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Abstract: A subset of vertices in a graph is called a dissociation set if it induces a subgraph with vertex 
degree at most 1. A dissociation set D is maximal if no other dissociation set contains D. The complexity 
of finding a dissociation set of maximum size in line graphs and finding a maximal dissociation set of 
minimum size in general graphs is considered. 
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1. INTRODUCTION 

Dissociation set problems in graphs find applications in 
telecommunications and scheduling. The maximum 
dissociation set problem can be viewed as a generalization 
both of the maximum induced matching problem which is 
important in connection with applications to secure 
communication channels (Golumbic and Lewenstein, 2000) 
and to the maximum independent set problem which finds 
applications in manufacturing for production planning and 
facility location (Haynes et al., 1998). 

Let G be a graph with the vertex set )(GVV =  and the edge 
set )(GEE = . For a subset of vertices )(GVX ⊆ , the 
subgraph of G induced by X is denoted by G(X). As usual 

)(xNG , or simply N(x), denotes the neighborhood of a 
vertex Vx ∈ , i.e., the set of all vertices that are adjacent to 
x in G. The degree of x is defined as |)(|deg xNx = . The 
maximum vertex degree of G is denoted by )(GΔ . 

A set )(GVD ⊆  is called a dissociation set if it induces a 
subgraph with a vertex degree at most 1, i.e., 1))(( ≤Δ DG . 

A dissociation set D is maximal if no other dissociation set 
in G contains D. Let DS(G) be the set of all maximal 
dissociation sets in G. Define the minimum maximal 
dissociation number as 

)}(|:min{|)( GDSDDGdiss ∈=−  
 

and the maximum dissociation number as 

)}(|:max{|)( GDSDDGdiss ∈=+ . 
 

 

 

Fig. 1.  Maximal dissociation sets of graph 5P . 

 

For example, for the simple path on five vertices (graph 
5PG =  with }5,4,3,2,1{)( 5 =PV  and 
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}45,34,23,12{)( 5 =PE ), all maximal dissociation sets (up to 
symmetry) are shown in Fig. 1 as the sets of encircled vertices. 
In this case:  

4)( 5 =+ Pdiss  and 3)( 5 =− Pdiss . 

A maximum dissociation set is a dissociation set that 
contains )(Gdiss+  vertices. A minimum maximal 
dissociation set is a maximal dissociation set that contains 

)(Gdiss−  vertices. 

Let us recall some definitions. For a graph G, the line graph 
L(G) is defined as follows: 
(i) the vertices of L(G) bijectively correspond to the edges 
of G and 
(ii) two vertices of L(G) are adjacent if and only if the 
corresponding edges of G are adjacent. 
We denote by 2G  the square of graph G, i.e., the graph on 

)(GV  in which two vertices are adjacent if and only if they 
have a distance at most 2 in G. Let nC  be a simple cycle on 
n vertices and eK −4  be a graph obtained from the 
complete graph on four vertices ( 4K ) by deleting an edge. 

For a set H of graphs, a graph G is called H-free if no 
induced subgraph of G is isomorphic to a graph in H. In 
particular, claw-free (or 3,1K -free) graphs constitute a class 
of graphs that do not contain a claw (a star 3,1K  on four 
vertices) as an induced subgraph. 

 

2. DISSOCIATION SET PROBLEMS 

Consider the two following decision problems associated 
with the parameters )(Gdiss+  and )(Gdiss− . We will refer 
to these problems as dissociation set problems. 

MAXIMUM DISSOCIATION SET 
Instance: A graph G and an integer k. 
Question: Is kGdiss ≥+ )( ? 

MINIMUM MAXIMAL DISSOCIATION SET 
Instance: A graph G and an integer k. 
Question: Is kGdiss ≤− )( ? 

The MAXIMUM DISSOCIATION SET problem has been 
introduced by Yannakakis (1981) and was shown to be NP-
complete for the class of bipartite graphs. Boliac et al., 
(2004) strengthen the result of Yannakakis by showing that 
the problem is NP-complete for bipartite graphs with 
maximum degree 3 and 4C -free bipartite graphs. It is also 
known that the problem is NP-complete for planar graphs, 
see Papadimitriou and Yannakakis (1982). 
As mentioned above, dissociation set problems are 
connected with the well-known independent set and induced 
matching problems. For a graph G, a subset )(GVS ⊆  of 

vertices is called an independent set if no two vertices in S 
are adjacent. In other words, the degrees of all vertices of 
the subgraph of G induced by S are equal to 0, i.e., the 
subgraph is 0-regular. The maximum cardinality of an 
independent set of G is the independence number, and it is 
denoted by )(Gα . 

For a graph G, a subset )(GEM ⊆  of edges is called an 
induced matching if 
(i) set M is a matching in G (a set of pairwise non-adjacent 
edges) and 
(ii) there is no edge in MGE \)(  connecting two edges of M. 

In other words, the degrees of all vertices of the subgraph of 
G induced by the end-vertices of edges of M are equal to 1, 
i.e., the subgraph is 1-regular. The maximum cardinality of 
an induced matching of G is the induced matching number, 
and it is denoted by )(GΣ . 

The decision problems connected with the parameters )(Gα  
and )(GΣ  can be formulated as follows. 

MAXIMUM INDEPENDENT SET 
Instance: A graph G and an integer k. 
Question: Is kG ≥)(α ? 

MAXIMUM INDUCED MATCHING 
Instance: A graph G and an integer k. 
Question: Is kG ≥Σ )( ? 

Notice that the MAXIMUM DISSOCIATION SET problem 
asks whether in a given graph there exists a maximum 
induced subgraph with vertex degree equal to 0 or 1, while 
the MAXIMUM INDEPENDENT SET problem asks 
whether there exists a maximum induced subgraph with 
vertex degree equal to 0 and the MAXIMUM INDUCED 
MATCHING problem asks whether there exists a maximum 
induced subgraph with vertex degree equal to 1. In addition, 

)()( GdissG +≤α  and )()(2 GdissG +≤Σ  for any graph G. 

In fact, both differences )()( GGdiss α−+  and 

)(2)( GGdiss Σ−+  can be arbitrarily large. 

The following table compiles available results on the 
complexity of the MAXIMUM DISSOCIATION SET 
problem (MDS), the MAXIMUM INDEPENDENT SET 
problem (MIS) and the MAXIMUM INDUCED 
MATCHING problem (MIM) by indicating classes of 
graphs where the problems are polynomially solvable (P), 
NP-complete (NP-c) or open (?). For definitions of the 
graph classes in this table, see Brandstädt et al., (1999). 

Below it is shown that the MAXIMUM DISSOCIATION 
SET problem is NP-complete for line graphs and therefore 
for claw-free graphs. 
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Table 1. Complexity of MDS, MIM and MIS 

Graph classes /  
Problems MDS MIM MIS 

Planar graphs NP-c NP-c NP-c 
Triangle free graphs NP-c NP-c NP-c 
Bipartite graphs NP-c NP-c P 
Claw-free graphs ? NP-c P 
Line graphs ? NP-c P 
Chordal graphs P P P 
Circular-arc graphs P P P 
AT-free graphs  P P P 

 
3. COMPLEXITY OF THE MAXIMUM DISSOCIATION 

SET PROBLEM 

An interesting special case of the MAXIMUM 
DISSOCIATION SET problem arises when the input graph 
is a line graph. We show that this special case is NP-
complete (Theorem 1) by a polynomial time reduction from 
a variant of the following decision problem. 

PARTITION INTO ISOMORPHIC SUBGRAPHS 
Instance: Graphs G and H with |)(||)(| HVqGV =  for some 
positive integer q. 
Question: Is there a partition )(21 GVVVV q =∪∪∪ K  such 

that )( iVG  contains a subgraph isomorphic to H for all 
qi ,,2,1 K= ? 

It is well known that this problem is NP-complete for any 
fixed H that contains a connected component of three or 
more vertices (Kirkpatrick and Hell, 1978), see also Garey 
and Johnson (1979). 

Consider a special case of PARTITION INTO 
ISOMORPHIC SUBGRAPHS when H is the graph 3P : the 
problem PARTITION INTO SUBGRAPHS ISOMORPHIC 
TO 3P . Recall that ),,(3 wvuP =  is a 3-path, i.e., a graph 
with the edge set },{ vwuv . Vertex v is the central vertex and 
u, w are the end-vertices of this 3-path. 

The proof of the following statement can be done by a 
polynomial time transformation from the problem 
PARTITION INTO SUBGRAPHS ISOMORPHIC TO 3P  

Theorem 1. MAXIMUM DISSOCIATION SET is an NP-
complete problem for line graphs. 

This theorem can be strengthened (Theorem 2) using the 
following results. Orlovich et al., (2008) prove that 
PARTITION INTO SUBGRAPHS ISOMORPHIC TO 3P  
is an NP-complete problem for planar bipartite graphs of 
maximum degree 4 in which every vertex of degree 4 is a 
cut-vertex. 

Theorem 2. MAXIMUM DISSOCIATION SET is an NP-
complete problem for planar line graphs of planar bipartite 
graphs with maximum degree 4. 

Obviously, Theorem 2 holds for the class of line graphs of 
bipartite graphs. This class can be characterized in terms of 
forbidden induced subgraphs: graph G is a line graph of a 
bipartite graph if and only if G does not contain 3,1K , 

eK −4  and 12 +nC  ( 2≥n ) as induced subgraphs, see 
Harary and Holzmann (1974). Theorem 2 implies the 
following corollary. 

Corollary 1. MAXIMUM DISSOCIATION SET is NP-
complete for )2:,,( 1243,1 ≥− + nCeKK n -free graphs. 

 

4. SOME POLYNOMIALLY SOLVABLE CASES 

Below we show that the MAXIMUM DISSOCIATION 
SET problem can be solved in polynomial time for some 
special classes of graphs. 

Remind that the graphs 1H  and 1G  shown in Fig. 2 are 
called chair and bull, respectively. 

 
 
Fig. 2. Graphs 1H  and 1G . 

Consider the following construction due to Lozin and 
Rautenbach (2003). For a graph G, let *G  denote the graph 
with the vertex set )()()( * GEGVGV ∪=  such that two 

vertices )(, *GVvu ∈  are adjacent in *G  if and only if 
either 

1. )(, GVvu ∈  and )(GEuv ∈  or 
2. )(GVu ∈ , )(GExyv ∈=  and ∅≠∩ },{)( yxuNG  or 
3. )(GExyu ∈= , )(GEztv ∈= , and 

∅≠∩∪ },{))()(( tzyNxN GG . 

An example of graph *G  is shown in Fig. 3 for the graph 
4PG = . Here }4,3,2,1{)( 4 =PV  and }34,23,12{)( 4 =PE . 

 

 
 
Fig. 3.  Graphs 4P  and *

4P . 
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Notice that the subgraph of *G  induced by )(GV  coincides 

with G, while the subgraph of *G  induced by )(GE  

coincides with 2))(( GL . Assign to each vertex of *G  in 
)(GV  the weight 1 and to each of the remaining vertices of 

*G  the weight 2. Then the following statement holds. 

Lemma 1 (Lozin and Rautenbach, 2003). An independent 
set of maximum weight in *G  corresponds to a dissociation 
set of maximum cardinality )(Gdiss+  in G. 

Using the construction introduced by Lozin and Rautenbach 
(2003), we prove the following theorem in which 1H  is a 
chair graph shown in Fig. 2 while the graphs 2H  and 3H  
are shown in Fig. 4. 

Theorem 3. The graph *G  of a graph G is chair-free if and 
only if G is ),,( 321 HHH -free. 

Based on the results by Alekseev (2004), the following 
statement has been proved by Lozin and Milanic (2006). 

Lemma 2 (Lozin and Milanic, 2008). The maximum weight 
independent set problem can be solved in polynomial time 
in the class of chair-free graphs. 

Theorem 3 and Lemmas 1 and 2 imply the following result. 

Theorem 4. The MAXIMUM DISSOCIATION SET 
problem can be solved in polynomial time in the class of 

),,( 321 HHH -free graphs. 

 

 
 
Fig. 4.  Graphs 2H  and 3H . 

Theorem 4 implies the following corollary. 

Corollary 2. The MAXIMUM DISSOCIATION SET 
problem can be solved in polynomial time in the class of 
(claw, bull)-free graphs. 

For some classes of graphs we can specify the complexity of 
finding the maximum dissociation number (Theorem 5 and 
Corollary 3). Remind that a simple path in a graph is called 
hamiltonian if it contains all vertices of the graph. 

Theorem 5. Let G be a graph with n vertices and containing 
a hamiltonian path. Then 

⎥⎥
⎤

⎢⎢
⎡=+

3
2))(( nGLdiss . 

Corollary 3. The maximum dissociation number can be 
computed in linear time in the class of line graphs of graphs 
having a hamiltonian path. 

5. THE MINIMUM MAXIMAL DISSOCIATION SET 
PROBLEM 

We establish the complexity of the MINIMUM MAXIMAL 
DISSOCIATION SET problem by a polynomial time 
reduction from the following well-known NP-complete 
decision problem (Garey and Johnson, 1979). 

3-SATISFIABILITY 
Instance: A collection },,,{ 21 mcccC K= of clauses over a 
set },,,{ 21 nxxxX K=  of 0-1 variables such that 3|| =jc  

for mj ,,2,1 K= . 
Question: Is there a truth assignment for X that satisfies all 
the clauses in C? 

Theorem 6. MINIMUM MAXIMAL DISSOCIATION 
SET is an NP-complete problem. 

For some special classes of graphs the problem under 
consideration can be solved in polynomial time. Using the 
construction (graph *G ) by Lozin and Rautenbach (2003), 
we prove the following statement. 

Theorem 7. MINIMUM MAXIMAL DISSOCIATION 
SET is solvable in polynomial time for circular-arc graphs 
and AT-free graphs. 

For the definitions of circular-arc and AT-free graphs, see 
Brandstädt et al. (1999). 

6. CONCLUSION 

We considered the complexity of finding a dissociation set 
of maximum size in line graphs and finding a maximal 
dissociation set of minimum size in general graphs. We 
have shown that the MAXIMUM DISSOCIATION SET 
problem is NP-complete for planar line graphs of planar 
bipartite graphs with maximum degree 4. On the other hand, 
we have shown that the MAXIMUM DISSOCIATION SET 
problem can be solved in polynomial time for some special 
classes of graphs, in particular, for ),,( 321 HHH -free 
graphs (see Fig. 2 and 4). This class includes (claw, bull)-
free graphs as a proper subclass. Moreover, we have shown 
that the maximum dissociation number can be computed in 
linear time in the class of line graphs of graphs having a 
hamiltonian path. 

The MINIMUM MAXIMAL DISSOCIATION SET 
problem has been shown to be NP-complete in the general 
case and has been shown to be solvable in polynomial time 
for circular-arc graphs and AT-free graphs. For further 
research, it is interesting to establish the complexity of the 
MINIMUM MAXIMAL DISSOCIATION SET problem for 
chordal graphs. 
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