A Polynomially Solvable Case of a Single Machine Scheduling Problem When the Maximal Job Processing Time is a Constant

Nodari Vakhania* Frank Werner**

*Science Faculty, UAEM, Mexico

** Faculty of Mathematics, Otto-von-Guericke Universität Magdeburg, Germany

INCOM 2012, Bucharest/Romania, May 23-25, 2012

Outline of the Talk

- Introduction
- ② Brief Description of the Algorithm
- Binary Search Procedure
- Seeking after $S(\delta)$: Procedure $SEEK(S(\delta))$

1. Introduction

n jobs: $1, 2, \dots, n$ are to be scheduled on a single machine

for each job *i*, there are given:

 p_i - processing time

r; - release times

 d_i - due-date

schedule S: described by the starting time $t_i(S)$ (or the completion time $c_i(S) = t_i(S) + p_i$ of all jobs i)

Objective: Find an optimal schedule *S* that minimizes the *maximal* lateness $f(S) = L_{\max}(S) = \max\{c_i - d_i \mid i = 1, 2, ..., n\}.$

f(i) – lateness of job i

Garey and Johnson (1978): Problem $1|r_i|L_{\text{max}}$ is strongly NP-hard.

1. Introduction

Polynomially solvable cases

Jackson (1955): $O(n \log n)$ algorithm for problem $1||L_{max}|$ (and problem $1|r_j,d_j=d|L_{max}$, respectively)

Garey et al. (1981): $O(n \log n)$ algorithm for problem $1|p_j = p, r_j|L_{\sf max}$

Vakhania (2004): $O(n^2 \log n)$ algorithm for problem $1|p_j \in \{p, 2p\}, r_j|L_{\sf max}$

Vakhania (2011): $O(n^2 \log n \log p_{max})$ algorithm for problem $1|p_j: divisible, r_j|L_{max}$

but: problem $1|p_j \in \{p, 2p, 3p, \ldots\}, r_j|L_{\mathsf{max}}$ is *NP*-hard

now: consideration of problem $1|p_j \in \{p, 2p, 3p, \dots, kp\}, r_j|L_{\mathsf{max}}$

Our framework yields an $O(n^2 \log n \log p_{\text{max}})$ algorithm. The algorithm uses **binary search** and reduces the problem to a version of the **bin packing** problem.

The set of jobs is partitioned into **non-critical** and **critical** subsets. The non-critical subsets contain jobs that might be flexibly moved within the schedule.

The **critical sets (kernels)** contain the jobs which form tight sequences in the sense that the delay of the earliest scheduled job from the subset cannot exceed some calculated parameter between (including) 0 and p_{max} .

When the delay of the latter job is 0, the lateness of the latest scheduled job from the set defines a valid **lower bound** on the optimal value.

Just by applying the ED-heuristic to the original problem instance we define the (initial) **set of kernels** and then determine the above lower bounds yielded by each kernel. The maximum among them is a valid lower bound for the problem.

It also delineates the maximal delay Δ that might be imposed to other kernels without increasing the maximum lateness, whereas the minimal possible delay is 0.

Then we carry a **binary search** within the interval $[0, \Delta]$ to find the minimal possible delay δ that would result in an optimal schedule:

For each δ , we try to distribute non-kernel jobs in order to utilize the intervals in between kernels in an optimal way so that no non-kernel job has the lateness more than that of a kernel job.

Related bin packing problem

We have a fixed number of bins (intervals between the kernels) of different capacities and we wish to know if the given items (non-kernel jobs) can be distributed into these bins.

ED-heuristic

Iteratively, among all available jobs at time t, ED-H schedules a job with the smallest due-date breaking ties by selecting a longest job. Here t is the maximum between the minimal release time of yet unscheduled job and the time when the machine completes the latest scheduled job (0 if no job is yet scheduled).

The **initial ED-schedule** σ is the one generated by ED-H for the originally given problem instance. By modifying job release times, we may create different feasible ED-schedules by ED-H.

Overflow jobs and the kernels

A job o in and ED-schedule S that realizes the maximal lateness, i.e., one with $f_S(o) = \max\{f(j) \mid 1 \le j \le n\}$ is an **overflow job**.

A **kernel** is a maximal job sequence/set in S ending with an overflow job o such that no job from this sequence has a due-date more than d_o (if there are several successively scheduled overflow jobs then o is the latest one).

Observation

An ED-schedule S is optimal if it contains a kernel with its earliest scheduled job starting at its release time.

Proof. Reordering kernel jobs cannot reduce the lateness.

Emerging jobs

Otherwise, the earliest scheduled job of every kernel K is immediately preceded and is delayed by a job e with $d_e > d_o$.

Such a job is an **emerging job** for K, and the latest scheduled one the **delaying** emerging job.

Job j scheduled after K as a **passive emerging job** for K if $d_j > d_o$ and $r_j < r(K)$.

Activating an emerging job

If we remove (reschedule later) a (non-passive) emerging job then the kernel jobs might be restarted earlier reducing in this way L_{max} .

In this way, to restart the kernel jobs earlier, we **activate** an emerging job e for K, that is, we force it and all passive emerging jobs to be rescheduled after K by increasing their release times to a sufficiently large magnitude (the latter jobs also are said to be activated for K).

Then, when ED-H is again applied, neither job e nor any passive emerging job will surpass any kernel job and hence the earliest job in K will start at r(K).

Immediate Bounds

Consider an (incomplete) ED-schedule σ^{**} in which the delay job of every $K \in \mathcal{K}$ is just omitted, and let f'(i) be the new (reduced) value of the lateness of each kernel job i in σ^{**} . Since every K is (re)started at time r(K) in σ^{**} , $L(K) = \max_{i \in K} \{f'(i)\}$ is a **lower bound** on the value of the optimal schedule.

For any feasible S, $f(S) \ge L^* = \max_{\kappa} \{L(K_{\kappa})\}$ is a **stronger lower bound**.

Furthermore, if $\delta(K) = L^* - L(K)$, then in any feasible S we may allow the delay of $\delta(K) \geq 0$ without increasing the current maximal lateness, for every K.

We shall refer to the interval before each $K \in \mathcal{K}_{\delta}$ as the *bin* defined by K and denote it by B_K .

δ -balanced schedule $S(\delta)$

In an optimal schedule S_{opt} , either each kernel K starts no later than at time $r(K) + \delta(K)$ or K is to be delayed by some δ , $0 \le \delta \le \Delta$, where $\Delta = f(o) - L^*$.

If the earliest job of every K starts no later than at time $r(K) + \delta(K) + \delta$ then $f(i) \leq L^* + \delta$, for any $i \in K$. More generally, we call a feasible schedule $S(\delta)$ with $f(S(\delta)) \leq L^* + \delta$ δ -balanced (we may note that $\sigma = S(\Delta)$).

 $L^* + \delta$ is our δ -boundary; job j surpasses the δ -boundary if $f(j) > L^* + \delta$.

Does there exist $S(\delta)$?

As a result of a simple preprocessing, we may guarantee that *no job from* K *will surpass* the δ -boundary when ED-H with the above restriction is again applied.

However, there may arise a non-kernel job that surpasses the δ -boundary: we wish to find out if there exists $S(\delta)$.

At the first iteration of the binary search procedure, we use $\sigma = S(\Delta)$, $\delta = \Delta$.

The next value for δ is 0; if there exists no S(0) then the next value of δ is $[\Delta/2]$. So δ is derived from the interval $[0,\Delta]$, whereas the change from larger to smaller value of δ is carried out if a δ -balanced schedule for the current δ was successfully created; otherwise, δ is increased respectively on the next iteration.

Observation

 $S(\delta)$ with minimal possible δ is optimal.

 $1|r_j|L_{\text{max}}$ is already solved given that we have a procedure that either constructs a $S(\delta)$ or asserts that it does not exist.

As $\Delta < p_{\text{max}}$, the number of iterations for the binary search procedure is bounded by $\log p_{\text{max}}$.

Instance of alternative (b1)

If ED-H with the restrictions above has succeeded to construct a complete schedule so that no bin job has surpassed the δ -boundary, then this schedule is $S(\delta)$.

Otherwise, let \mathcal{K}_{δ} be the set of kernels corresponding to δ , and let K was the latest scheduled kernel from \mathcal{K}_{δ} when there has occurred (a non-kernel job) j surpassing the δ -boundary.

If j is a former emerging job (one activated for K or/and some preceding kernel) then we will say that an **instance of alternative (b1)** (IA(b1)) with job j occurs.

Defining new kernels

If job j above is not a former emerging job, then an activated (former emerging) job must be pushing j. If among such jobs there is an emerging job for j, let e be the latest scheduled one.

If e was included before K, then the jobs from K together with j and all jobs that were included after e (before j has occurred) define a new kernel, also denoted by K.

If e was included after K, then the sequence of jobs in between e and j (including j) forms a new kernel K' for the current δ . We update the current \mathcal{K}_{δ} correspondingly.

Instance of alternative (b2)

If no new kernel can be defined, i.e., there is no e, let i be an activated (former emerging) job pushing j. Then an **instance of alternative (b2)** (IA(b2)) with job i is said to occur.

It follows that if there has arisen a non-kernel job surpassing the δ -boundary, then there must be occurring an IA(b1/b2).

Hence, if no IA(b1/b2) occurs then we already have a correct answer (for the general problem $1|r_j|L_{\text{max}}$). Otherwise, we need to describe how we rearrange non-kernel jobs for an IA(b1/b2).

In the rest assume IA(b1/b2) with job j occurs.

At least one passive emerging job q for K is to be rescheduled before K. This will not be possible (in $S(\delta)$), unless some job s scheduled in B_K or some earlier bin is rescheduled after K (if this were possible, ED-H would include q in B_K).

We call job s pushing q a **substitution job** for q if it is an emerging job for K (s is from B_K or some earlier bin).

 \Rightarrow SUBST(K, δ) - set of **substitution jobs** for K

Observation

Suppose there occurs an IA(b1/b2) behind kernel K. Then there exists no $S(\delta)$ if there arises no valid gap for none of the passive emerging jobs for K subject to some substitution jobs.

Thus all we need to do is to activate substitution jobs for K in a proper fashion, whenever IA(b1/b2) occurs.

Complexity of $SEEK(S(\delta))$

For fixed p^* , the number of non-congruent subsets $S \subseteq SUBST(K, \delta)$ is equal to the number $P(p^*)$ of representations of p^* as a sum of positive integers (without considering the order), where $P(p^*)$ is the **partition** function:

$$P(p^*) pprox rac{\exp(\pi\sqrt{2p^*/3})}{4p^*\sqrt{3}}$$

 $p^* < p^{max} \Rightarrow$ total number of non-congruent subsets is

$$O(p_{max}P(p^*))=O(1)$$

 \Rightarrow complexity of procedure $SEEK(S(\delta)) : O(n^2 \log n)$

Theorem

The binary search procedure finds an optimal schedule in time $O(n^2 \log n \log p_{\text{max}})$ (or $O(d_{max}n \log n \log p_{\text{max}})$.

Remark: Problem $1|p_j \in \{p, 2p, 3p, \dots, kp\}, r_j|L_{\text{max}}$ is the maximal polynomially solvable case of problem $1|r_j|L_{\text{max}}$.