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Single machine scheduling: finding the Pareto Set for jobs
with equal processing times with respect to criteria Lmax and
Cmax.
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1 Introduction

In this paper, the special case of the classical NP-hard scheduling problem 1|rj |Lmax is

considered. There is a single machine and a set of jobs N = {1, 2, . . . , n} to be executed

with identical processing times pj = p for all jobs j ∈ N . We define a schedule (or sequence)

π as the execution sequence K1(π),K2(π), . . . ,Kn(π), where

K1(π) ∪K2(π) ∪ · · · ∪Kn(π) ≡ N.

The equality Ki(π) = j means that job j ∈ N is executed under the ordinal number i in

the schedule π. The execution of the job Ki(π) = j starts at time

Rj(π) = max{CKi−1
(π), rKi(π)}

(where CK0
(π) = 0) and finishes at time

Rj(π) + p = Cj(π),

where Cj(π) is the completion time of the job j ∈ N . Let us denote the lateness of job j

under the schedule π as

Lj(π) = Cj(π)− dj .

The maximum completion time and the maximum lateness are denoted as Cmax and

Lmax, respectively. Let us call the schedule π allowable for the set N if all jobs according

to the schedule π execute without preemptions and intersections. We denote the set of all
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allowable schedules as Π. The goal is to find a feasible schedule π ∈ Π, which satisfies the

following optimization criterion:

min
π∈Π

max
j∈N

Lj(π).

2 The auxiliary problem

Let us formulate an auxiliary problem. We consider the same set of jobs N = {1, 2, . . . , n}
and a bound on the maximum lateness y. The goal is to construct a schedule satisfying the

following optimization criterion:

min
π∈Π

max
j∈N

Cj(π)|Lmax(π) < y.

For each set of due dates d1, . . . , dn and the bound on the lateness y, deadlines Dj can be

calculated by the following formula:

Dj = dj + y.

An allowable schedule satisfying this restriction is called feasible. To construct the

solution of the auxiliary problem, we consider the approach presented in [3]. Next, we

briefly recall the main idea from this paper.

The auxiliary algorithm works as follows. While the completion times of all jobs are

lower than its deadlines, schedule the jobs according to the algorithm, presented in [4]. If

for any job X ∈ N , the inequality

CX ≥ DX
holds, then execute the special procedure CRISIS(X). This procedure finds the job A,

which is already scheduled with the latest completion time, but for which

DA > DX

holds. This job is called Pull(X) and all jobs which are already scheduled after Pull(X)

and X constitute the restricted set S(A,X]. We define rS(A,X] to be the earliest time when

the jobs of S(A,X] can start their execution. The procedure CRISIS(X) reschedules the

jobs of the set {A} ∪ S(A,X]. The procedure fails when a job Pull(X) for a crisis job

X does not exist. After a successful execution of the procedure CRISIS(X), Schrage’s

algorithm [4] is used to schedule the jobs. Such a scheduling is repeated until any call of

the procedure CRISIS() fails or all jobs from the set N have been successfully scheduled.

3 Solution of the main problem

Next, we consider the main problem 1|rj , pj = p|Lmax. We also present an algorithm to

obtain the Pareto set of schedules with respect to the criteria Lmax and Cmax. First, we

introduce a procedure CHECK(π,N, y) which constructs the schedule π∗ as follows.

CHECK(π,N, y)

1. Set the lateness bound y and a time t = min
i∈N

ri.

2. Set the deadlines Di := di + y.

3. If all jobs from the set N have been scheduled, go to step 7.

4. While t is not in the interval [rS(A,X], DX) for any restricted set S(A,X] from the

schedule π that has not yet been completely performed, execute the jobs under π∗

according to Schrage’s algorithm.

5. Otherwise, execute only the jobs from the set S(A,X] under the schedule π, and then

go to step 3.



6. If in steps 4-5 any job Y experiences a crisis, run the procedure CRISIS(Y ).

7. return(π∗).

Lemma 1 Let π and π′ be the schedules constructed by the auxiliary algorithm for the

bounds y and y′, respectively, and

π∗ = CHECK(π,N, y).

If y < y′, then
π∗ = π′.

holds.

Next, we describe the main algorithm M to obtain the Pareto set with respect to the

criteria Lmax and Cmax.

MAIN ALGORITHM (Algorithm M)

1. Set the bound y0 := +∞.

2. Construct the schedule π1 according to the auxiliary algorithm,

and add it to Φ, i.e.: Φ := {π1};
set the counter k := 1;

set the bound y1 := Lmax(π1).

3. Construct the schedule πk+1 = CHECK(πk, N, yk).

a) If the schedule CHECK(πk, N, y) exists, then:

add πk+1 to the set Φ, i.e.: Φ := Φ ∪ πk;

set yk = Lmax(πk);

increase the counter k, i.e.: k := k + 1;

repeat step 3.

b) Otherwise, return(Φ).

At last, we formulate and prove some important lemmas and a theorem, which show that

algorithm M finds the Pareto set Φ in O(n2 logn) operations.

Lemma 2 If any job becomes a crisis job for the second time, then the algorithm stops.

Theorem 1 After the execution of Algorithm M , the Pareto set of schedules Φ according

to the criteria Lmax and Cmax has been constructed, where the schedules Φ1 and Φ|Φ| are
optimal according to criteria Lmax and Cmax respectively. For this set

|Φ| ≤ n+ 1

holds.

Lemma 3 The complexity of Algorithm M is O(n2 logn).

4 Metric analysis

The metric ρ for the instances of problem 1|rj |Lmax was introduced in [5]. We estimate a

metric distance ρp(A) between an arbitrary instance A which holds pA1 ≤ · · · ≤ pAn and a

set of polynomial solvable instances with the identical processing times of jobs as:

ρp(A) ≤
[(n−1)/2]∑
i=1

pAn−i+1 − p
A
i .

The prove that estimated bound is tight and present a polynomial algorithm to find the

instance B for an arbitrary instance A which satisfy

ρ(A,B) = ρp(A).

The results of numerical experiments are also presented.
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