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Abstract: In this paper we propose a decomposition approach that hierarchically integrates the batching 

and local search heuristics in manufacturing scheduling. The problem comprises two main interrelated 

stages embedded in any production-transportation supply chain, namely (i) scheduling processing of raw 

materials and robot's transportation operation within each individual cell, and (ii) scheduling of 

transportation and distribution of batches of semi-finished products between cells. Several efficient 

heuristic algorithms are proposed. This work has been motivated by a real-life problem of production 

planning for a CIM system for manufacturing of multi-component products served by robots. 

Keywords: Efficient algorithms; Graph-theoretic models; Periodic movement; Polynomial models; 
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1. INTRODUCTION 

Modern flexible manufacturing systems are large scale 

systems. Enormous volumes of information data are required 

to describe, monitor and optimize them. Due to the large 

problem sizes, optimal planning and scheduling of the entire 

manufacturing system are impossible even using modern 

high-speed computers and advanced software. The best 

practical way to treat such a situation is finding suboptimal 

strategies for planning/scheduling  based on a hierarchical 

decomposition of the manufacturing system, and, in turn, the 

hierarchical decomposition of the scheduling problems. 

There are many time and space scales over which planning 

and scheduling decisions must be made. The longest-term 

decisions involve planning/scheduling of capital expenditure 

and strategic planning. The shortest-term decisions involve 

the schedules to load/unload individual parts and robot 

moves. The space scales include the machine level, cell level, 

shop level, factory level, etc. In practice, these decisions are 

made separately though they are dependent. In particular, 

each higher-level decision presents an assignment to the next-

level decision-maker. In this paper, we will consider a 

production-transportation supply chain and study the 

corresponding scheduling problem arising at the machine-cell 

levels. Decisions will be made in a way that takes the entire 

problem data into account, and we consider decisions in two 

levels over space scales: machine  and cell levels. 

In the last decades, there has been considerable research on 

the scheduling of manufacturing systems grounded in the so-

called group technology (GT) paradigm (Ham et al, 1985; 

Suresh and Kay, 1998; Kamrani and Logendran, 1998). The 

tenet of GT is to collect together a maximal set of similar 

jobs into a single family called a batch for production so as to 

minimize the setup operations and time for the jobs 

belonging to the same batch. On the other hand, in many 

manufacturing cells served by robots the robot moves and 

some set of operations (or activities) form the same pattern 

that is repeated cyclically an indefinite number of times, 

where the objective is to find an optimal order of the 

operations on available facilities (e.g., machines and transport 

devices) that optimizes a given performance criterion (which 

is usually related to process quality, system performance or 

customer satisfaction). 

In this paper, we propose to take an approach that 

hierarchically integrates the batching and cyclicity 

(periodicity) factors in manufacturing scheduling. We pose 

the following two research questions:  (i) How to fully 

exploit the GT methodology to minimize production setups in 

manufacturing?   (ii) How to make better use of the periodic 

(repetitive) characteristic of the production, transportation 

and delivery processes? The problem comprises two main 

interrelated stages embedded in any production-transportation 

supply chain, namely (i) scheduling processing of raw 

materials and robot's transportation operation within each 

individual cell, and (ii) scheduling of transportation and 

distribution of batches of semi-finished products between 

cells. The first question is resolved by breaking all the parts 

onto batches so as each batch is repetitively processed by 

machines in an individual cell whereas the part batches are 

processed by cells. Our approach is to develop and study a 

two-stage sieve-based algorithm for solving the general 

cyclic batching scheduling problem that integrates the 
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batching and cyclicity (periodicity) factors at the two stages 

in one unifying framework. This work is motivated by a real-

life problem of production planning for a CIM system consisting 

of multi-machine robotic cells for manufacturing of multi-

component products which is up and running in the 

Laboratory of Robotics & Mechatronics at the Holon 

Technological Institute. 

The paper is organized as follows. Section 2 presents the CIM 

system under consideration. In Section 3, we describe a graph- 

theoretic model for the problem, which permits its 

decomposition into well-solvable components. Section 4 

presents a fast exact algorithm for solving an important special 

case whereas Section 5 describes efficient heuristic algorithms 

for the general problem. Section 6 concludes the paper. 

2. DESCRIPTION OF A CIM SYSTEM 

For each product, the technological process is determined in 

advance by the product engineer defining which elementary 

technological operations correspond to the processing of each 

part of the product, which tools and machines are to be used 

and in which order all technological operations are to be 

performed. We will consider a sufficiently general situation 

when manufacturing a product in a robotic cell involves a batch 

processing of its parts. In this case, we have to take into 

account the influence of group technology both on the expert 

system design and on a model of the problem itself. Thus, we 

define a batch as the subset of elementary operations that are 

related to a specific product and are processed together in a 

cell. In this sense, a robotic cell in our paper is considered as a 

single "batch processing machine", and each product may be 

presented as a batch of a network structure. 

As is well known, the decomposition of the manufacturing 

system into subsystems may be implemented by combining 

mathematical programming techniques with knowledge-based 

expert rules. Batching decisions may be effectively 

implemented by a combination of integer programming 

modelware with expert rules. Notice that unlike hybrid 

batching-scheduling models studied by Kusiak and Bielli 

(1997), and Stecke (2005), in our scheduling problem there 

is no need in formal batching decisions since, for machine 

processing of complex products in a production line, the 

decomposition of the latter into robotic cells and clustering 

of parts into batches is unambiguously determined by a 

product designer and assumed to be introduced into the 

expert system in the form of informal expert rules known in 

advance. Once the techniques for a system decomposition and 

grouping of parts into batches are well known (see, for 

example, Kusiak and Bielli, 1997; Suresh and Kay, 1998; 

Selim et al., 1998; Cheng et al, 2001), the remaining 

problem is to schedule these batches (and, also, the parts 

within each batch) in tandem robotic cells so as to minimize 

the makespan (the completion time for the last batch 

processed).  

The scheduling problem will be formalized as a generalization 

of the multi-machine Johnson problem and solved by 

combining a combinatorial algorithm with expert rules. The 

approach suggested may be considered as a further 

development of scheduling techniques for PERT-type 

projects with time lags and overlapping, previously 

investigated in the literature (see, for example, among 

others, Elmaghraby and Kamburowski 1992; Levner and 

Nemirovsky 1994; Levner et al. 1995a, 1995b, 2007; Crama et 

al. 2000). 

We now provide a description of the production line which has 

motivated this work. The line consists of a number of machines 

in series. A set J of m products are to be produced in turn on the 

machines. Machines are grouped into cells, and parts of each 

product are grouped into disjoint families ("batches"). In this 

machine shop environment, we consider processing 

operations, and three more factors that are specific for the 

group technologies in flexible manufacturing and robotic 

systems, namely, the transportation operations, changeovers, 

and time lags. Let us consider these factors in more detail. 

2.1. Machine level  

The machine level scheduling includes the implementation of 

optimal robot moves and sequencing of machine operations.  

A robot arm movement can take seconds while a 

semiconductor oxidation operation can take hours. The issue 

at this level is the optimization of robot moves so as to 

maximize the throughput.  Here, a large set of operations is 

grouped into tasks to be performed at stations along a 

production line. The objective is to minimize the cycle time 

of the periodic production process, which results in a 

maximum production rate.   

Planning and scheduling of flexible manufacturing systems is 

based on group technology concepts and known to be consisting 

of three stages: decomposition of a manufacturing system into 

subsystems; clustering of orders into batches, and scheduling of 

the obtained batches on batch processing machines (Suresh and 

Kay, 1998; Al-Anzi et al., 2007). In today's computer-integrated 

manufacturing, these problems are not only very large (for 

example, hundreds of machines, and 10,000 parts) but they 

involve a number of constraints that makes the problem 

computationally intractable by standard mathematical 

programming tools. A much more adequate tool for solving 

these problems is the hierarchical decomposition (Ham et al., 

1985; Kusiak and Bielli, 1997; Banaszak et al., 2000).  

2.2. Cell level  

At this time/space scale, one must consider the interactions of 

a small number of machines within a single cell. The 

important issues include routing and scheduling of robot 

moves between cells. Each cell is considered as a batch-

machine. The problem is that of ensuring that the specified 

batch operations  are actually produced. At this level, the 

detailed specifications of the batch operations are taken as 

given. The issue here is to move part batches between cells in 

a way that reduces unnecessary idle time of both machines 

and robots. The routing problem is to choose the sequence of 

robot moves and the scheduling problem is to choose the 

times at which the part batches visit the cells. The resources 

include machines, transportation elements (robots), and 

storage space.    
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2.3. Transportation Operations  

We consider typical robotic cells in which transportation 

robots, a conveyor, and automated guided vehicles (AGV) 

transport batches of parts. Every batch is first moved in a 

pallet by an AGV from the centralized input storage to a cell, 

and then, after being processed in all the cells, the batch of 

finished parts (that is, a finished product) is moved in another 

pallet by another AGV to the output storage (see Fig. 1 where a 

fragment of a production line is depicted). 

 

Fig. 1. Schematic of a production line 

 

In this picture, after a current batch is delivered to the first cell, 

CA, from the input storage, robot RA participates in setting up 

the first machine in CA (for example, in changing tool 

magazines); then it waits until the part is finished at the 

machine; RA then participates in setting down the machine 

(including cleaning the machine and the adjacent area, and 

removing the used tools). Analogously, RA serves other 

machines in CA and then moves to its initial position where it 

starts its new life cycle with the next batch. 

Similarly, robot RB starts its life cycle by participating in setting 

up the first machine of the cell CB, waits there until the part is 

finished on the machine and then participates in setting down 

the machine. Analogously, RB serves other machines in CB, 

and then returns a pallet filled with the finished parts to the 

output AGV. Then RB starts its next cycle by moving again to 

the first machine of CB. 

Transportation of individual parts between the two cells is 

performed by a conveyor. Each part is moved from CA to CB 

immediately after finishing in CA, not waiting till all other 

parts of the batch are finished in the cell. The machine 

operations are synchronized in such a way that the 

transportation and processing of the next batch in cell CA can 

be started only after finishing all operations of the previous 

batch. 

2.4. Overchange Operations.  

In each cell, a major setup time is incurred when a machine 

changes from processing one part to another part that belongs to 

a different batch; along with that, a minor (low) setup time is 

incurred when a machine changes from processing one part to 

another of the same batch. 

Whenever we change a machine to a new part or a new batch, 

the changeover time consists of two components, the "setup" 

time and the "setdown" time. We assume that the machines are 

not set up at time zero. In other words, processing of the first 

part in each cell must incur a major setup and then a minor 

setup. Similarly, the final setdown consists of the setdown of 

the last part plus the setdown of the last batch. 

2.5. Time Lags  

Associated with each batch j, 1≤j≤m, there are three arbitrary 

non-negative constants, S, T, and F, called time lags. It is 

assumed that batch j can start in cell CB only S time units 

after it has been started on CA; it may not be completed on 

CB sooner than T time units after its start on CA and F time 

units after its completion on CA. These time lags permit a 

realistic treatment of a variety of practical scheduling 

problems occurring in the robotic cell which cannot be 

treated by the standard Johnson problem. For example, a 

common practice is the overlapping of production - i.e., 

starting the processing of a batch in a cell CB after a certain 

minimum backlog of parts has been completed on CA; the 

backlog here may be easily represented by a time lag S. 

Similar examples for T and F time lags are evident. The time 

lags have another application as the auxiliary parameters used 

for a  problem analysis and the design of optimal algorithms. 

Now we are ready to formulate the objective of the problem. 

We have to find an order p of batches and, also, to schedule 

the parts within every batch which minimizes the maximum 

completion time under the following non-standard 

restrictions: 

(i) Several machines are continuously available in each cell, 

capable to perform several operations at a time. 

(ii) Each operation is performed only on one machine at a time. 

(iii) Each batch being started is performed to its end with no 

part from any other batch intervening in the process. 

However, as soon as a part is finished in CA, it can be moved 

by the conveyor to the other cell, CB, not waiting till all 

other parts of the current batch are finished in CA. 

(iv) There is an inter-machine storage space on the conveyor 

sufficiently large to store any number of parts finished in the 

cell CA. 

We assume that the changeover and transportation times 

are not included into the processing times and appear as 

described explicitly above; all processing, changeover and 

transportation times are known constants, depending only on 

the batch being processed / transported, and not depending 

on the sequence in which batches and parts are processed 

and moved. We shall use the following notation:  

m = number of products (batches), 

nj = number of parts in product j, 

n = the total number of parts in all products, 

 k = the number of cells. 

We assume that the group-technological process is described 

by a PERT network that presents technological operations, as 

well as their durations and precedence relations between 

them. Each manufacturing operation is performed by one or 

more cutting tools. Different cutting tools are stored in tool 

magazines, with automatic devices (for example, the feeding 

robots) performing their interchange. It is quite common for 

metal parts processed in robotic cells to require 10 to 30 

different tools for their operation with 100-200 tools needed 

to produce different parts in a week. Therefore, significant 

tool switching delays usually accompany the processing 
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operations. Another source of delays to processing operations 

is the unreliability of the equipment and tools. The latter factor 

leads to time-consuming setup operations for serviceability 

control and on-line preventive maintenance of the equipment. 

The tool changeover and machine setup times are known to 

account to 20-25% of the total operation time. The setup times 

will significantly affect the quality of the machine schedules 

and the system performance. This makes scheduling of the 

setup operations to become a critical issue for the robotic cell 

management. Given the duration of all technological 

operations, tool/machine changeover and transportation times, 

the problem is to develop a good production plan over the 

planning cycle. 

3. THE SCHDULING PROBLEM  

The multi-machine production line which has motivated our 

work, has the last cell which is a "bottleneck" in the line (that 

is, the cell of minimal productivity), and a special buffer of a 

sufficiently large capacity for storing the batches arriving in 

turn, is placed before the cell. This fact allowed us to 

reduce the general problem to a relatively simple case of 

two robotic cells.  We use the following heuristic techniques: 

all the cells before the bottleneck cell are aggregated into one, 

equivalent, cell denoted by CA, and the last cell is denoted 

by CB. We consider batch schedules in which all the batches 

are processed in the same order (such a schedule may be 

specified by a permutation of batches, and is called a 

permutation schedule). Hence, in what follows, instead of a 

multiple-cell scheduling problem, we consider a two-stage 

flowshop problem on two "batch processing machines" CA 

and CB. As we see below, this problem is a generalization of 

the classical two-machine Johnson problem when minimizing 

the makespan. Our approach is complementary to new 

heuristics suggested by Aldowaisan and Allahverdi (2004) 

for m-machine flowshop scheduling. 

Consider an arbitrary permutation of batches p = (1,2,..., m). 

Processing the batches in the sequence p can be graphically 

represented by an oriented graph H(p), the nodes of which 

represent the technological operations and the arcs represent the 

precedence relations. The operation durations are  assigned to 

the nodes, and called the node weights. Evidently, the network 

H(p) consists of m (not necessarily identical) fragments, each 

of which corresponding to processing an individual batch j, j 

= 1,..., m.  

For scheduling robotic cells, typically either the minimization 

of makespan or a traditional sum criterion such as the 

minimization of the weighted sum of completion time can be 

considered.  In Section 4, we briefly describe how Johnson’s 

algorithm for problem F2||Cmax can be generalized to the two-

cell batch scheduling problem for minimizing the makespan. 

The two-cell batch scheduling problem is NP-hard in the 

strong sense for traditional sum criteria.  

A recent overview on scheduling with setup times and costs 

has been given in Allahverdi et al., 2008. Current branch and 

bound algorithms can solve 2-machine batch scheduling 

problems with up to 30 – 35 jobs. An alternative is to 

formulated the resulting batch scheduling problems as a 0-1 

mixed integer linear programming problem and to use a 

commercial software. However, due to the computational 

complexity of the model, only problems of rather small size 

(up to 20-25 jobs) can be solved exactly in this way. Since a 

typical practical problem includes often at least several dozen 

jobs, in Section 5 we describe several heuristic procedures  

that we have successfully applied to robotic scheduling.   

4  GENERALIZED JOHNSON'S ALGORITHM 

Assume that node Start denotes the beginning of the 

technological process in a given sequence p, and node Finish 

denotes the completion of the whole process. The arcs show 

only the precedence relations and do not represent real 

operations, and thus they have zero lengths. Denote by d(p) 

an arbitrary directed path from node Start to node Finish in 

graph H(p), and by l(d(p)), the length of  d(p), the latter being 

defined as the sum of the weights of all nodes in d(p). 

It is well known in the scheduling literature (see for example 

Johnson (1954)) that the makespan, Cmax(p), for any fixed 

permutation p equals the length lmax(p) of the critical (the 

longest) path from Start to Finish in H(p): 

                             Cmax (p) = lmax(p) = maxd l(d(p))                (1) 

The following statement is valid: 

Let p be an arbitrary sequence of m batches and of the parts 

within the batches, and let p*j be the optimal (i.e., the shortest) 

permutation schedule for a separate batch provided the latter is 

started at time 0. The makespan Cmax(p) does not increase if, 

for any j, 1≤j≤m, the parts in the batches are scheduled in the 

same sequence as in the schedule p*j . 

The proof follows from (1) and the definition of makespan.  

Define parameters Aj, Bj, Cj , as follows: 
 

Aj = {the length of the critical path in subgraph Hj (p) 

from the node Start Aj to the node Finish Aj}; 

Bj = {the length of the critical path in subgraph Hj (p) 

from the node Start Bj to the node Finish Bj};  

Cj = {the length of the critical path in subgraph Hj (p)  

         from the node Start Aj to the node Finish Bj}. 

We will use the following two-step batch scheduling 

algorithm providing an optimal solution for the two-cell batch 

scheduling problem, and solving approximately the original 

multi-cell problem. Its justification goes along the same line as 

that in Levner (1988) and Levner et al. (1995a). 

Step 1. For each batch j, 1<j<m, solve the multi-machine, 

nj-job subproblem of minimizing the makespan in 

corresponding subnetwork Hj. 

Denote by Aj, Bj and Cj the particular minimal makespan 

values for the subproblem corresponding to batch j. 

Step 2. The order of parts in batches being determined 

according to the rule of Step 1, solve the 2-stage problem of 

scheduling m batches. For this purpose, first process batches 

for which Aj≤Bj, arranged so that the Cj-Bj values are ordered 

from smallest to largest, and then the remaining batches (i.e., 
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such that Aj >Bj) arranged so that the Cj -Aj values are ordered 

from largest to smallest. 

 

5  FURTHER HEURISTIC ALGORITHMS  

In this section, we describe several heuristic algorithms for 

robotic scheduling based on earlier algorithms by  Sotskov et 

al. (1996) and Danneberg et al. (1999) developed  for 

classical flow-shop batching problems with an arbitrary 

number of machines. The first paper considers the problem 

where the processing time of a batch is given by the sum of 

the processing times of parts (jobs) of the same group 

contained in one batch. For the case of makespan 

minimization, item availability is assumed, i.e., each part of a 

batch can be transported to the second machine immediately 

after the completion on the first machine. In Danneberg et al. 

(1999), jobs of the same group can be processed together in a 

batch but the maximal number of jobs in a batch is limited. In 

this case, the parts contained in a batch are processed in 

parallel, and the processing time of the batch is given by the 

maximal processing times of all parts contained in the batch. 

While the first type of problems is also denoted as sum-time 

batching problem, the second problem is referred to as a max-

time batching problem. 

For these types of batching problems, Sotskov et al. (1996) 

and Danneberg et al. (1999) describe several constructive and 

iterative heuristics which we adapt here for the robotic cell 

problem under consideration, where both types of problems 

may occur. Feeding and transportation robots perform or 

participate in setup operations on machines which occur 

before a batch is started.  

We begin with the sum-time batching problem. The best 

constructive algorithm is an insertion algorithm combined 

with beam search. Insertion algorithms successively complete 

a partial permutation p’ = (p1, p2, ..., pk) with k < n to a 

complete sequence. Hence, in each step we have to determine 

which job has to be inserted next and on which position this 

job will be inserted.  

For the makespan problem it has been found that an insertion 

of the jobs group by group according to non-decreasing sums 

of processing times can be recommended (i.e., first the job 

with the smallest sum of processing times is scheduled and 

then the remaining jobs of this group are inserted according 

to non-decreasing sums of processing times, then among the 

remaining jobs the job with the smallest sum of processing 

times is taken and so on). To apply beam search, a limited 

number of partial solutions is considered in parallel. If a 

beam width of b is used we select, at each step, b best partial 

sequences. Moreover, we suggest an iterative algorithm 

which is based on a complex shift neighbourhood. Namely,  

the shift neighborhood is applied in two levels. In the first 

level, shifts of batches are considered. This also includes 

splitting of a batch into two batches and shifting one of the 

new batches. A shift of a job within a batch is considered as a 

second level shift.  

For the max-time batching problem, we have applied the 

problem specific modifications of the above algorithms for 

this type of problem. Now we assume batch availability of 

the jobs. Thus, the processing of a batch on the second 

machine can start if the processing of the preceding batch has 

been finished on this machine and a setup has been done and 

if the processing and transportation of the current batch to 

this machine has been completed. Now, the insertion 

algorithm turns into a 2-stage algorithm. In the first stage, 

batches of the jobs of the individual groups are determined by 

inserting successively jobs into the current batch. This is 

done by starting with the job having the smallest sum of 

processing times on both machines and including then further 

jobs into this batch such that the increase in the sum of the 

batch lengths  on two machines is as small as possible in each 

case. After having determined the first batch of a group, one 

looks among the remaining jobs for one having the smallest 

sum of processing times and continue this procedure until all 

batches are formed.  

The above procedure determines batches such that only the 

first batch may contain a smaller number of jobs that the 

maximal possible batch size and all other batches are 

completely filled. Then, in the second stage, the sequence of 

the batches is determined by applying an insertion algorithm 

to the batches that have been formed in the first stage. For 

this type of problems, it turned out that an insertion of the 

batches according to non-increasing sums of their lengths 

works best (this corresponds to the standard insertion 

algorithm for the flow shop problem without setup times). 

The iterative algorithms use a similar neighborhood as it has 

been used for the sum-time batching problem. The only 

difference is that a batch may also be split without shifting a 

new sub-batch to another position (i.e., in the case of batch 

availability it might be advantageous to process two batches 

of the same group consecutively which is not considered for a 

sum-time batch problem with item availability). The 

generation of the different types of neighbors is controlled by 

probability parameters.  

In addition to the standard metaheuristics, it turns out to be 

superior to apply multi-level heuristics (also denoted as 

iterated local search). The application of such heuristics to 

some scheduling problems has been described in Brucker et 

al. (1996) and Brucker et al. (1997). These algorithms use 

different neighborhood structures within the search. In 

particular, a neighborhood with large changes (high-level) 

and another neighborhood with small changes (low-level)  

are considered. Starting with an initial solution, these 

algorithms first perform a step in the high-level neighborhood 

and then a local optimization within the low-level 

neighborhood. After having determined a local optimum in 

the low-level neighborhood, the objective function value of 

this local optimum is compared with that of the initial 

solution using e.g. the acceptance criterion of simulated 

annealing. For these batching problems with makespan 

minimization, multi-level algorithms can be recommended 

where both the high-level and the low-level neigfhborhood 

are based on the complex shift neighborhood  as well as a 

variant where the high-level neighborhood is based on 
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changes in the batch sequence and the low-level 

neighborhood is based job changes within two batches. For 

recommendations of the parameters used by the multi-level 

procedures, see Danneberg et al. (1999).  

6. CONCLUSIONS 

This paper has described a new approach for batch scheduling 

in a CIM system. The following advantages of the system have 

been displayed. First, the hierarchical two-level system 

approach has permitted us to formulate and simplify 

complex real-life batch scheduling problems with 

sophisticated logical and resource constraints that were 

aggregated into the Johnson-type problem of scheduling 

PERT projects on two machines. Second, the heuristics 

yielded approximate solutions better than existing FIFO-type 

heuristics on test and real-life data (see Danneberg et al. 1999). 

Nevertheless, as the number of precedence relations in the 

networks grows, the running time of the suggested heuristic 

algorithms becomes prohibitively large, and the on-line re-

scheduling becomes impossible. From this viewpoint,  

methods for accelerating the local search among the feasible 

solutions are to be further developed. Our further research will 

be devoted to the study and theoretical comparison of these 

methods as well as performing computational experiments for 

the comparison of the algorithm efficiency in practice. 
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