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Abstract 
This paper presents an investigation of scheduling procedures to seek the minimum of a 

positively weighted convex sum of makespan and the number of tardy jobs in a static flexible flow 
shop scheduling environment.  The flexible flow shop problem is a scheduling of jobs in a flow 
shop environment consisting of series of production stages, some of which may have only one 
machine, but at least one stage must have multiple machines.  In addition, sequence - and machine - 
dependent setup times are considered. No preemption of jobs is allowed.  Some dispatching rules 
and flow shop makespan heuristics are adapted for sequencing in the flexible flow shop problem.  
The improvement heuristic algorithms such as shift and pairwise interchange algorithms have been 
proposed. Upon these heuristics, the first stage sequence is generated by using them.  The first 
stage sequence will now be used, in conjunction with either permutation or FIFO rules, to construct 
a schedule for the problem.  The solution is then set equal to the best function value obtained by 
both rules. The performance of the heuristics is compared relative to the optimal solution on a set 
of small-scale test problems. 
 
1. Introduction 

 This paper is primarily concerned with the scheduling problem occurring in the production 
industries such as the glass-container (Paul, [1]), rubber (Yanney and Kuo, [2]), photographic film 
(Tsubone, Ohba, Takamuki, and Miyake, [3]), steel (Finke and Medeiros, [4]), textile, and food 
industries. These industries are established as multistage production flow shop facilities where a 
production stage may be made up of parallel machines known as flexible flow shop or hybrid flow 
shop environment, that is, it is a generalization of the classical flow shop model.  There are k stages 
and some stages have only one machine, but at least one stage must have multiple machines such 
that all jobs have to pass through a number of stages in the same order.  A machine can process at 
most one job at a time and a job can be processed by at most one machine at a time.  Preemption of 
processing is not allowed.  It consists of assigning jobs to machines at each stage and sequencing 
the jobs assigned to the same machine so that some certain optimality criteria are minimized. 

Although the flexible flow shop problem has been widely studied, most of the studies related 
to flexible flow shop problems are concentrated on problems with identical processors, see for 
instance, Gupta, Krüger, Lauff, Werner and Sotskov [5], Alisantoso, Khoo, and Jiang [6], Lin and 
Liao [7] and Wang and Hunsucker [8].  However, in a real world situation, it is common to find 
newer or more modern machines running side by side with older and less efficient machines. Even 
though the older machines are less efficient, they may be kept in the production lines because of 
their high replacement costs. The older machines may perform the same operations as the newer 
ones, but would generally require a longer operating time for the same operation. In this paper, the 
flexible flow shop problem with unrelated parallel machines is considered, i.e., there are different 
parallel machines at every stage and speeds of the machines are dependent on the jobs. Moreover, 
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several industries encounter setup times which result in even more difficult scheduling problems. In 
this paper, both sequence- and machine-dependent setup time restrictions are taken into account as 
well.  

Since most scheduling problems are combinatorial optimization problems which are too 
difficult to be solved optimally, heuristic methods are used to obtain good solutions in acceptable 
times.  Consequently, the purpose of this paper is to present the constructive heuristics based on 
both the simple dispatching rules such as the Shortage Processing Time (SPT) and the Longest 
Processing Time (LPT) rules and the flow shop makespan heuristics such as the Palmer [9], 
Campbell, Dudek, and Smith [10], Gupta [11], and Dannenbring [12] algorithms as well as Nawaz, 
Enscore and Ham [13] algorithm adapted to solve the flexible flow shop problem with unrelated 
parallel machines and sequence-dependent setup times.  In addition, the criteria of makespan and 
the number of tardy jobs have been receiving considerable attention in this paper.  One reason for 
this consideration is the increasing pressure of high competition while customers expect ordered 
goods to be delivered on time.  The remainder of this paper is structured as follows: in Section 2, 
the problem under study is explained.  Section 3 shows the heuristic algorithms.  The 
computational results are explained in Section 4.  The conclusions are shown in Section 5. 
 
2. Statement of the Problem 
 The flexible flow shop system is defined by the set O = {1,…, t,…, k} of k processing stages.  
At each stage t, t ∈O, there is a set Mt = {1,…, i,…, mt} of mt unrelated machines.  The set J = 
{1,…, j,…, n} of n independent jobs has to be processed on a set M = {M1,…, Mk}.  Each job j, j 
∈J, has its release date rj ≥ 0 and a due date dj  ≥ 0. It has its fixed standard processing time for 
every stage t, t ∈O.  Owing to the unrelated machines, the processing time t

ijp  of job j on machine i 
at stage t is equal to t

ij
t
j vps , where t

jps is the standard processing time of job j at stage t, and t
ijv  

is the relative speed of job j which is processed by the machine i at stage t.   
 There are processing restrictions of jobs as follows: (1) jobs are processed without 
preemptions on any machine; (2) a job cannot be processed before its completion of the previous 
operation; (3) every machine can process only one operation at a time; (4) operations have to be 
realized sequentially, without overlapping between stages; (5) job splitting is not permitted. 
 Setup times considered in this problem are classified into two types, namely machine-
dependent setup time and sequence-dependent setup time.  A setup time of a job is machine-
dependent if it depends on the machine to which the job is assigned.  It is assumed to occur only 
when the job is the first job assigned on the machine. t

ijch  denotes the length of the machine-
dependent setup time, (or changeover time), of job j if job j is the first job assigned to machine i at 
stage t. A sequence-dependent setup time is considered between successive jobs. A setup time of a 
job on a machine is sequence-dependent if it depends on the job just completed on that machine. t

ljs  
denotes the time needed to changeover from job l to job j at stage t, where job l is processed 
directly before job j on the same machine.  All setup times are known and constant.   
 The scheduling problem has dual objectives, namely minimizing the makespan and 
minimizing the number of tardy jobs. Therefore, the objective function to be minimized is 

λCmax + ( 1 – λ)ηT , 
where Cmax  is the makespan, which is equivalent to the completion time of the last job to leave the 
system,  ηT is the total number of tardy jobs in the schedule, and λ  is the weight (or relative 
importance) given to Cmax and ηT , (0 ≤ λ ≤ 1). 
 
3. Heuristic Algorithms 
 Heuristic algorithms have been developed to provide good and quick solutions.  They obtain 
solutions to large problems with acceptable computational times, but they do not generate 
optimality and it may be difficult to judge their effectiveness. They can be divided into either 
constructive or improvement algorithms.  The former algorithms build a feasible solution from 
scratch.  The latter algorithms try to improve a previously generated solution by normally using 



some form of specific problem knowledge.  However, the time required for computation is usually 
larger compared to the constructive algorithms.  
3.1 Heuristic Construction of a Schedule  
 Since the hybrid flow shop scheduling problem is NP-hard, algorithms for finding an optimal 
solution in polynomial time are unlikely to exist. Thus, heuristic methods are studied to find 
approximate solutions. Most researchers develop existing heuristics for the classical hybrid flow 
shop problem with identical machines by using a particular sequencing rule for the first stage. They 
follow the same scheme, see Santos, Hunsucker, and Deal [14].  
 Firstly, a job sequence is determined according to a particular sequencing rule, and we will 
briefly discuss the modifications for the problem under consideration in the next section. Secondly, 
jobs are assigned as soon as possible to the machines at every stage using the job sequence 
determined for the first stage. There are basically two approaches for this subproblem. The first 
way is that for the other stages, i.e. from stage two to stage k, jobs are ordered according to their 
completion times at the previous stage. This means that the FIFO (First in First out) rule is used to 
find the job sequence for the next stage by means of the job sequence of the previous stage. The 
second way is to sequence the jobs for the other stages by using the same job sequence as for the 
first stage, called the permutation rule. 
 Assume now that a job sequence for the first stage has already been determined. Then we 
have to solve the problem of scheduling n jobs on unrelated parallel machines with sequence- and 
machine-dependent setup times using this given job sequence for the first stage. We apply a greedy 
algorithm which constructs a schedule for the n jobs at a particular stage provided that a certain job 
sequence for this stage is known (remind that the job sequence for this particular stage is derived 
either from the FIFO rule or from the permutation rule), where the objective is to minimize the 
flow time and the idle time of the machines. The idea is to balance evenly the workload in a 
heuristic way as much as possible. 
3.2 Constructive Heuristics 
 In order to determine the job sequence for the first stage by some heuristics, we remind that 
the processing and setup times for every job are dependent on the machine and the previous job, 
respectively. This means that they are not fixed, until an assignment of jobs to machines for the 
corresponding stage has been done. Thus, for applying an algorithm for fixing the job sequence for 
stage one, an algorithm for finding the representatives of the machine speeds and the setup times is 
necessary.  
 The representatives of machine speed t

ijv /  and setup time t
ljs /  for stage t, t=1,…k, use the 

minimum, maximum and average values of the data. Thus, the representative of the operating time 
of job j at stage t is the sum of the processing time t

ij
t
j vps /  plus the representative of the setup 

time t
ljs / . Nine combinations of relative speeds and setup times will be used in our algorithms. The 

job sequence for the first stage is then fixed as the job sequence with the best function value 
obtained by all combinations of the nine different relative speeds and setup times.  
 For determining the job sequence for the first stage, we adapt and develop several basic 
dispatching rules and constructive algorithms for the flow shop makespan scheduling problem. 
Some of the dispatching rules are related to tardiness-based criteria, whereas others are used mainly 
for comparison purposes. 
 The Shortest Processing Time (SPT) rule is a simple dispatching rule, in which the jobs are 
sequenced in non-decreasing order of the processing times, whereas the Longest Processing Time 
(LPT) rule orders the jobs in non-increasing order of their processing times. The Earliest Release 
Date first (ERD) rule is equivalent to the well-known first-in-first-out (FIFO) rule. The Earliest 
Due Date first (EDD) rule schedules the jobs according to non-decreasing due dates of the jobs. 
The Minimum Slack Time first (MST) rule is a variation of the EDD rule.  This rule concerns the 
remaining slack of each job, defined as its due date minus the processing time required to process 
it. The Slack time per Processing time (S/P) is similar to the MST rule, but its slack time is divided 
by the processing time required as well (Baker [15], and Pinedo and Chao [16]). 
 The hybrid SPT and EDD (HSE) rule is developed to combine both SPT and EDD rules.  
Firstly, consider the processing times of each job and determine the relative processing time 



compared to the maximum processing time required.  Secondly, determine the relative due date 
compared to the maximum due date.  Next, calculate the priority value of each job by using the 
weight (or relative importance) given to Cmax and ηT for the relative processing time and relative 
due date.  
 Palmer’s heuristic [9] is a makespan heuristic denoted by PAL in an effort to use Johnson’s 
rule by proposing a slope order index to sequence the jobs on the machines based on the processing 
times. The idea is to give priority to jobs that have a tendency of progressing from short times to 
long times as they move through the stages. Campbell, Dudek, and Smith [10] develop one of the 
most significant heuristic methods for the makespan problem known as CDS algorithm.  Its 
strength lies in two properties: (1) it uses Johnson’s rule in a heuristic fashion, and (2) it generally 
creates several schedules from which a “best” schedule can be chosen.  In so doing, k – 1 sub-
problems are created and Johnson’s rule is applied to each of the sub-problems.  Thus, k – 1 
sequences are generated.  Since Johnson’s algorithm is a two-stage algorithm, a k-stage problem 
must be collapsed into a two-stage problem.   
 Gupta [11] provides an algorithm denoted by GUP, in a similar manner as algorithm PAL by 
using a different slope index and schedules the jobs according to the slope order. Dannenbring [12] 
denoted by DAN develops a method by using Johnson’s algorithm as a foundation.  Furthermore, 
the CDS and PAL algorithms are also exhibited.  Dannenbring constructs only one two-stage 
problem, but the processing times for the constructed jobs reflect the behavior of PAL’s slope 
index.  Its purpose is to provide good and quick solutions. 
 Nawaz, Enscore and Ham [13] develop the probably best constructive heuristic method for 
the permutation flow shop makespan problem, called the NEH algorithm. It is based on the idea 
that a job with a high total operating time on the machines should be placed first at an appropriate 
relative order in the sequence. Thus, jobs are sorted in non-increasing order of their total operating 
time requirements. The final sequence is built in a constructive way, adding a new job at each step 
and finding the best partial solution.  For example, the NEH algorithm inserts a third job into the 
previous partial solution that gives the best objective function value under consideration.  However, 
the relative position of the two previous job sequence remains fixed.  The algorithm repeats the 
process for the remaining jobs according to the initial ordering of the total operating time 
requirements. 
 Again, to apply these algorithms to the hybrid flow shop problem with unrelated parallel 
machines, the total operating times for calculating the job sequence for the first stage are calculated 
for the nine combinations of relative speeds of machines and setup times.   
3.3 Improvement Heuristics  
 Unlike constructive algorithms, improvement heuristics start with an already built schedule 
and try to improve it by some given procedures. Their uses are necessary since the constructive 
algorithms (especially some algorithms that are adapted from pure makespan heuristics and some 
dispatching rules such as the SPT, and LPT rules) without due date considerations. In this section, 
some fast improvement heuristics will be investigated to improve the overall function value by 
concerning mainly the due date criterion. 

In order to find a satisfactory solution of the due date problem, the polynomial heuristics by 
applying either the shift move (SM) algorithm as an improvement mechanism based on the idea 
that we will consider the jobs that are tardy and move them left and right or the pairwise 
interchange (PI) algorithm that the tardy jobs are swapped to the different job positions left and 
right in both random two positions (denoted by letter “2”) and all other positions (denoted by letter 
“A”). The best schedule among the generated neighbors is then taken as the result. 
 
4. Computational Results 
 Firstly, the overall constructive algorithms and different improvement heuristics are studied.  
The constructive algorithms (denoted by letter “CA”) are the simple dispatching rules such as the 
SPT, LPT, ERD, EDD, MST, S/P, and HSE rules, and the flow shop makespan heuristics adapted 
such as the PAL, CDS, GUP, DAN, and NEH rules.  Then, we applied the polynomial 
improvement heuristics based on four cases stated above in Section 3.3.   They are denoted by 2-
SM, A-SM, 2-PI, and A-PI, respectively.  We used problems with between three to seven jobs. For 



all problem sizes, we tested instances with λ ∈ {0, 0.001, 0.005, 0.01 0.05, 0.1, 0.5, and 1} in the 
objective function. Ten different instances for each problem size have been run.   
 An experiment was conducted to test with data such as the standard processing times, relative 
machine speeds, setup times, release dates and due dates.  The standard processing times are 
generated uniformly from the interval [10,100].  Due to the unrelated machine problem, the relative 
speeds are distributed uniformly in the interval [0.7,1.3].  The setup times, both sequence- and 
machine-dependent setup times, are generated uniformly from the interval [0,50], whereas the 
release dates are generated uniformly from the interval between 0 and half of  their total standard 
processing time mean.  The due date of a job is set in a way that it is similar to the approach 
presented by Rajendaran and Ziegler [17] and is as follows: 
 dj  = total of mean setup time of a job on all stages + ∑

=

k

t

t
jps

1

 + (n – 1)×(mean processing time 

of a job on one machine)×U(0,1) + rj 
  The results for the constructive algorithms and improvement heuristics are given in Table 1. 
We give the average (absolute for λ = 0 resp. percentage for λ > 0) deviation of a particular 
constructive algorithm from the optimal solution obtained by formulating the 0-1 mixed linear 
integer programming and running a commercial mathematical programming software, CPLEX 
8.0.0 and AMPL, with an Intel Pentium 4 2.00GHz CPU; however, the CPU time is limited at most 
2 hours. 
 
Table 1 average overall performance of constructive algorithms and improvement heuristics. 
λ Problem 

size CA 2-SM A-SM 2-PI A-PI 

0 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

0.304a 

0.579 
0.804 
1.083 
1.317 

0.067 
0.229 
0.300 
0.479 
0.550 

0.067 
0.225 
0.283 
0.438 
0.475 

0.063 
0.267 
0.333 
0.513 
0.642 

0.054 
0.233 
0.213 
0.413 
0.433 

Sum 4.088 1.625 1.488 1.817 1.346 

0.001 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

36.310b 

60.680 
25.550 
64.610 
35.250 

6.490 
25.110 
5.870 
35.800 
8.620 

6.240 
25.030 
4.570 
31.790 
6.820 

7.140 
29.250 
5.820 
30.140 
10.870 

5.860 
26.820 
3.890 
25.180 
6.310 

Sum 222.400 81.890 74.450 83.220 68.060 

0.005 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

14.640 
21.840 
16.876 
24.810 
18.720 

4.680 
9.020 
4.347 
10.770 
6.330 

4.590 
8.650 
3.565 
9.310 
5.630 

4.800 
9.850 
4.651 
10.210 
7.590 

4.340 
8.870 
3.310 
7.580 
5.280 

Sum 96.886 35.147 31.745 37.101 29.380 

0.01 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

10.904 
15.275 
13.216 
17.330 
13.000 

4.133 
6.355 
3.617 
7.140 
4.150 

4.088 
5.888 
3.059 
5.870 
3.660 

4.242 
6.762 
4.114 
7.180 
5.110 

3.875 
6.010 
2.963 
4.850 
3.510 

Sum 69.725 25.395 22.565 27.408 21.208 

λ Problem 
size CA 2-SM A-SM 2-PI A-PI 

0.05 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

8.022 
9.750 
9.200 
10.681 
7.460 

3.790 
4.382 
2.945 
3.845 
2.096 

3.741 
3.736 
2.295 
3.231 
1.886 

3.948 
5.153 
3.680 
4.698 
3.204 

3.527 
3.645 
2.134 
2.871 
2.058 

Sum 45.113 17.058 14.889 20.683 14.235 

0.1 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

7.742 
9.571 
8.915 
10.823 
6.938 

3.828 
4.227 
2.778 
3.712 
1.906 

3.778 
3.839 
2.394 
3.306 
1.774 

4.012 
4.956 
3.543 
4.735 
2.457 

3.603 
3.620 
2.139 
2.815 
1.455 

Sum 43.989 16.451 15.091 19.703 13.632 

0.5 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

7.695 
9.396 
8.552 
10.974 
7.253 

4.011 
3.647 
2.621 
3.972 
2.426 

3.961 
3.429 
2.251 
3.557 
2.130 

4.178 
4.484 
3.777 
5.494 
2.983 

3.819 
3.110 
1.876 
3.022 
1.746 

Sum 43.870 16.677 15.328 20.916 13.573 

1.0 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

7.811 
9.381 
9.512 
11.697 
8.392 

4.156 
3.596 
3.541 
4.245 
3.023 

4.030 
3.362 
3.276 
3.802 
2.513 

4.318 
4.527 
4.496 
5.767 
3.763 

3.890 
3.081 
2.871 
3.341 
2.256 

Sum 46.793 18.561 16.983 22.871 15.439 
 

a average absolute deviation for λ = 0, b

 
 average percentage deviation for λ > 0 

 From these results it is obvious that the improvement heuristics can improve the quality of 
constructive algorithms by about 60–70 percent.  In addition, we have found that the all pairwise 
interchange -based improvement heuristics are better than the others in general.  Consequently, in 
this paper we have shown only the all pairwise interchange-based improvement heuristics.  
However, compared to between the 2-SM and 2-PI algorithms whose CPU time is smaller than 
both the A-SM and A-PI algorithms, we have found that the 2-SM algorithm became better than the 
2-PI algorithm. 
 Next, we present the constructive algorithms that are separated into four main groups.  The 
first heuristic group is the simple dispatching rules such as SPT, LPT, ERD, EDD, MST, S/P, and 
HSE.  The second heuristic group is the flow shop makespan heuristics adapted such as PAL, CDS, 
GUP, DAN, and NEH.  The third and fourth heuristic groups are generated from the first two 
groups of heuristics where the solutions are improved by the selected polynomial improvement 



algorithm based on all pairwise interchange-based improvement heuristics, and they are denoted by 
the first letter “I” in front of the letters describing the heuristics of the first two groups.  
 The results for the constructive algorithms are given in Table 2. From these results it can be 
seen that the constructive algorithms in the fourth heuristic group improved from flow shop 
makespan heuristics from the second heuristic group (i.e., PAL, CDS, GUP, DAN, and NEH) are 
better than the dispatching rules in the first heuristic group (i.e., SPT, LPT, EDD, MST, S/P, and 
HSE) as well as the third heuristic group improved from them.   
 Among the simple dispatching rules (heuristic Group I), the SPT, LPT, ERD, and HSE rules 
are good dispatching rules.  However, in general the HSE rule slightly outperforms the other 
dispatching rules for λ ≤ 0.01, and the LPT rule is better than the other rules for otherwise.  Among 
the adapted flow shop makespan heuristics in heuristic Group II, the NEH algorithm is clearly the 
best algorithm among all studied constructive heuristics (but in fact, this algorithm takes the convex 
combination of both criteria into account when selecting partial sequences).  The CDS algorithm is 
certainly the algorithm on the second rank (but it is substantially worse than the NEH algorithm 
even if the makespan portion in the objective function value is dominant, i.e. for large λ values).   
 
Table 2 Average performance of constructive algorithms. 

λ Problem 
size SPT LPT ERD EDD MST S/P HSE 

0 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

0.250a 

0.350 
0.800 
0.800 
1.050 

0.300 
0.750 
0.700 
1.200 
1.150 

0.350 
0.400 
0.950 
1.150 
1.900 

0.400 
0.550 
1.200 
1.450 
1.900 

0.500 
0.700 
1.200 
1.550 
1.800 

0.450 
0.650 
1.200 
1.400 
1.750 

0.350 
0.550 
1.050 
0.950 
1.350 

Sum 3.250 4.100 4.750 5.500 5.750 5.450 4.250 

0.001 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

29.200b 

38.000 
27.970 
61.100 
49.410 

45.270 
88.400 
23.570 
97.960 
23.960 

50.920 
40.000 
30.770 
79.690 
58.860 

27.560 
45.000 
38.670 
70.590 
39.380 

53.020 
58.100 
38.360 
72.780 
39.710 

38.570 
55.900 
38.020 
51.980 
36.480 

25.240 
38.100 
27.850 
61.940 
48.620 

Sum 205.68 279.16 260.24 221.20 261.97 220.95 201.75 

0.005 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

14.530 
14.990 
18.650 
22.870 
22.910 

14.220 
29.860 
15.180 
31.400 
14.180 

15.210 
16.010 
19.590 
29.030 
25.420 

15.430 
19.530 
24.850 
30.290 
25.530 

23.490 
26.260 
24.710 
31.980 
25.720 

19.510 
24.680 
24.180 
25.780 
22.790 

12.070 
15.050 
18.930 
22.870 
22.230 

Sum 93.950 104.84 105.26 115.63 132.16 116.94 91.150 

0.01 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

11.968 
11.270 
14.613 
17.410 
16.630 

9.820 
20.470 
11.884 
20.020 
10.530 

9.715 
12.090 
14.834 
19.910 
16.970 

11.908 
14.820 
18.888 
21.350 
18.930 

17.926 
19.690 
19.050 
22.700 
18.950 

15.258 
18.400 
18.452 
18.620 
16.200 

9.950 
11.450 
14.974 
16.880 
15.870 

Sum 71.891 72.724 73.519 85.896 98.316 86.930 69.124 

0.05 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

10.312 
8.329 

10.565 
13.236 
11.239 

7.048 
12.651 
8.846 
9.344 
6.291 

5.450 
9.325 
9.230 

12.157 
9.148 

9.066 
10.469 
12.322 
12.929 
13.126 

13.451 
13.761 
12.955 
13.703 
11.553 

11.831 
12.397 
12.449 
11.504 
8.770 

8.747 
8.415 
10.504 
12.112 
10.363 

Sum 53.681 44.180 45.310 57.912 65.423 56.951 50.141 

0.1 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

10.185 
8.614 

10.419 
14.250 
10.902 

6.828 
12.301 
8.705 
9.172 
5.906 

5.021 
9.656 
8.828 

12.429 
8.415 

8.851 
10.519 
11.719 
12.876 
12.347 

12.889 
13.666 
12.349 
13.635 
10.805 

11.400 
12.175 
11.900 
11.587 
8.017 

8.686 
8.622 
10.211 
12.856 
9.695 

Sum 54.370 42.912 44.349 56.312 63.344 55.079 50.070 

0.5 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

10.282 
8.842 

10.192 
14.536 
11.036 

6.760 
12.063 
8.531 
8.607 
6.840 

4.867 
9.957 
8.441 

12.698 
8.413 

8.865 
10.607 
11.191 
12.921 
12.769 

12.603 
13.521 
11.426 
13.572 
10.534 

11.219 
12.006 
11.092 
11.651 
8.330 

8.836 
8.784 
9.854 
13.138 
9.975 

Sum 54.888 42.801 44.376 56.353 61.656 54.298 50.587 

1.0 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

10.299 
8.871 

11.078 
15.408 
12.467 

6.750 
12.038 
9.458 
9.368 
7.834 

4.852 
10.002 
9.482 

13.365 
9.482 

8.871 
10.625 
12.282 
13.417 
13.948 

12.572 
13.500 
12.401 
14.166 
11.688 

11.201 
11.991 
12.042 
12.145 
9.519 

10.299 
8.871 
11.078 
15.408 
12.467 

Sum 58.123 45.448 47.183 59.143 64.327 56.898 58.123 

λ Problem 
size PAL CDS GUP DAN NEH 

0 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

0.250 
0.750 
0.800 
1.000 
1.300 

0.250 
0.650 
0.500 
0.900 
0.900 

0.200 
0.700 
0.600 
1.150 
1.200 

0.250 
0.650 
0.500 
1.000 
1.050 

0.100 
0.250 
0.150 
0.450 
0.450 

Sum 4.100 3.200 3.850 3.450 1.400 

0.001 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

33.970 
93.000 
26.530 
59.110 
37.330 

45.810 
75.000 
16.310 
54.220 
20.230 

30.860 
77.900 
18.310 
79.980 
31.270 

46.660 
81.400 
14.560 
58.680 
30.550 

8.610 
37.500 
5.700 

27.320 
7.200 

Sum 249.94 211.57 238.32 231.85 86.330 

0.005 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

12.060 
28.720 
16.960 
23.610 
17.900 

15.520 
23.350 
11.570 
20.560 
12.040 

11.060 
26.260 
12.530 
26.820 
15.080 

17.170 
24.870 
11.600 
23.390 
15.840 

5.370 
12.480 
3.760 
9.070 
4.970 

Sum 99.250 83.040 91.750 92.870 35.650 

0.01 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

8.342 
18.570 
13.074 
16.970 
11.240 

11.076 
14.720 
9.574 

14.660 
8.170 

7.718 
17.620 
10.168 
17.120 
9.560 

12.784 
16.010 
10.180 
16.710 
10.020 

4.379 
8.180 
2.899 
5.680 
2.900 

Sum 68.196 58.200 62.186 65.704 24.038 

0.05 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

5.716 
10.349 
8.811 

11.348 
5.086 

7.828 
7.778 
7.205 
9.563 
3.736 

4.790 
10.437 
7.318 
8.533 
4.956 

8.760 
8.568 
8.418 

10.493 
4.598 

3.267 
4.521 
1.778 
3.256 
0.650 

Sum 41.310 36.110 36.034 40.837 13.472 

0.1 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

5.463 
9.696 
8.597 

11.833 
4.480 

7.569 
7.361 
7.356 
9.851 
3.392 

4.584 
9.869 
6.990 
8.455 
4.947 

8.283 
8.056 
8.334 

10.752 
4.014 

3.149 
4.315 
1.574 
2.186 
0.335 

Sum 40.069 35.529 34.845 39.439 11.559 

0.5 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

5.423 
9.077 
8.316 

12.250 
4.868 

7.551 
6.876 
7.300 

10.305 
4.107 

4.614 
9.320 
6.632 
8.481 
5.113 

8.086 
7.563 
8.102 

11.010 
4.662 

3.237 
4.137 
1.548 
2.514 
0.391 

Sum 39.934 36.139 34.160 39.423 11.827 

1.0 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

5.412 
9.004 
9.117 

12.819 
5.719 

7.547 
6.820 
8.204 

10.902 
5.185 

4.622 
9.245 
7.620 
9.013 
5.837 

8.059 
7.494 
8.948 

11.603 
5.712 

3.247 
4.107 
2.441 
2.747 
0.843 

Sum 42.071 38.658 36.337 41.816 13.385 
Table 3 Average performance of improvement algorithms. 



λ Problem 
size ISPT ILPT IERD IEDD IMST IS/P IHSE 

0 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

0.050 
0.200 
0.250 
0.450 
0.350 

0.050 
0.250 
0.250 
0.400 
0.500 

0.050 
0.200 
0.250 
0.450 
0.450 

0.050 
0.200 
0.200 
0.400 
0.400 

0.050 
0.250 
0.300 
0.450 
0.500 

0.050 
0.250 
0.200 
0.350 
0.300 

0.050 
0.150 
0.150 
0.250 
0.300 

Sum 1.300 1.450 1.400 1.250 1.550 1.150 0.900 

0.001 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

5.230 
25.900 
4.560 
17.860 
7.700 

5.180 
32.700 
2.320 
33.860 
7.140 

5.730 
8.000 
2.740 
36.630 
8.080 

5.800 
26.400 
4.610 
36.110 
5.970 

6.040 
26.200 
6.310 
35.860 
5.360 

4.950 
25.900 
4.350 
16.320 
3.460 

5.180 
25.900 
4.180 
17.770 
8.740 

Sum 61.250 81.200 61.180 78.890 79.770 54.980 61.770 

0.005 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

4.120 
8.530 
3.670 
6.070 
7.030 

3.800 
9.370 
2.380 
8.990 
4.960 

4.350 
5.270 
3.190 
9.650 
5.400 

4.410 
9.540 
3.730 
9.200 
6.180 

4.660 
9.160 
4.570 
8.890 
5.250 

3.570 
8.490 
3.590 
4.680 
3.270 

3.800 
8.520 
3.290 
5.940 
7.680 

Sum 29.420 29.500 27.860 33.060 32.530 23.600 29.230 

0.01 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

3.780 
5.750 
3.201 
4.480 
5.180 

3.371 
5.810 
2.334 
5.540 
2.920 

3.922 
4.320 
3.287 
5.920 
3.350 

3.989 
6.970 
3.288 
5.430 
5.120 

4.233 
6.490 
3.805 
5.150 
4.040 

3.143 
5.700 
3.172 
3.000 
2.120 

3.371 
5.730 
2.822 
4.270 
5.780 

Sum 22.391 19.975 20.799 24.797 23.718 17.135 21.973 

0.05 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

3.609 
3.535 
2.103 
2.747 
4.066 

3.388 
3.366 
2.576 
2.516 
0.960 

3.499 
3.728 
2.670 
3.400 
2.158 

3.837 
5.296 
2.421 
3.579 
4.271 

3.977 
4.177 
2.412 
2.816 
2.787 

2.887 
3.021 
1.824 
2.753 
1.110 

3.115 
3.489 
1.725 
2.731 
3.986 

Sum 16.060 12.806 15.455 19.404 16.169 11.595 15.046 

0.1 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

3.662 
3.690 
2.333 
2.579 
1.195 

3.343 
3.529 
2.417 
2.656 
0.615 

3.714 
4.081 
2.919 
3.326 
2.055 

4.131 
5.059 
2.836 
3.442 
3.832 

4.019 
3.944 
2.502 
2.417 
2.865 

2.929 
2.763 
2.059 
2.970 
0.900 

3.157 
3.643 
1.954 
2.807 
1.194 

Sum 13.459 12.560 16.095 19.300 15.747 11.621 12.755 

0.5 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

3.902 
3.053 
2.074 
3.244 
1.671 

3.475 
2.776 
2.215 
2.620 
1.581 

3.913 
3.414 
2.463 
3.422 
2.063 

4.394 
4.362 
2.531 
3.215 
4.655 

4.249 
3.666 
2.164 
2.941 
2.738 

3.149 
2.394 
1.799 
2.911 
1.120 

3.387 
3.005 
1.696 
2.876 
1.438 

Sum 13.944 12.667 15.275 19.157 15.758 11.373 12.402 

1.0 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

3.937 
3.044 
3.026 
3.497 
2.197 

3.492 
2.745 
3.192 
2.811 
2.139 

3.942 
3.395 
3.448 
3.961 
2.770 

4.432 
4.341 
3.533 
3.813 
5.045 

4.283 
3.634 
3.138 
3.354 
3.306 

3.176 
2.352 
2.751 
3.095 
1.665 

3.937 
3.044 
3.026 
3.497 
2.197 

Sum 15.701 14.379 17.516 21.164 17.715 13.039 15.701 
a average absolute deviation for λ = 0,  
b

 
 average percentage deviation for λ > 0 

λ Problem 
size IPAL ICDS IGUP IDAN INEH 

0 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

0.050 
0.250 
0.250 
0.400 
0.550 

0.050 
0.300 
0.200 
0.350 
0.450 

0.050 
0.200 
0.150 
0.500 
0.500 

0.050 
0.300 
0.200 
0.500 
0.450 

0.100 
0.250 
0.150 
0.450 
0.450 

Sum 1.500 1.350 1.400 1.500 1.400 

0.001 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

5.360 
32.800 
2.440 

20.220 
7.170 

6.410 
32.800 
4.270 

21.660 
1.260 

5.140 
15.200 
2.570 

20.010 
7.800 

6.640 
32.700 
2.690 

18.540 
5.900 

8.610 
37.500 
5.700 

27.320 
7.200 

Sum 67.990 66.400 50.720 66.470 86.330 

0.005 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

3.980 
9.650 
2.590 
6.920 
4.720 

5.030 
9.540 
3.420 
8.000 
2.800 

3.750 
6.560 
2.690 
7.240 
6.350 

5.250 
9.390 
2.840 
6.340 
4.780 

5.370 
12.480 
3.760 
9.070 
4.970 

Sum 27.860 28.790 26.590 28.600 35.650 

0.01 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

3.554 
6.300 
2.375 
4.570 
2.650 

4.600 
6.010 
2.947 
5.640 
1.790 

3.326 
5.000 
2.626 
4.370 
3.530 

4.828 
5.860 
2.805 
4.210 
2.690 

4.379 
8.180 
2.899 
5.680 
2.900 

Sum 19.449 20.987 18.852 20.393 24.038 

0.05 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

3.299 
3.062 
2.092 
2.622 
1.184 

4.071 
3.212 
1.874 
3.117 
1.074 

3.164 
3.160 
2.292 
2.490 
1.142 

4.206 
3.175 
1.842 
2.429 
1.308 

3.267 
4.521 
1.778 
3.256 
0.650 

Sum 12.259 13.348 12.248 12.960 13.472 

0.1 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

3.340 
2.900 
2.007 
2.648 
1.112 

4.228 
3.156 
1.237 
3.364 
0.984 

3.321 
3.253 
2.110 
2.842 
1.098 

4.247 
3.110 
1.723 
2.543 
1.280 

3.149 
4.315 
1.574 
2.186 
0.335 

Sum 12.007 12.969 12.624 12.903 11.559 

0.5 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

3.535 
2.372 
1.552 
2.716 
1.135 

4.514 
2.840 
1.087 
3.948 
1.488 

3.634 
2.586 
1.841 
2.495 
1.376 

4.441 
2.709 
1.547 
3.358 
1.293 

3.237 
4.137 
1.548 
2.514 
0.391 

Sum 11.310 13.877 11.932 13.348 11.827 

1.0 

3 jobs 
4 jobs 
5 jobs 
6 jobs 
7 jobs 

3.553 
2.331 
2.676 
3.004 
1.451 

4.545 
2.787 
2.082 
4.235 
1.831 

3.671 
2.532 
2.803 
2.507 
1.896 

4.460 
2.656 
2.340 
3.575 
1.731 

3.247 
4.107 
2.441 
2.747 
0.843 

Sum 13.015 15.480 13.409 14.762 13.385 
 

 When we apply the polynomial improvement (‘interchange’) algorithm (denoted by the letter 
“I” first) to the solutions obtained by the dispatching rules and adapted flow shop makespan 
heuristics, we have found that the quality of the solution in terms of the deviation from the optimal 
solution can be improved by about 70 percent except for the NEH rule.  However, the improvement 
of heuristics from the adapted flow shop makespan heuristics in the heuristic Group IV is better 
than the improvement of heuristics from the dispatching rules in the heuristic Group III (since for 
most of the problems, there is an substantial portion in the objective function value resulting from 
the makespan).  In Group III, the IS/P rule outperforms the others, whereas in Group IV, the 
algorithms can slightly improve the solutions obtained by the NEH algorithm.  
 
5. Conclusions 
 In this paper, some constructive algorithms have been investigated for minimizing a convex 
combination of makespan and the number of tardy jobs for the flexible flow shop problem with 
unrelated parallel machines and setup times, which is often occurring in the real world problems.  
All algorithms are based on the list scheduling principle by developing job sequences for the first 



stage and assigning and sequencing the remaining stages by both the permutation and FIFO 
approaches.  The constructive algorithms are compared to the optimal solutions.  It is shown that in 
particular, for the simple dispatching rules the SPT, LPT, ERD, and HSE rules are good algorithms 
whereas for the flow shop makespan heuristics, the NEH algorithm is most superior to the other 
constructive algorithms.  When we have applied the polynomial improvement algorithm, we have 
found that the all-pairwise interchange algorithm is the good improvement algorithm. However, 
there are some deviations from the optimal value, so in the further research, the iterative heuristics 
such as simulated annealing, tabu search and genetic algorithms will be able to study in order to 
find the best solution.  
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