniquely defined, the following claim
is correct.
Corollary 2. If set J = J ∗ ∪ J1 ∪ J2 does not contain a
pair of jobs Ji and Jj such that condition (8) holds, then
relation A≺ defines a unique J-solution Π∗(G) = S(T) to
problem F2|pL

ij ≤ pij ≤ pU
ij |Cmax.

The condition of Theorem 6 is sufficient for the uniqueness
of a J-solution Π∗(G) = S(T) to problem F2|pL

ij ≤ pij ≤
pU

ij |Cmax. However, this condition is not necessary for
the uniqueness of a J-solution defined by relation A≺ as
demonstrated by the following Example 4.

Let us consider Example 4 of problem F2|pL
ij ≤ pij ≤

pU
ij |Cmax with the job set J = {J1, J2, J3}, where J1 ∈ J ∗,

J2 ∈ J ∗ and J3 ∈ J1. Let the following conditions hold:
pL
1,2 < pL

1,1 = pU
1,1 < pU

1,2, pL
2,2 < pL

2,1 = pU
2,1 < pU

2,2,

pL
1,1 = pL

2,1, pL
1,1 ≤ pL

3,1, (see Fig. 5 for a possible realization
of such input data).

-

6

J1

J2

pij

r u rpL
1,1 = pU

1,1pL
1,2 pU

1,2

ur rpL
2,1 = pU

2,1pL
2,2 pU

2,2

Fig. 5. Possible realization of the data for Example 4.

Due to Theorem 1, by testing inequalities (2) and (3) for
each pair of jobs, one can construct a binary relation A�
on the set J and the corresponding digraph G. It is easy
to see that for Example 4, digraph G has an empty set of
arcs: G = (J ,Ø). Therefore, there are six permutations
in the set Π(G): π1 = (J1, J2, J3), π2 = (J1, J3, J2),
π3 = (J2, J1, J3), π4 = (J2, J3, J1), π5 = (J3, J1, J2),
π6 = (J3, J2, J1). The four permutations π2, π4, π5 and π6

are not redundant. Permutations π1 and π3 are redundant,
however, every J-solution S(T) has to contain one of these
two permutations. Thus, there are two different J-solutions
S1(T) and S2(T) for Example 4 of problem F2|pL

ij ≤
pij ≤ pU

ij |Cmax: S1(T) = {π1, π2, π4, π5, π6}, S2(T) =
{π2, π3, π4, π5, π6}. Note that after deleting job J3, one
can obtain Example 5 of problem F2|pL

ij ≤ pij ≤ pU
ij |Cmax

with two jobs, J = {J1, J2}, and a unique J-solution
S(T) = {π1, π2}, where π1 = (J1, J2), π2 = (J2, J1).

1503

5. HOW TO USE THE ABOVE RESULTS?

The practical significance of the obtained results will be
clear from the new approach for solving problem F2|pL

ij ≤
pij ≤ pU

ij |Cmax which allows us to execute a schedule
that becomes optimal for the actual processing times. In
this section, we outline the method based on Theorems
1, 2, 3, 4, 5, 6 and Corollaries 1, 2 for dealing with
uncertain numerical input data. A formal description of
the corresponding algorithms along with computational
results is given by Matsveichuk et al. [2009]. The approach
based on constructing a minimal set of dominant schedules
S(T) allows us to find special cases of a problem F2|pL

ij ≤
pij ≤ pU

ij |Cmax when it is possible to find an actual
optimal schedule in spite of the uncertain numerical data.
If |S(T)| ≥ 2, then the solution process can be seen as
consisting of a static and a dynamic phase. In the static
phase, a scheduler can use Theorems 1, 2, 3, 4, 5, 6 and
Corollaries 1, 2 to construct a J-solution S(T) to problem
F2|pL

ij ≤ pij ≤ pU
ij |Cmax if J0 = Ø (the case J0 6= Ø is

considered by Matsveichuk et al. [2009]). In the dynamic
phase of the decision-making process, a scheduler has to
select an appropriate schedule from the set S(T) to react
in real-time to the actual processing times of the already
completed jobs. A decision point ti, ti > t0 = 0, may
be equal to the actual completion time of job Ji ∈ J
on machine M1 if there exists a conflict pair of jobs
at time ti. At time ti ≥ 0, a scheduler can make the
right decision to choose one of the conflict jobs to be
processed next on machine M1, if after this decision, the
obtained subset of set S(T) remains a J-solution to the
remaining subproblem F2|pL

ij ≤ pij ≤ pU
ij |Cmax with the

corresponding set Ti ⊂ T of the possible vectors of job
processing times. Otherwise, a scheduler may use one of
the solution policies that does not guarantee to find an
optimal schedule for any realization of the remaining job
processing times. The solution policy may be optimistic
or pessimistic, or a scheduler can minimize the objective
function Cmax on average (see Aytug et al. [2005]), or a
scheduler can choose arbitrarily one of the conflict jobs to
be processed next.

In Sections 2, 3 and 4, we have developed the mathematical
background for the static phase of scheduling (Theorems 1,
2, 3, 4, 5, 6 and Corollaries 1, 2). The static phase may be
considered as predictive scheduling and the dynamic phase
as reactive scheduling. After the static phase of scheduling,
a predictive set of schedules S(T) is constructed in the
form of a digraph (J , A�). The digraph (J , A�) con-
structed in the static phase characterizes a minimal domi-
nant set S(T) of schedules without enumerating them ex-
plicitly. In general, any schedule from the set S(T) can be
implemented as an optimal one during the dynamic phase
for some suitable realizations of the job processing times.
Matsveichuk et al. [2009] gave a detailed investigation of
the dynamic phase of scheduling. Namely, a lot of sufficient
conditions for the existence of a dominant permutation
πu ∈ S(T) are proven provided that the initial part of
the schedule is already executed and the processing times
of the completed jobs become known exactly. Using these
sufficient conditions (along with Theorems 1, 2, 3, 4, 5,
6 and Corollaries 1, 2), two-phase scheduling algorithms
are developed and coded in C++. These algorithms fall

into the category of predictive-reactive scheduling (Aytug
et al. [2005]). In the static phase of scheduling, digraph
(J , A�) is considered as a form of a schedule for problem
F2|pL

ij ≤ pij ≤ pU
ij |Cmax. In the dynamic phase, the partial

orders of the jobs defined by digraph (J , A�) have to be
progressively extended using additional information about
the processing times of the jobs being completed.

The page limit of a paper does not allow us to present here
the details of these algorithms. It should be only noted that
the sufficient conditions for a domination of a permutation
proven for the dynamic phase do not exploit Johnson’s
condition (1) in contrast to Definition 1, Theorems 1, 2,
3, 4, 5, 6 and Corollaries 1, 2. Moreover, if no sufficient
condition holds for a permutation of conflict jobs at a
decision point ti, then a job to be processed next on
machine M1 was selected arbitrarily from the set of all
conflict jobs.

The preliminary computational results have shown the effi-
ciency (in computational time) of these two-phase schedul-
ing algorithms and their effectiveness (in the number of
randomly generated instances solved exactly). In particu-
lar, if the relative error of the input data was not large
(less than 10%), then most randomly generated problems
F2|pL

ij ≤ pij ≤ pU
ij |Cmax with 50 ≤ n ≤ 5000 have been

solved exactly within 0.05 seconds per instance in spite
of uncertain processing times. Moreover, the optimality of
the actual schedule was often proven before its completion,
and the average error of the objective function Cmax was
no more than 3%. For most randomly generated instances
solved exactly in our experiments, the cardinality of set
S(T) was rather large. Nevertheless, the average CPU-time
of a Celeron 1200 MHz processor for both the static phase
and the dynamic phase of the decision-making process was
less than 1.5 seconds even for instances with 10000 jobs.

If set J0 is empty, then digraph G = (J , A≺) represents a
unique solution S(T) to problem F2|pL

ij ≤ pij ≤ pU
ij |Cmax

and may be considered as the union of optimal schedules
constructed for the set of problems F2||Cmax, which may
be generated from the original problem F2|pL

ij ≤ pij ≤
pU

ij |Cmax for different realizations of the job processing
times. In the general case (if set J0 may be not empty),
using solution S(T) a scheduler has to look for an optimal
schedule when some jobs from set J will be in process. In
other words, it may be possible to arrange the jobs that
cause a conflict in real-time when additional information
about the job processing (completion) times becomes
available for a scheduler. It is clear that, the larger the
uncertainty of the input data is, the less possibility for
the right decision a scheduler will have. The cardinality of
set S(T) may be considered as a measure of uncertainty
of problem F2|pL

ij ≤ pij ≤ pU
ij |Cmax. With respect to

Johnson’s algorithm, jobs from the sets J1 and J2 have a
limited influence on the uncertainty of problem F2|pL

ij ≤
pij ≤ pU

ij |Cmax. Jobs from the set J ∗ may increase the
uncertainty of the problem. In contrast to set J ∗, set
J0 may be used to decrease the uncertainty of the input
data in the dynamic phase of scheduling. In practice, it
is useful to increase the cardinality of set J0 as much as
possible. For example, one can include an additional job Jk

with fixed processing times for a preventive maintenance
of machine M1 and machine M2 into set J . In the dynamic

1504

phase of scheduling, such a job Jk ∈ J0 may be used to
decrease the uncertainty of some jobs Ji ∈ J \ J0.

6. CONCLUSION

Since the cardinality of a J-solution S(T) varies for differ-
ent problems F2|pL

ij ≤ pij ≤ pU
ij |Cmax in the range [1, n!],

there is no polynomial algorithm for a direct enumera-
tion of all permutations of a minimal dominant set S(T).
However, due to Theorem 1, one can construct a digraph
(J ,A�) or (if set J0 is empty) a digraph (J ,A≺) in O(n2)
time. Due to Theorems 5 and 6, digraph (J ,A≺) defines
a set S(T) and may be considered as a condensed form
of a J-solution to problem F2|pL

ij ≤ pij ≤ pU
ij |Cmax. Of

course, the more job pairs involved in the binary relation
A�, the more redundant permutations will be deleted from
set S while constructing a J-solution S(T) ⊆ S to problem
F2|pL

ij ≤ pij ≤ pU
ij |Cmax.

Due to Theorems 5 and 6, we can construct a J-solution
S(T), |S(T)| > 1, to problem F2|pL

ij ≤ pij ≤ pU
ij |Cmax

and use it as a more general schedule form. In particular,
using a J-solution, one can look for a robust schedule
and reduce time-consuming computations (see Kouvelis
et al. [2000]) by treating a minimal set S(T) of dominant
permutations instead of the whole set S of permutations.
Of course, this reduction of computations may be essential
if the cardinality of set S(T) is significantly less than
|S| = n!. If the uncertainty exceeds a certain threshold,
then other approaches will outperform the approach based
on Theorems 1, 2, 3, 5, 6, e.g., a fuzzy method, Slowinski
and Hapke [1999], and a robust method, Kouvelis and Yu
[1997]. The former method is practically useful when the
scheduler has enough prior information to characterize the
probability distributions of the random processing times
and there is a large number of realizations of similar
processes. The latter method allows us to determine the
schedule with the best worst-case performance compared
to the corresponding optimal schedule over all potential
realizations of the job processing times.

Our method is consistent with the hierarchical approach
to scheduling adopted over the last decade, and it corre-
sponds to industrial practices, Aytug et al. [2005]. In the
static phase, when the level of uncertainty of the input
data is large, a scheduler can find a J-solution S(T) to
problem F2|pL

ij ≤ pij ≤ pU
ij |Cmax. In order to find an

optimal schedule, the subset of schedules from a J-solution
to the subproblem F2|pL

ij ≤ pij ≤ pU
ij |Cmax obtained

after each decision being made in the dynamic phase has
to keep a J-solution for the remaining subset of jobs.
Matsveichuk et al. [2009] have shown by experiments that
such a hierarchical approach based on a minimal dominant
set S(T) is efficient for problem F2|pL

ij ≤ pij ≤ pU
ij |Cmax.

ACKNOWLEDGEMENTS

The research of the first author was supported by the
World Federation of Scientists. The second and third au-
thors were supported by Belarusian Republican Founda-
tion for Fundamental Research (grant M08MC-027). The
second author was also supported by National Science
Council of Taiwan (grant 98-2811-H-002-005).

REFERENCES

A. Allahverdi, T. Aldowaisan, Yu.N. Sotskov. Two-
machine flowshop scheduling problem to minimize
makespan or total completion time with random and
bounded setup times. International Journal of Math-
ematics and Mathematical Sciences, 39(11):2475–2486,
2003.

A. Allahverdi, Yu.N. Sotskov. Two-machine flowshop
minimum-length scheduling problem with random and
bounded processing times. International Transactions
in Operational Research, 10:65–76, 2003.

H. Aytug, M.A. Lawley, K. McKay, S. Mohan, R. Uzsoy.
Executing production schedules in the face of uncer-
tainties: a review and some future directions. European
Journal of Operational Research, 161:86–110, 2005.

O. Braun, T.-C. Lai, G. Schmidt, Yu.N. Sotskov. Stability
of Johnson’s schedule with respect to limited machine
availability. International Journal of Production Re-
search, 40(17):4381–4400, 2002.

O. Braun, N.M. Leshchenko, Yu.N. Sotskov. Optimality of
Jackson’s permutations with respect to limited machine
availability. International Transactions in Operational
Research, 13:59–74, 2006.

S.M. Johnson. Optimal two- and three-stage production
schedules with setup times included. Naval Research
Logistics Quarterly, 1:61–68, 1954.

P. Kouvelis, R.L. Daniels, G. Vairaktarakis. Robust
scheduling of a two-machine flow shop with uncertain
processing times. IIE Transactions, 32:421–432, 2000.

P. Kouvelis, G. Yu. Robust Discrete Optimization and Its
Applications. Kluwer Academic Publishers, Boston, The
USA. 1997.

T.-C. Lai, Yu.N. Sotskov. Sequencing with uncertain
numerical data for makespan minimization. Journal of
the Operational Research Society, 50:230–243, 1999.

T.-C. Lai, Yu.N. Sotskov, N. Sotskova, F. Werner. Optimal
makespan scheduling with given bounds of processing
times. Mathematical and Computer Modelling, 26:67–
86, 1997.

T.-C. Lai, Yu.N. Sotskov, N. Sotskova, F. Werner. Mean
flow time minimization with given bounds of processing
times. European Journal of Operational Research, 159:
558–573, 2004.

N.M. Leshchenko, Yu.N. Sotskov. Two-machine minimum-
length shop-scheduling problems with uncertain pro-
cessing times. Proceedings of XI International Confer-
ence ”Knowledge-Dialogue-Solution”, Varna, Bulgaria,
June 20-24:375–381, 2005.

N.M. Matsveichuk, Yu.N. Sotskov, N.G. Egorova, T.-C.
Lai. Schedule execution for two-machine flow-shop with
interval processing times. Mathematical and Computer
Modelling 49(5-6):991–1011, 2009.

M. Pinedo. Scheduling: Theory, Algorithms, and Systems.
Prentice-Hall, Englewood Cliffs, 1995.

R. Slowinski, M. Hapke. Scheduling Under Fuzziness.
Physica-Verlag, Heidelberg, New York, 1999.

Yu.N. Sotskov, A. Allahverdi, T.-C. Lai. Flowshop
scheduling problem to minimize total completion time
with random and bounded processing times. Journal of
the Operational Research Society, 55:277–286, 2004.

V.S. Tanaev, Yu.N. Sotskov, V.A. Strusevich. Scheduling
Theory: Multi-Stage Systems. Kluwer Academic Pub-
lishers, Dordrecht, The Netherlands, 1994.

1505

