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Chapter 1

Basic mathematical concepts

1.1 Preliminaries

Quadratic forms and their sign

Definition 1:
If A = (aij) is a matrix of order n× n and xT = (x1, x2, . . . , xn) ∈ Rn, then the term

Q(x) = xT ·A · x

is called a quadratic form.

Thus:

Q(x) = Q(x1, x2, . . . , xn) =
n∑
i=1

n∑
j=1

aij · xi · xj

Example 1 /

Definition 2:
A matrix A of order n× n and its associated quadratic form Q(x) are said to be

1. positive definite, if Q(x) = xT ·A · x > 0 for all xT = (x1, x2, . . . , xn) 6= (0, 0, . . . , 0);
2. positive semi-definite, if Q(x) = xT ·A · x ≥ 0 for all x ∈ Rn;
3. negative definite, if Q(x) = xT ·A · x < 0 for all xT = (x1, x2, . . . , xn) 6= (0, 0, . . . , 0);
4. negative semi-definite, if Q(x) = xT ·A · x ≤ 0 for all x ∈ Rn;
5. indefinite, if it is neither positive semi-definite nor negative semi-definite.

Remark:
In case 5., there exist vectors x∗ and y∗ such that Q(x∗) > 0 and Q(y∗) < 0.

1



CHAPTER 1. BASIC MATHEMATICAL CONCEPTS 2

Definition 3:
The leading principle minors of a matrix A = (aij) of order n× n are the determinants

Dk =

∣∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1k

a21 a22 · · · a2k
...

...
. . .

...
ak1 ak2 · · · akk

∣∣∣∣∣∣∣∣∣∣
, k = 1, 2, . . . , n

(i.e., Dk is obtained from |A| by crossing out the last n− k columns and rows).

Theorem 1

Let A be a symmetric matrix of order n× n. Then:
1. A positive definite ⇐⇒ Dk > 0 for k = 1, 2, . . . , n.
2. A negative definite ⇐⇒ (−1)k ·Dk > 0 for k = 1, 2, . . . , n.
3. A positive semi-definite =⇒ Dk ≥ 0 for k = 1, 2, . . . , n.
4. A negative semi-definite =⇒ (−1)k ·Dk ≥ 0 for k = 1, 2, . . . , n.

now: necessary and sufficient criterion for positive (negative) semi-definiteness

Definition 4:
An (arbitrary) principle minor ∆k of order k (1 ≤ k ≤ n) is the determinant of a submatrix
of A obtained by deleting all but k rows and columns in A with the same numbers.

Theorem 2

Let A be a symmetric matrix of order n× n. Then:
1. A positive semi-definite ⇐⇒ ∆k ≥ 0 for all principle minors of order k = 1, 2, . . . , n.
2. A negative semi-definite ⇐⇒ (−1)k · ∆k ≥ 0 for all principle minors of order k =

1, 2, . . . , n.

Example 2 /

−→ alternative criterion for checking the sign of A:
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Theorem 3

Let A be a symmetric matrix of order n × n and λ1, λ2, . . . , λn be the real eigenvalues of
A. Then:

1. A positive definite ⇐⇒ λ1 > 0, λ2 > 0, . . . , λn > 0.
2. A positive semi-definite ⇐⇒ λ1 ≥ 0, λ2 ≥ 0, . . . , λn ≥ 0.
3. A negative definite ⇐⇒ λ1 < 0, λ2 < 0, . . . , λn < 0.
4. A negative semi-definite ⇐⇒ λ1 ≤ 0, λ2 ≤ 0, . . . , λn ≤ 0.
5. A indefinite ⇐⇒ A has eigenvalues with opposite signs.

Example 3 /

Level curve and tangent line

consider:
z = F (x, y)

level curve:
F (x, y) = C with C ∈ R

=⇒ slope of the level curve F (x, y) = C at the point (x, y):

y′ = −Fx(x, y)

Fy(x, y)

(See Werner/Sotskov(2006): Mathematics of Economics and Business, Theorem 11.6, implicit-function theorem.)

equation of the tangent line T :

y − y0 = y′ · (x− x0)

y − y0 = −Fx(x0, y0)

Fy(x0, y0)
· (x− x0)

=⇒ Fx(x0, y0) · (x− x0) + Fy(x0, y0) · (y − y0) = 0

Illustration: equation of the tangent line T /

Remark:
The gradient OF (x0, y0) is orthogonal to the tangent line T at (x0, y0).

Example 4 /
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generalization to Rn:

let x0 = (x01, x
0
2, . . . , x

0
n)

−→ gradient of F at x0:

OF (x0) =


Fx1(x0)

Fx2(x0)
...

Fxn(x0)


=⇒ equation of the tangent hyperplane T at x0:

Fx1(x0) · (x1 − x01) + Fx2(x0) · (x2 − x02) + · · ·+ Fxn(x0) · (xn − x0n) = 0

or, equivalently:
[OF (x0)]T · (x− x0) = 0

Directional derivative

−→ measures the rate of change of function f in an arbitrary direction r

Definition 5:
Let function f : Df −→ R, Df ⊆ Rn, be continuously partially differentiable and
r = (r1, r2, . . . , rn)T ∈ Rn with |r| = 1. The term[

Of(x0)
]T · r = fx1(x0) · r1 + fx2(x0) · r2 + · · ·+ fxn(x0) · rn

is called the directional derivative of function f at the point x0 = (x01, x
0
2, . . . , x

0
n) ∈ Df .

Example 5 /

Homogeneous functions and Euler’s theorem

Definition 6
A function f : Df −→ R, Df ⊆ Rn, is said to be homogeneous of degree k on Df , if t > 0

and (x1, x2, . . . , xn) ∈ Df imply

(t · x1, t · x2, . . . , t · xn) ∈ Df and f(t · x1, t · x2, . . . , t · xn) = tk · f(x1, x2, . . . , xn)

for all t > 0, where k can be positive, zero or negative.
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Theorem 4 (Euler’s theorem)

Let the function f : Df −→ R, Df ⊆ Rn, be continuously partially differentiable, where
t > 0 and (x1, x2, . . . , xn) ∈ Df imply (t · x1, t · x2, . . . , t · xn) ∈ Df . Then:
f is homogeneous of degree k on Df ⇐⇒
x1 · fx1(x) + x2 · fx2(x) + · · ·+ xn · fxn(x) = k · f(x) holds for all (x1, x2, . . . , xn) ∈ Df .

Example 6 /

Linear and quadratic approximations of functions in R2

known: Taylor’s formula for functions of one variable (See Werner/Sotskov (2006), Theorem 4.20.)

f(x) = f(x0) +
f ′(x0)

1!
· (x− x0) +

f ′′(x0)

2!
· (x− x0)2 + · · ·+ f (n)(x0)

n!
· (x− x0)n +Rn(x)

Rn(x) - remainder

now: n = 2

z = f(x, y) defined around (x0, y0) ∈ Df

let: x = x0 + h, y = y0 + k

Linear approximation of f :

f(x0 + h, y0 + k) = f(x0, y0) + fx(x0, y0) · h+ fy(x0, y0) · k +R1(x, y)

Quadratic approximation of f :

f(x0 + h, y0 + k) = f(x0, y0) + fx(x0, y0) · h+ fy(x0, y0) · k

+
1

2

[
fxx(x0, y0) · h2 + 2fxy(x0, y0) · h · k + fyy(x0, y0) · k2

]
+R2(x, y)

often: (x0, y0) = (0, 0)

Example 7 /

Implicitly defined functions

exogenous variables: x1, x2, . . . , xn
endogenous variables: y1, y2, . . . , ym
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F1(x1, x2, . . . , xn; y1, y2, . . . , ym) = 0

F2(x1, x2, . . . , xn; y1, y2, . . . , ym) = 0

...

Fm(x1, x2, . . . , xn; y1, y2, . . . , ym) = 0

(1)

(m < n)

Is it possible to put this system into its reduced form:

y1 = f1(x1, x2, . . . , xn)

y2 = f2(x1, x2, . . . , xn)

...

ym = fm(x1, x2, . . . , xn)

(2)

Theorem 5

Assume that:
• F1, F2, . . . , Fm are continuously partially differentiable;

• (x0,y0) = (x01, x
0
2, . . . , x

0
n; y01, y

0
2, . . . , y

0
m) satisfies (1);

• |J(x0,y0)| = det

(
∂Fj(x

0,y0)
∂yk

)
6= 0

(i.e., the Jacobian determinant is regular).

Then the system (1) can be put into its reduced form (2).

Example 8 /

1.2 Convex sets

Definition 7
A setM is called convex, if for any two points (vectors) x1,x2 ∈M , any convex combination
λx1 + (1− λ)x2 with 0 ≤ λ ≤ 1 also belongs to M .

Illustration: Convex set /

Remark:
The intersection of convex sets is always a convex set, while the union of convex sets is not
necessarily a convex set.
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Illustration: Union and intersection of convex sets /

1.3 Convex and concave functions

Definition 8
Let M ⊆ Rn be a convex set.
A function f : M −→ R is called convex on M , if

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

for all x1,x2 ∈M and all λ ∈ [0, 1].
f is called concave, if

f(λx1 + (1− λ)x2) ≥ λf(x1) + (1− λ)f(x2)

for all x1,x2 ∈M and all λ ∈ [0, 1].

Illustration: Convex and concave functions /

Definition 9
The matrix

Hf (x0) = (fxixj (x
0)) =


fx1x1(x0) fx1x2(x0) · · · fx1xn(x0)

fx2x1(x0) fx2x2(x0) · · · fx2xn(x0)
...

...
. . .

...
fxnx1(x0) fxnx2(x0) · · · fxnxn(x0)


is called the Hessian matrix of function f at the point x0 = (x01, x

0
2, . . . , x

0
n) ∈ Df ⊆ Rn.

Remark:
If f has continuous second-order partial derivatives, the Hessian matrix is symmetric.



CHAPTER 1. BASIC MATHEMATICAL CONCEPTS 8

Theorem 6

Let f : Df −→ R, Df ⊆ Rn, be twice continuously differentiable and M ⊆ Df be convex.
Then:

1. f is convex on M ⇐⇒ the Hessian matrix Hf (x) is positive semi-definite for all
x ∈M ;

2. f is concave on M ⇐⇒ the Hessian matrix Hf (x) is negative semi-definite for all
x ∈M ;

3. the Hessian matrix Hf (x) is positive definite for all x ∈ M =⇒ f is strictly convex
on M ;

4. the Hessian matrix Hf (x) is negative definite for all x ∈M =⇒ f is strictly concave
on M .

Example 9 /

Theorem 7

Let f : M −→ R, g : M −→ R and M ⊆ Rn be a convex set. Then:
1. f, g are convex on M and a ≥ 0, b ≥ 0 =⇒ a · f + b · g is convex on M ;
2. f, g are concave on M and a ≥ 0, b ≥ 0 =⇒ a · f + b · g is concave on M .

Theorem 8

Let f : M −→ R with M ⊆ Rn being convex and let F : DF −→ R with Rf ⊆ DF . Then:
1. f is convex and F is convex and increasing =⇒ (F ◦ f)(x) = F (f(x)) is convex;
2. f is convex and F is concave and decreasing =⇒ (F ◦ f)(x) = F (f(x)) is concave;
3. f is concave and F is concave and increasing =⇒ (F ◦ f)(x) = F (f(x)) is concave;
4. f is concave and F is convex and decreasing =⇒ (F ◦ f)(x) = F (f(x)) is convex.

Example 10 /

1.4 Quasi-convex and quasi-concave functions

Definition 10
Let M ⊆ Rn be a convex set and f : M −→ R. For any a ∈ R, the set

Pa = {x ∈M | f(x) ≥ a}

is called an upper level set for f .

Illustration: Upper level set /



CHAPTER 1. BASIC MATHEMATICAL CONCEPTS 9

Theorem 9

Let M ⊆ Rn be a convex set and f : M −→ R. Then:
1. If f is concave, then

Pa = {x ∈M | f(x) ≥ a}

is a convex set for any a ∈ R;
2. If f is convex, then the lower level set

P a = {x ∈M | f(x) ≤ a}

is a convex set for any a ∈ R.

Definition 11
Let M ⊆ Rn be a convex set and f : M −→ R.
Function f is called quasi-concave, if the upper level set Pa = {x ∈ M | f(x) ≥ a} is
convex for any number a ∈ R.
Function f is called quasi-convex, if −f is quasi-concave.

Remark:
f quasi-convex ⇐⇒ the lower level set P a = {x ∈M | f(x) ≤ a} is convex for any a ∈ R

Example 11 /

Remarks:

1. f convex =⇒ f quasi-convex
f concave =⇒ f quasi-concave

2. The sum of quasi-convex (quasi-concave) functions is not necessarily quasi-convex (quasi-
concave).

Definition 12
Let M ⊆ Rn be a convex set and f : M −→ R.
Function f is called strictly quasi-concave, if

f(λx1 + (1− λ)x2) > min{f(x1), f(x2)}

for all x1,x2 ∈M with x1 6= x2 and λ ∈ (0, 1).
Function f is strictly quasi-convex, if −f is strictly quasi-concave.
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Remarks:

1. f strictly quasi-concave =⇒ f quasi-concave

2. f : Df −→ R, Df ⊆ R, strictly increasing (decreasing) =⇒ f strictly quasi-concave

3. A strictly quasi-concave function cannot have more than one global maximum point.

Theorem 10

Let f : Df −→ R, Df ⊆ Rn, be twice continuously differentiable on a convex set M ⊆ Rn

and

Br =

∣∣∣∣∣∣∣∣∣∣
0 fx1(x) · · · fxr(x)

fx1(x) fx1x1(x) · · · fx1xr(x)
...

... · · ·
...

fxr(x) fxrx1(x) · · · fxrxr(x)

∣∣∣∣∣∣∣∣∣∣
, r = 1, 2, . . . , n

Then:
1. A necessary condition for f to be quasi-concave is that (−1)r · Br(x) ≥ 0 for all

x ∈M and all r = 1, 2, . . . , n;
2. A sufficient condition for f to be strictly quasi-concave is that (−1)r ·Br(x) > 0 for

all x ∈M and all r = 1, 2, . . . , n.

Example 12 /



Chapter 2

Unconstrained and constrained
optimization

2.1 Extreme points

Consider:

f(x) −→ min! (or max!)

s.t.
x ∈M,

where f : Rn −→ R, ∅ 6= M ⊆ Rn

M - set of feasible solutions
x ∈M - feasible solution
f - objective function
xi, i = 1, 2, . . . , n - decision variables (choice variables)

often:
M = {x ∈ Rn | gi(x) ≤ 0, i = 1, 2, . . . ,m}

where gi : Rn −→ R, i = 1, 2, . . . ,m

2.1.1 Global extreme points

Definition 1
A point x∗ ∈M is called a global minimum point for f in M if

f(x∗) ≤ f(x) for all x ∈M.

The number f∗ := min{f(x) | x ∈M} is called the global minimum.

11
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similarly:

• global maximum point

• global maximum

(global) extreme point: (global) minimum or maximum point

Theorem 1 (necessary first-order condition)

Let f : M −→ R be differentiable and x∗ = (x∗1, x
∗
2, . . . , x

∗
n) be an interior point of M . A

necessary condition for x∗ to be an extreme point is

Of(x∗) = 0,

i.e., fx1(x∗) = fx2(x∗) = · · · = fxn(x∗) = 0.

Remark:
x∗ is a stationary point for f

Theorem 2 (sufficient condition)

Let f : M −→ R with M ⊆ Rn being a convex set. Then:
1. If f is convex on M , then:

x∗ is a (global) minimum point for f in M ⇐⇒
x∗ is a stationary point for f ;

2. If f is concave on M , then:
x∗ is a (global) maximum point for f in M ⇐⇒
x∗ is a stationary point for f .

Example 1 /

2.1.2 Local extreme points

Definition 2
The set

Uε(x
∗) := {x ∈ Rn||x− x∗| < ε}

is called an (open) ε-neighborhood Uε(x
∗) with ε > 0.



CHAPTER 2. UNCONSTRAINED AND CONSTRAINED OPTIMIZATION 13

Definition 3
A point x∗ ∈ M is called a local minimum point for function f in M if there exists an
ε > 0 such that

f(x∗) ≤ f(x) for all x ∈M ∩ Uε(x∗).

The number f(x∗) is called a local minimum.

similarly:

• local maximum point

• local maximum

(local) extreme point: (local) minimum or maximum point

Illustration: Global and local minimum points /

Theorem 3 (necessary optimality condition)

Let f be continuously differentiable and x∗ be an interior point ofM being a local minimum
or maximum point. Then

Of(x∗) = 0.

Theorem 4 (sufficient optimality condition)

Let f be twice continuously differentiable and x∗ be an interior point of M . Then:
1. If Of(x∗) = 0 and H(x∗) is positive definite, then x∗ is a local minimum point.
2. If Of(x∗) = 0 and H(x∗) is negative definite, then x∗ is a local maximum point.

Remarks:

1. If H(x∗) is only positive (negative) semi-definite and Of(x∗) = 0, then the above condition
is only necessary.

2. If x∗ is a stationary point and |Hf (x∗)| 6= 0 and neither of the conditions in (1) and (2) of
Theorem 4 are satisfied, then x∗ is a saddle point. The case |Hf (x∗)| = 0 requires further
examination.

Example 2 /
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2.2 Equality constraints

Consider:
z = f(x1, x2, . . . , xn) −→ min! (or max!)

s.t.

g1(x1, x2, . . . , xn) = 0

g2(x1, x2, . . . , xn) = 0

...

gm(x1, x2, . . . , xn) = 0 (m < n)

−→ apply Lagrange multiplier method:

L(x;λ) = L(x1, x2, . . . , xn;λ1, λ2, . . . , λm)

= f(x1, x2, . . . , xn) +
m∑
i=1

λi · gi(x1, x2, . . . , xn)

L - Lagrangian function
λi - Lagrangian multiplier

Theorem 5 (necessary optimality condition, Lagrange’s theorem)

Let f and gi, i = 1, 2, . . . ,m, be continuously differentiable, x0 = (x01, x
0
2, . . . , x

0
n) be a local

extreme point subject to the given constraints and let |J(x01, x
0
2, . . . , x

0
n)| 6= 0. Then there

exists a λ0 = (λ01, λ
0
2, . . . , λ

0
m) such that

OL(x0;λ0) = 0.

The condition of Theorem 5 corresponds to

Lxj (x
0;λ0) = 0, j = 1, 2, . . . , n;

Lλi(x
0;λ0) = gi(x1, x2, . . . , xn) = 0, i = 1, 2, . . . ,m.
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Theorem 6 (sufficient optimality condition)

Let f and gi, i = 1, 2, . . . ,m, be twice continuously differentiable and let (x0;λ0) with
x0 ∈ Df be a solution of the system OL(x;λ) = 0.
Moreover, let

HL(x;λ) =



0 · · · 0 Lλ1x1(x;λ) · · · Lλ1xn(x;λ)
...

...
...

...
0 · · · 0 Lλmx1(x;λ) · · · Lλmxn(x;λ)

Lx1λ1(x;λ) · · · Lx1λm(x;λ) Lx1x1(x;λ) · · · Lx1xn(x;λ)
...

...
...

...
Lxnλ1(x;λ) · · · Lxnλm(x;λ) Lxnx1(x;λ) · · · Lxnxn(x;λ)


be the bordered Hessian matrix and consider its leading principle minors Dj(x

0;λ0) of the
order j = 2m+ 1, 2m+ 2, . . . , n+m at point (x0;λ0). Then:

1. If all Dj(x
0;λ0), 2m+1 ≤ j ≤ n+m, have the sign (−1)m, then x0 = (x01, x

0
2, . . . , x

0
n)

is a local minimum point of function f subject to the given constraints.
2. If all Dj(x

0;λ0), 2m + 1 ≤ j ≤ n + m, alternate in sign, the sign of Dn+m(x0;λ0)

being that of (−1)n, then x0 = (x01, x
0
2, . . . , x

0
n) is a local maximum point of function

f subject to the given constraints.
3. If neither the condition 1. nor those of 2. are satisfied, then x0 is not a local extreme

point of function f subject to the constraints.
Here the case when one or several principle minors have value zero is not considered
as a violation of condition 1. or 2.

special case: n = 2, m = 1 =⇒ 2m+ 1 = n+m = 3

=⇒ consider only D3(x
0;λ0)

D3(x
0;λ0) < 0 =⇒ sign is (−1)m = (−1)1 = −1

=⇒ x0 is a local minimum point according to 1.

D3(x
0;λ0) > 0 =⇒ sign is (−1)n = (−1)2 = 1

=⇒ x0 is a local maximum point according to 2.

Example 3 /

Theorem 7 (sufficient condition for global optimality)

If there exist numbers (λ01, λ
0
2, . . . , λ

0
m) = λ0 and an x0 ∈ Df such that OL(x0, λ0) = 0,

then:
1. If L(x) = f(x) +

m∑
i=1

λ0i · gi(x) is concave in x, then x0 is a maximum point.

2. If L(x) = f(x) +
m∑
i=1

λ0i · gi(x) is convex in x, then x0 is a minimum point.
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Example 4 /

2.3 Inequality constraints

Consider:

f(x1, x2, . . . , xn) −→ min!

s.t.

g1(x1, x2, . . . , xn) ≤ 0

g2(x1, x2, . . . , xn) ≤ 0

...

gm(x1, x2, . . . , xn) ≤ 0

(3)

=⇒ L(x;λ) = f(x1, x2, . . . , xn) +

m∑
i=1

λi · gi(x1, x2, . . . , xn) = f(x) + λT · g(x),

where

λ =


λ1

λ2
...
λm

 and g(x) =


g1(x)

g2(x)
...

gm(x)



Definition 4
A point (x∗;λ∗) is called a saddle point of the Lagrangian function L, if

L(x∗;λ) ≤ L(x∗;λ∗) ≤ L(x;λ∗) (2.1)

for all x ∈ Rn, λ ∈ Rm+ .

Theorem 8

If (x∗;λ∗) with λ∗ ≥ 0 is a saddle point of L, then x∗ is an optimal solution of problem
(3).

Question: Does any optimal solution correspond to a saddle point?
−→ additional assumptions required

Slater condition (S):

There exists a z ∈ Rn such that for all nonlinear constraints gi inequality gi(z) < 0 is satisfied.
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Remarks:

1. If all constraints g1, . . . , gm are nonlinear, the Slater condition implies that the set M of
feasible solutions contains interior points.

2. Condition (S) is one of the constraint qualifications.

Theorem 9 (Theorem by Kuhn and Tucker)

If condition (S) is satisfied, then x∗ is an optimal solution of the convex problem

f(x) −→ min!

s.t.

gi(x) ≤ 0, i = 1, 2, . . . ,m

f, g1, g2, . . . , gm convex functions

(4)

if and only if L has a saddle point (x∗;λ∗) with λ∗ ≥ 0.

Remark:
Condition (2.1) is often difficult to check. It is a global condition on the Lagrangian function.
If all functions f, g1, . . . , gm are continuously differentiable and convex, then the saddle point
condition of Theorem 9 can be replaced by the following equivalent local conditions.

Theorem 10

If condition (S) is satisfied and functions f, g1, . . . , gm are continuously differentiable
and convex, then x∗ is an optimal solution of problem (4) if and only if the following
Karush-Kuhn-Tucker (KKT)-conditions are satisfied.

Of(x∗) +

m∑
i=1

λ∗i · Ogi(x∗) = 0 (2.2)

λ∗i · gi(x∗) = 0 (2.3)

gi(x
∗) ≤ 0 (2.4)

λ∗i ≥ 0 (2.5)

i = 1, 2, . . . ,m

Remark:
Without convexity of the functions f, g1, . . . , gm the KKT-conditions are only a necessary opti-
mality condition, i.e.: If x∗ is a local minimum point, condition (S) is satisfied and functions
f, g1, . . . , gm are continuously differentiable, then the KKT-conditions (2.2)-(2.5) are satisfied.
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Summary:

(x∗;λ∗) satisfies the
KKT-conditions, problem is

convex

=⇒ x∗ is a global minimum point

x∗ local minimum point,
condition (S) is satisfied

=⇒ KKT-conditions are satisfied

Example 5 /

2.4 Non-negativity constraints

Consider a problem with additional non-negativity constraints:

f(x) −→ min!

s.t.

gi(x) ≤ 0, i = 1, 2, . . . ,m

x ≥ 0

(5)

Example 6 /

−→ To find KKT-conditions for problem (5) introduce a Lagrangian multiplier µj for any non-
negativity constraint xj ≥ 0 which corresponds to −xj ≤ 0.

KKT-conditions:

Of(x∗) +
m∑
i=1

λ∗iOgi(x
∗)− µ∗ = 0 (2.6)

λ∗i · gi(x∗) = 0, i = 1, 2, . . . ,m (2.7)

µ∗j · x∗j = 0, j = 1, 2, . . . , n (2.8)

gi(x
∗) ≤ 0 (2.9)

x∗ ≥ 0, λ∗ ≥ 0, µ∗ ≥ 0 (2.10)



CHAPTER 2. UNCONSTRAINED AND CONSTRAINED OPTIMIZATION 19

Using (2.6) to (2.10), we can rewrite the KKT-conditions as follows:

Of(x∗) +

m∑
i=1

λ∗iOgi(x
∗) ≥ 0

λ∗i · gi(x∗) = 0, i = 1, 2, . . . ,m

x∗j ·
(
∂f

∂xj
(x∗) +

m∑
i=1

λ∗i ·
∂gi
∂xj

(x∗)

)
= 0, j = 1, 2, . . . , n

gi(x
∗) ≤ 0

x∗ ≥ 0, λ∗ ≥ 0

i.e., the new Lagrangian multipliers µj have been eliminated.

Example 7 /

Some comments on quasi-convex programming

Theorem 11

Consider a problem (5), where function f is continuously differentiable and quasi-convex.
Assume that there exist numbers λ∗1, λ∗2, . . . , λ∗m and a vector x∗ such that

1. the KKT-conditions are satisfied;
2. Of(x∗) 6= 0;
3. λ∗i · gi(x) is quasi-convex for i = 1, 2, . . . ,m.

Then x∗ is optimal for problem (5).

Remark:
Theorem 11 holds analogously for problem (3).



Chapter 3

Sensitivity analysis

3.1 Preliminaries

Question: How does a change in the parameters affect the solution of an optimization problem?

−→ sensitivity analysis (in optimization)

−→ comparative statics (or dynamics) (in economics)

Example 1 /

3.2 Value functions and envelope results

3.2.1 Equality constraints

Consider:

f(x; r) −→ min!

s.t.

gi(x; r) = 0, i = 1, 2, . . . ,m

where r = (r1, r2, . . . , rk)
T - vector of parameters

(6)

Remark:
In (6), we optimize w.r.t. x with r held constant.

Notations:

x1(r), x2(r), . . . , xn(r) - optimal solution in dependence on r

f∗(r) = f(x1(r), x2(r), . . . , xn(r)) - (minimum) value function

20
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λi(r) (i = 1, 2, . . . ,m) - Lagrangian multipliers in the necessary optimality condition

Lagrangian function:

L(x;λ; r) = f(x; r) +
m∑
i=1

λi · gi(x; r)

= f(x(r); r) +
m∑
i=1

λi(r) · gi(x(r); r) = L∗(r)

Theorem 1 (Envelope Theorem for equality constraints)

For j = 1, 2, . . . , k, we have:

∂f∗(r)

∂rj
=

(
∂L(x;λ; r)

∂rj

)
∣∣∣(x(r)λ(r))

=
∂L∗(r)

∂rj

Remark:
Notice that ∂L∗

∂rj
measures the total effect of a change in rj on the Lagrangian function, while ∂L

∂rj

measures the partial effect of a change in rj on the Lagrangian function with x and λ being held
constant.

Example 2 /

3.2.2 Properties of the value function for inequality constraints

Consider:
f(x, r) −→ min!

s.t.
gi(x, r) ≤ 0, i = 1, 2, . . . ,m

minimum value function:
b −→ f∗(b)

f∗(b) = min{f(x) | gi(x)− bi ≤ 0, i = 1, 2, . . . ,m}

x(b) - optimal solution

λi(b) - corresponding Lagrangian multipliers

=⇒ ∂f∗(b)

∂bi
= −λi(b), i = 1, 2, . . . ,m

Remark:
Function f∗ is not necessarily continuously differentiable.
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Theorem 2

If function f(x) is concave and functions g1(x), g2(x), . . . , gm(x) are convex, then function
f∗(b) is concave.

Example 3: /

A firm has L units of labour available and produces 3 goods whose values per unit of output are
a, b and c, respectively. Producing x, y and z units of the goods requires αx2, βy2 and γz2 units
of labour, respectively. We maximize the value of output and determine the value function.

3.2.3 Mixed constraints

Consider:
f(x, r) −→ min!

s.t.

x ∈M(r) = {x ∈ Rn | gi(x, r) ≤ 0, i = 1, 2, . . . ,m′; gi(x, r) = 0, i = m′ + 1,m′ + 2, . . . ,m}

(minimum) value function:

f∗(r) = min {f(x, r) = f(x1(r), x2(r), . . . , xn(r)) | x ∈M(r)}

Lagrangian function:

L(x;λ; r) = f(x; r) +

m∑
i=1

λi · gi(x; r)

= f(x(r); r) +

m∑
i=1

λi(r) · gi(x(r); r) = L∗(r)

Theorem 3 (Envelope Theorem for mixed constraints)

For j = 1, 2, . . . , k, we have:

∂f∗(r)

∂rj
=

(
∂L(x;λ; r)

∂rj

)
∣∣∣(x(r)λ(r))

=
∂L∗(r)

∂rj

Example 4 /
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3.3 Some further microeconomic applications

3.3.1 Cost minimization problem

Consider:
C(w,x) = wT · x(w, y) −→ min!

s.t.
y − f(x) ≤ 0

x ≥ 0, y ≥ 0

• Assume that w > 0 and that the partial derivatives of C are > 0.

• Let x(w, y) be the optimal input vector and λ(w, y) be the corresponding Lagrangian
multiplier.

L(x;λ;w, y) = wT · x + λ · (y − f(x))

=⇒ ∂C

∂y
=
∂L

∂y
= λ = λ(w, y) (3.1)

i.e., λ signifies marginal costs

Shepard(-McKenzie) Lemma:

∂C

∂wi
= xi = xi(w, y), i = 1, 2, . . . , n (3.2)

Remark:
Assume that C is twice continuously differentiable. Then the Hessian HC is symmetric.

Differentiating (3.1) w.r.t. wi and (3.2) w.r.t. y, we obtain

Samuelson’s reciprocity relation:

=⇒ ∂xj
∂wi

=
∂xi
∂wj

and
∂xi
∂y

=
∂λ

∂wi
, for all i and j

Interpretation of the first result:

A change in the j-th factor input w.r.t. a change in the i-th factor price (output being constant)
must be equal to the change in the i-th factor input w.r.t. a change in the j-th factor price.
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3.3.2 Profit maximization problem of a competitive firm

Consider:
π(x,y) = pT · y −wT · x −→ max! (−π −→ min!)

s.t.
g(x,y) = y − f(x) ≤ 0

x ≥ 0, y ≥ 0,

where:

p > 0 - output price vector
w > 0 - input price vector
y ∈ Rm+ - produced vector of output
x ∈ Rn+ - used input vector
f(x) - production function

Let:

x(p,w),y(p,w) be the optimal solutions of the problem and
π(p,w) = pT · y(p,w)−wT · x(p,w) be the (maximum) profit function.

L(x,y;λ;p,w) = −pTy + wTx + λ · (y − f(x))

The Envelope theorem implies

Hotelling’s lemma:

1.
∂(−π)

∂pi
=
∂L

∂pi
= −yi i.e.:

∂π

∂pi
= yi > 0, i = 1, 2, . . . ,m (3.3)

2.
∂(−π)

∂wi
=

∂L

∂wi
= xi i.e.:

∂π

∂wi
= −xi < 0, i = 1, 2, . . . ,m (3.4)

Interpretation:

1. An increase in the price of any output increases the maximum profit.

2. An increase in the price of any input lowers the maximum profit.

Remark:
Let π(p,w) be twice continuously differentiable. Using (3.3) and (3.4), we obtain

Hotelling’s symmetry relation:

∂yj
∂pi

=
∂yi
∂pj

,
∂xj
∂wi

=
∂xi
∂wj

,
∂xj
∂pi

= − ∂yi
∂wj

, for all i and j.
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Applications to consumer choice and
general equilibrium theory

4.1 Some aspects of consumer choice theory

Consumer choice problem

Let:

x ∈ Rn+ - commodity bundle of consumption

U(x) - utility function

p ∈ Rn+ - price vector

I - income

Then:
U(x) −→ max! (−U(x) −→ min!)

s.t.
pT · x ≤ I (g(x) = pT · x− I ≤ 0)

x ≥ 0

assumption: U quasi-concave (=⇒ −U quasi-convex)

L(x;λ) = −U(x) + λ(pT · x− I)

KKT-conditions:
−Uxi(x) + λpi ≥ 0 (4.1)

λ(pT · x− I) = 0 (4.2)

25
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xi(−Uxi(x) + λpi) = 0

pT · x− I ≤ 0

x ≥ 0, λ ≥ 0

Suppose that OU(x∗) 6= 0 and that x∗ is feasible.
Thm. 11, Ch.2

=⇒ x∗ solves the problem and satisfies the KKT-conditions.

If additionally Uxi(x∗) ≥ 0 is assumed for i = 1, 2, . . . , n

OU(x∗) 6=0
=⇒ There exists a j such that Uxj (x∗) > 0

(4.1)
=⇒ λ > 0

(4.2)
=⇒ pT · x = I, i.e., all income is spent.

Consider now the following version of the problem:

U(x) −→ max!

s.t.
pT · x = I

x ≥ 0

Let:

rT = (p, I) - vector of parameters

x∗ = x(p, I) - optimal solution

λ(p, I) - corresponding Lagrangian multiplier

−→ maximum value U depends on p and I:

U∗ = U(x(p, I)) − indirect utility function

We determine
∂U∗

∂I
and

∂U∗

∂pi

L(x;λ;p, I) = −U(x;p, I) + λ(I − pTx)

∂L

∂I
∣∣∣(x(p,I)λ(p,I))

= λ = λ(p, I).
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Thm. 1,Ch. 3
=⇒ ∂(−U∗)

∂I
= λ =⇒ ∂U∗

∂I
= −λ (4.3)

Thm. 1,Ch. 3
=⇒ ∂(−U∗)

∂pi
=
∂L

∂pi
∣∣∣(x(p,I)λ(p,I))

= −λx∗i , i = 1, 2, . . . , n (4.4)

(4.3),(4.4)
=⇒ ∂(−U∗)

∂pi
+ x∗i

∂(−U∗)
∂I

= 0︸ ︷︷ ︸
ROY’s identity

Pareto-efficient allocation of commodities

Let:

U i(x) = U i(x1, x2, . . . , xl) - utility function of consumer i = 1, 2, . . . , k in dependence on the
amounts xj of commodity j, j = 1, 2, . . . , l

Definition 1
An allocation x = (x1, x2, . . . , xl) is said to be pareto-efficient (or pareto-optimal), if
there does not exist an allocation x∗ = (x∗1, x

∗
2, . . . , x

∗
l ) such that U i(x∗) ≥ U i(x) for

i = 1, 2, . . . , k and U i(x∗) > U i(x) for at least one i ∈ {1, 2, . . . , k}.
If such an allocation x∗ would exist, x∗ is said to be pareto-superior to x.

Preference relation %: x∗ % x (x∗ is preferred to x or they are indifferent)

The Edgeworth box

• efficient allocation of commodities among customers (or of resources in production)

• two customers (k = 2) and two commodities (l = 2)

• graph indifference (level) curves U i =const. into a coordinate system

Illustration: Edgeworth box /

Characterization of pareto-efficient allocations

They correspond to those points, where the slopes of the indifference curves of both customers
coincide.

Definition 2
The contract curve is defined as the set of all points which represent pareto-efficient allo-
cations of the commodities.
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Remark:
The contract curve describes all equilibrium allocations.

Illustration: Contract curve /

similarly: market price system

Here prices adjust, so that supply equals demand in all markets.

4.2 Fundamental theorems of welfare economics

4.2.1 Notations and preliminaries

Consider an exchange economy with n (goods) markets.

p = (p1, p2, . . . , pn), pi > 0, i = 1, 2, . . . , n - price vector
k consumers (households) i ∈ I = {1, 2, . . . , k}
l producers j ∈ J = {1, 2, . . . , l}

Let:

• xi = (xi1, x
i
2, . . . , x

i
n) ∈ Rn+ - consumption bundle and

U i = U i(xi) ∈ R - utility function of consumer i ∈ I.

• yj = (yj1, y
j
2, . . . , y

j
n) ∈ Rn+ - technology of firm j ∈ J .

• e = (e1, e2, . . . , en) ∈ Rn+ - (initial) endowment and
ei = (ei1, e

i
2, . . . , e

i
n) ∈ Rn+ - endowment of consumer i ∈ I.

Pure exchange economy:
E =

[
(xi, U i)i∈I , (yj)j∈J , e

]

Definition 3
An allocation

[
(xi)i∈I , (y

j)j∈J
]
is feasible, if

k∑
i=1

xi ≤ e +

l∑
j=1

yj .

Interpretation: consumption ≤ endowment + production
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Competitive economy with private ownership

Each consumer (household) i ∈ I is characterized by

• an endowment ei = (ei1, e
i
2, . . . , e

i
n) ∈ Rn+ and

• the ownership share αij of firm j (j ∈ J): αi = (αi1, . . . , α
1
l ).

Competitive equilibrium for E∗

Definition 4
For the economy E∗ with private ownership, a competitive equilibrium is defined as a triplet[

(xi∗)i∈I , (yj∗)j∈J , p
∗]

with the following properties:
1. The allocation

[
(xi∗)i∈I , (y

j∗)j∈J
]
is feasible in E∗;

2. Given the equilibrium prices p∗, each firm maximizes its profit, i.e., for each j ∈ J ,
we have

p∗Tyj ≤ p∗Tyj
∗ for all yj ;

3. Given the equilibrium prices p∗ and the budget, each consumer maximizes the utility,
i.e., let

X = {xi | p∗Txi ≤ p∗Tei +
l∑

j=1

αijp
∗Tyj

∗}.

Then: xi∗ ∈ X and U i(xi∗) ≥ U i(xi) for all xi ∈ X.

Remark:
The above equilibrium is denoted as Walrasian equilibrium.

4.2.2 First fundamental theorem of welfare economics

Theorem 1

For the economy E∗ with strictly monotonic utility functions U i : Rn −→ R, i ∈ I, let[
(xi∗)i∈I , (yj∗)j∈J , p

∗]
be a Walrasian equilibrium.
Then the Walrasian equilibrium allocation[

(xi∗)i∈I , (yj∗)j∈J
]

is pareto-efficient for E∗.
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Interpretation: Theorem 1 states that any Walrasian equilibrium leads to a pareto-efficient
allocation of resources.

Remark:
Theorem 1 does not require convexity of tastes (preferences) and technologies.

4.2.3 Second fundamental theorem of welfare economics

−→ Consider a more abstract economy with transfers (e.g. positive/negative taxes).

Let:

w = (w1, w2, . . . , wk) ∈ Rk - wealth vector

Definition 5
For a competitive economy E the triplet[

(xi∗)i∈I , (yj∗)j∈J , p
∗]

is a quasi-equilibrium with transfers if and only if there exists a vector w ∈ Rk with

k∑
i=1

wi = p∗T · e +
∑

p∗T · yj∗

such that

1. The allocation
[
(xi∗)i∈I , (y

j∗)j∈J
]
is feasible in E;

2. Given the equilibrium prices p∗, each firm maximizes its profit, i.e., for each j ∈ J ,
we have

p∗Tyj ≤ p∗Tyj
∗ for all yj ;

3. Given the equilibrium prices p∗ and the budget, each consumer maximizes the utility,
i.e., let

X = {xi | p∗Txi ≤ wi}.

Then: xi∗ ∈ X and U i(xi∗) ≥ U i(xi) for all xi ∈ X.
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Theorem 2

For the economy E with strictly monotonic utility functions U i : Rn −→ R, i ∈ I, let the
preferences and yj be convex.

Then:
To any pareto-efficient allocation [

(xi∗)i∈I , (yj∗)j∈J
]
,

there exists a price vector p∗ > 0 such that[
(xi∗)i∈I , (yj∗)j∈J , p

∗]
is a quasi-equilibrium with transfers.

Interpretation: Out of all possible pareto-efficient allocations, one can achieve any particular one
by enacting a lump-sum wealth redistribution and then letting the market take over.

Shortcomings:
Transfers have to be lump-sum, government needs to have perfect information on tastes of
customers and possibilities of firms, and preferences and technologies have to be convex.
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Differential equations

5.1 Preliminaries

Definition 1
A relationship

F (x, y, y′, y′′, . . . , y(n)) = 0

between the independent variable x, a function y(x) and its derivatives is called an ordinary
differential equation. The order of the differential equation is determined by the highest
order of the derivatives appearing in the differential equation.

Explicit representation:
y(n) = f(x, y, y′, y′′, . . . , y(n−1))

Example 1 /

Definition 2
A function y(x) for which the relationship F (x, y, y′, y′′, . . . , y(n)) = 0 holds for all x ∈ Dy

is called a solution of the differential equation.
The set

S = {y(x) | F (x, y, y′, y′′, . . . , y(n)) = 0 for all x ∈ Dy}

is called the set of solutions or the general solution of the differential equation.

in economics often:

time t is the independent variable, solution x(t) with

ẋ =
dx

dt
, ẍ =

d2x

dt2
, etc.

32
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5.2 Differential equations of the first order

implicit form:
F (t, x, ẋ) = 0

explicit form:
ẋ = f(t, x)

Graphical solution:

given: ẋ = f(t, x)

At any point (t0, x0) the value ẋ = f(t0, x0) is given, which corresponds to the slope of the
tangent at point (t0, x0).

−→ graph the direction field (or slope field)

Example 2 /

5.2.1 Separable equations

ẋ = f(t, x) = g(t) · h(x)

=⇒
∫

dx

h(x)
=

∫
g(t) · dt

=⇒ H(x) = G(t) + C

−→ solve for x (if possible)

x(t0) = x0 given:

−→ C is assigned a particular value

=⇒ xp - particular solution

Example 3 /

Example 4 /

5.2.2 First-order linear differential equations

ẋ+ a(t) · x = q(t) q(t) - forcing term
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(a) a(t) = a and q(t) = q

−→ multiply both sides by the integrating factor eat > 0

=⇒ ẋeat + axeat = qeat

=⇒ d

dt
(x · eat) = qeat

=⇒ x · eat =

∫
qeatdt =

q

a
eat + C

i.e.
ẋ+ ax = q ⇐⇒ x = Ce−at +

q

a
(C ∈ R) (5.1)

C = 0 =⇒ x(t) = q
a = constant

x =
q

a
- equilibrium or stationary state

Remark:
The equilibrium state can be obtained by letting ẋ = 0 and solving the remaining equation for
x. If a > 0, then x = Ce−at + q

a converges to q
a as t→∞, and the equation is said to be stable

(every solution converges to an equilibrium as t→∞).

Example 5 /

(b) a(t) = a and q(t)

−→ multiply both sides by the integrating factor eat > 0

=⇒ ẋeat + axeat = q(t) · eat

=⇒ d

dt
(x · eat) = q(t) · eat

=⇒ x · eat =

∫
q(t) · eatdt+ C

i.e.
ẋ+ ax = q(t) ⇐⇒ x = Ce−at + e−at

∫
eatq(t)dt (5.2)

(c) General case

−→ multiply both sides by eA(t)

=⇒ ẋeA(t) + a(t)xeA(t) = q(t) · eA(t)
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−→ choose A(t) such that A(t) =
∫
a(t)dt because

d

dt
(x · eA(t)) = ẋ · eA(t) + x · Ȧ(t)︸︷︷︸

a(t)

·eA(t)

=⇒ x · eA(t) =

∫
q(t) · eA(t)dt+ C | ·e−A(t)

=⇒ x = Ce−A(t) + e−A(t)
∫
q(t) · eA(t)dt, where A(t) =

∫
a(t)dt

Example 6 /

(d) Stability and phase diagrams

Consider an autonomous (i.e. time-independent) equation

ẋ = F (x) (5.3)

and a phase diagram:

Illustration: Phase diagram /

Definition 3
A point a represents an equilibrium or stationary state for equation (5.3) if F (a) = 0.

=⇒ x(t) = a is a solution if x(t0) = x0.

=⇒ x(t) converges to x = a for any starting point (t0, x0).

Illustration: Stability /

5.3 Second-order linear differential equations and systems in the
plane

ẍ+ a(t)ẋ+ b(t)x ≡ q(t) (5.4)

Homogeneous differential equation:

q(t) ≡ 0 =⇒ ẍ+ a(t)ẋ+ b(t)x = 0 (5.5)
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Theorem 1

The homogeneous differential equation (5.5) has the general solution

xH(t) = C1x1(t) + C2x2(t), C1, C2 ∈ R

where x1(t), x2(t) are two solutions that are not proportional (i.e., linearly independent).
The non-homogeneous equation (5.4) has the general solution

x(t) = xH(t) + xN (t) = C1x1(t) + C2x2(t) + xN (t),

where xN (t) is any particular solution of the non-homogeneous equation.

(a) Constant coefficients a(t) = a and b(t) = b

ẍ+ aẋ+ bx = q(t)

Homogeneous equation:
ẍ+ aẋ+ bx = 0

−→ use the setting x(t) = eλt (λ ∈ R)

=⇒ ẋ(t) = λeλt, ẍ(t) = λ2eλt

=⇒ Characteristic equation:
λ2 + aλ+ b = 0 (5.6)

3 cases:

1. (5.6) has two distinct real roots λ1, λ2

=⇒ xH(t) = C1e
λ1t + C2e

λ2t

2. (5.6) has a real double root λ1 = λ2

=⇒ xH(t) = C1e
λ1t + C2te

λ1t

3. (5.6) has two complex roots λ1 = α+ β · i and λ2 = α− β · i

xH(t) = eαt(C1 cosβt+ C2 sinβt)

Non-homogeneous equation:
ẍ+ aẋ+ bx = q(t)
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Discussion of special forcing terms:

Forcing term q(t) Setting xN (t)

1. q(t) = p · est
(a) xN (t) = A · est - if s is not a root of the characteristic

equation
(b) xN (t) = A · tkest - if s is a root of multiplicity k

(k ≤ 2) of the characteristic equation

2. q(t) =

pnt
n+pn−1t

n−1+ · · ·+p1t+p0
(a) xN (t) = Ant

n +An−1t
n−1 + · · ·+A1t+A0 - if b 6= 0

in the homogeneous equation
(b) xN (t) = tk · (Antn +An−1t

n−1 + · · ·+A1t+A0) -
with k = 1 if a 6= 0, b = 0 and k = 2 if a = b = 0

3. q(t) = p cos st+ r sin st
(a) xN (t) = A cos st+B sin st - if si is not a root of the

characteristic equation
(b) xN (t) = tk · (A cos st+B sin st) - if si is a root of

multiplicity k of the characteristic equation

−→ Use the above setting and insert it and the derivatives into the non-homogeneous equation.
Determine the coefficients A,B and Ai, respectively.

Example 7 /

(b) Stability

Consider equation (5.4)

Definition 4
Equation (5.4) is called globally asymptotically stable if every solution xH(t) = C1x1(t) +

C2x2(t) of the associated homogeneous equation tends to 0 as t → ∞ for all values of C1

and C2.

Remark:
xH(t)→ 0 as t→∞ ⇐⇒ x1(t)→ 0 and x2(t)→ 0 as t→∞

Example 8 /
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Theorem 2

Equation ẍ+aẋ+bx = q(t) is globally asymptotically stable if and only if a > 0 and b > 0.

(c) Systems of equations in the plane

Consider:

ẋ = f(t, x, y)

ẏ = g(t, x, y)
(7)

Solution: pair (x(t), y(t)) satisfying (7)

Initial value problem:

The initial conditions x(t0) = x0 and y(t0) = y0 are given.

A solution method:

Reduce the given system (7) to a second-order differential equation in only one unknown.

1. Use the first equation in (7) to express y as a function of t, x, ẋ.

y = h(t, x, ẋ)

2. Differentiate y w.r.t. t and substitute the terms for y and ẏ into the second equation in
(7).

3. Solve the resulting second-order differential equation to determine x(t).

4. Determine
y(t) = h(t, x(t), ẋ(t))

Example 9 /

(d) Systems with constant coefficients

Consider:
ẋ = a11x+ a12y + q1(t)

ẏ = a21x+ a22y + q2(t)

Solution of the homogeneous system:(
ẋ

ẏ

)
=

(
a11 a12

a21 a22

)(
x

y

)
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we set (
x

y

)
=

(
z1

z2

)
eλt

=⇒

(
ẋ

ẏ

)
= λ

(
z1

z2

)
eλt

=⇒ we obtain the eigenvalue problem:(
a11 a12

a21 a22

)(
z1

z2

)
= λ

(
z1

z2

)

or equivalently (
a11 − λ a12

a21 a22 − λ

)(
z1

z2

)
=

(
0

0

)

−→ Determine the eigenvalues λ1, λ2 and the corresponding eigenvectors

z1 =

(
z11
z12

)
and z2 =

(
z21
z22

)
.

−→ Consider now the cases in a similar way as for a second-order differential equation, e.g.
λ1 ∈ R, λ2 ∈ R and λ1 6= λ2.

=⇒ General solution: (
xH(t)

yH(t)

)
= C1

(
z11
z12

)
eλ1t + C2

(
z21
z22

)
eλ2t

Solution of the non-homogeneous system:

A particular solution of the non-homogeneous system can be determined in a similar way as for
a second-order differential equation. Note that all occurring specific functions q1(t) and q2(t)

have to be considered in each function xN (t) and yN (t).

Example 10 /
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(e) Equilibrium points for linear systems with constant coefficients and forcing term

Consider:
ẋ = a11x+ a12y + q1

ẏ = a21x+ a22y + q2

For finding an equilibrium point (state), we set ẋ = ẏ = 0 and obtain

a11x+ a12y = −q1

a21x+ a22y = −q2

Cramer’s rule
=⇒ equilibrium point:

x∗ =

∣∣∣∣∣−q1 a12

−q2 a22

∣∣∣∣∣∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣
=
a12q2 − a22q1

|A|

y∗ =

∣∣∣∣∣a11 −q1
a21 −q2

∣∣∣∣∣∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣
=
a21q1 − a11q2

|A|

Example 11 /

Theorem 3

Suppose that |A| 6= 0. Then the equilibrium point (x∗, y∗) for the linear system

ẋ = a11x+ a12y + q1

ẏ = a21x+ a22y + q2

is globally asymptotically stable if and only if

tr(A) = a11 + a22 < 0 and |A| =

∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣ > 0,

where tr(A) is the trace of A (or equivalently, if and only if both eigenvalues of A have
negative real parts).

Example 12 /
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(f) Phase plane analysis

Consider an autonomous system:
ẋ = f(x, y)

ẏ = g(x, y)

−→ Rates of change of x(t) and y(t) are given by f(x(t), y(t)) and g(x(t), y(t)), e.g.

if f(x(t), y(t)) > 0 and g(x(t), y(t)) < 0 at a point P = (x(t), y(t)), then (as t increases) the
system will move from point P down and to the right.

=⇒ (ẋ(t), ẏ(t)) gives direction of motion, length of (ẋ(t), ẏ(t)) gives speed of motion

Illustration: Motion of a system /

Graph a sample of these vectors. =⇒ phase diagram

Equilibrium point: point (a, b) with f(a, b) = g(a, b) = 0

−→ equilibrium points are the points of the intersection of the nullclines
f(x, y) = 0 and g(x, y) = 0

−→ Graph the nullclines:

• At point P with f(x, y) = 0, ẋ = 0 and the velocity vector is vertical, it points up if ẏ > 0

and down if ẏ < 0.

• At point Q with g(x, y) = 0, ẏ = 0 and the velocity vector is horizontal, it points to the
right if ẋ > 0 and to the left if ẋ < 0.

−→ Continue and graph further arrows.

Example 13 /
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Optimal control theory

6.1 Calculus of variations

Consider:
t1∫
t0

F (t, x, ẋ)dt −→ max!

s.t.
x(t0) = x0, x(t1) = x1

(8)

Illustration /

necessary optimality condition:

Function x(t) can only solve problem (8) if x(t) satisfies the following differential equation.

−→ Euler equation:
∂F

∂x
− d

dt

(
∂F

∂ẋ

)
= 0 (6.1)

we have
d

dt

(
∂F (t, x, ẋ)

∂ẋ

)
=

∂2F

∂t∂ẋ
+

∂2F

∂x∂ẋ
· ẋ+

∂2F

∂ẋ∂ẋ
· ẍ

=⇒ (6.1) can be rewritten as

∂2F

∂ẋ∂ẋ
· ẍ+

∂2F

∂x∂ẋ
· ẋ+

∂2F

∂t∂ẋ
− ∂F

∂x
= 0

42
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Theorem 1

If F (t, x, ẋ) is concave in (x, ẋ), a feasible x∗(t) that satisfies the Euler equation solves the
maximization problem (8).

Example 1 /

More general terminal conditions

Consider:
t1∫
t0

F (t, x, ẋ)dt −→ max!

s.t.
x(t0) = x0

(a) x(t1) free or (b) x(t1) ≥ x1

(9)

Illustration /

=⇒ transversality condition needed to determine the second constant

Theorem 2 (Transversality conditions)

If x∗(t) solves problem (9) with either (a) or (b) as the terminal condition, then x∗(t) must
satisfy the Euler equation.
With the terminal condition (a), the transversality condition is(

∂F ∗

∂ẋ

)
t=t1

= 0. (6.2)

With the terminal condition (b), the transversality condition is(
∂F ∗

∂ẋ

)
t=t1

≤ 0

[(
∂F ∗

∂ẋ

)
t=t1

= 0, if x∗(t1) > x1

]
(6.3)

If F (t, x, ẋ) is concave in (x, ẋ), then a feasible x∗(t) that satisfies both the Euler equation and
the appropriate transversality condition will solve problem (9).

Example 2 /
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6.2 Control theory

6.2.1 Basic problem

Let:

x(t) - characterization of the state of a system

u(t) - control function; t ≥ t0

J =
t1∫
t0

f(t, x(t), u(t))dt - objective function

Given:

ẋ(t) = g(t, x(t), u(t)),

x(t0) = x0

(10)

Problem:

Among all pairs (x(t), u(t)) that obey (10) find one such that

J =

t1∫
t0

f(t, x(t), u(t))dt −→ max!

Example 3 /

Optimality conditions:

Consider:

J =

t1∫
t0

f(t, x(t), u(t))dt −→ max! (6.4)

s.t.
ẋ(t) = g(t, x(t), u(t)), x(t0) = x0, x(t1) free (6.5)

−→ Introduce the Hamiltonian function

H(t, x, u, p) = f(t, x, u) + p · g(t, x, u)

p = p(t) - costate variable (adjoint function)
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Theorem 3 (Maximum principle)

Suppose that (x∗(t), u∗(t)) is an optimal pair for problem (6.4) - (6.5).
Then there exists a continuous function p(t) such that

1. u = u∗(t) maximizes

H(t, x∗(t), u, p(t)) for u ∈ (−∞,∞) (6.6)

2.
ṗ(t) = −Hx(t, x∗(t), u∗(t), p(t)), p(t1) = 0︸ ︷︷ ︸

transversality condition

(6.7)

Theorem 4

If the condition

H(t, x, u, p(t)) is concave in (x, u) for each t ∈ [t0, t1] (6.8)

is added to the conditions in Theorem 3, we obtain a sufficient optimality condition, i.e.,
if we find a triple (x∗(t), u∗(t), p∗(t)) that satisfies (6.5), (6.6), (6.7) and (6.8), then
(x∗(t), u∗(t)) is optimal.

Example 4 /

6.2.2 Standard problem

Consider the „standard end constrained problem“ :

t1∫
t0

f(t, x, u)dt −→ max!, u ∈ U ⊆ R (6.9)

s.t.
ẋ(t) = g(t, x(t), u(t)), x(t0) = x0 (6.10)

with one of the following terminal conditions

(a) x(t1) = x1, (b) x(t1) ≥ x1 or (c) x(t1) free. (6.11)

Define now the Hamiltonian function as follows:

H(t, x, u, p) = p0 · f(t, x, u) + p · g(t, x, u)
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Theorem 5 (Maximum principle for standard end constraints)

Suppose that (x∗(t), u∗(t)) is an optimal pair for problem (6.9) - (6.11).
Then there exist a continuous function p(t) and a number p0 ∈ {0, 1} such that for all
t ∈ [t0, t1] we have (p0, p(t)) 6= (0, 0) and, moreover:

1. u = u∗(t) maximizes the Hamiltonian H(t, x∗(t), u, p(t)) w.r.t. u ∈ U , i.e.,

H(t, x∗(t), u, p(t)) ≤ H(t, x∗(t), u∗(t), p(t)) for all u ∈ U

2.
ṗ(t) = −Hx(t, x∗(t), u∗(t), p(t)) (6.12)

3. Corresponding to each of the terminal conditions (a), (b) and (c) in (6.11), there is
a transversality condition on p(t1):
(a’) no condition on p(t1)
(b’) p(t1) ≥ 0 (with p(t1) = 0 if x∗(t1) > x1)
(c’) p(t1) = 0

Theorem 6 (Mangasarian)

Suppose that (x∗(t), u∗(t)) is a feasible pair with the corresponding costate variable p(t)
such that conditions 1. - 3. in Theorem 5 are satisfied with p0 = 1. Suppose further
that the control region U is convex and that H(t, x, u, p(t)) is concave in (x, u) for every
t ∈ [t0, t1].
Then (x∗(t), u∗(t)) is an optimal pair.

General approach:

1. For each triple (t, x, p) maximize H(t, x, u, p) w.r.t. u ∈ U (often there exists a unique
maximization point u = û(t, x, p)).

2. Insert this function into the differential equations (6.10) and (6.12) to obtain

ẋ(t) = g(t, x, û(t, x(t), p(t)))

and
ṗ(t) = −Hx(t, x(t), û(t, x(t), p(t)))

(i.e., a system of two first-order differential equations) to determine x(t) and p(t).

3. Determine the constants in the general solution (x(t), p(t)) by combining the initial condi-
tion x(t0) = x0 with the terminal conditions and transversality conditions.

=⇒ state variable x∗(t), corresponding control variable u∗(t) = û(t, x∗(t), p(t))
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Remarks:

1. If the Hamiltonian is not concave, there exists a weaker sufficient condition due to Arrow:
If the maximized Hamiltonian

Ĥ(t, x, p) = max
u

H(t, x, u, p)

is concave in x for every t ∈ [t0, t1] and conditions 1. - 3. of Theorem 5 are satisfied with
p0 = 1, then (x∗(t), u∗(t)) solves problem (6.9) - (6.11).
(Arrow’s sufficient condition)

2. If the resulting differential equations are non-linear, one may linearize these functions about
the equilibrium state, i.e., one can expand the functions into Taylor polynomials with n = 1

(see linear approximation in Section 1.1).

Example 5 /

6.2.3 Current value formulations

Consider:

max
u∈U⊆R

t1∫
t0

f(t, x, u)e−rt dt, ẋ = g(t, x, u)

x(t0) = x0

(a) x(t1) = x1 (b) x(t1) ≥ x1 or (c) x(t1) free

(11)

e−rt - discount factor

=⇒ Hamiltonian
H = p0 · f(t, x, u)e−rt + p · g(t, x, u)

=⇒ Current value Hamiltonian (multiply H by ert)

Hc = Hert = p0 · f(t, x, u) + ert · p · g(t, x, u)

λ = ert · p - current value shadow price, λ0 = p0

=⇒ Hc(t, x, u, λ) = λ0 · f(t, x, u) + λ · g(t, x, u)
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Theorem 7 (Maximum principle, current value formulation)

Suppose that (x∗(t), u∗(t)) is an optimal pair for problem (11) and let Hc be the current
value Hamiltonian.
Then there exist a continuous function λ(t) and a number λ0 ∈ {0, 1} such that for all
t ∈ [t0, t1] we have (λ0, λ(t)) 6= (0, 0) and, moreover:

1. u = u∗(t) maximizes Hc(t, x∗(t), u, λ(t)) for u ∈ U
2.

λ̇(t)− rλ(t) = −∂H
c(t, x∗(t), u∗(t), λ(t))

∂x

3. The transversality conditions are:
(a’) no condition on λ(t1)

(b’) λ(t1) ≥ 0 (with λ(t1) = 0 if x∗(t1) > x1)
(c’) λ(t1) = 0

Remark:
The conditions in Theorem 7 are sufficient for optimality if λ0 = 1 and

Hc(t, x, u, λ(t)) is concave in (x, u) (Mangasarian)

or more generally

Ĥc(t, x, λ(t)) = max
u∈U

Hc(t, x, u, λ(t)) is concave in x (Arrow).

Example 6 /

Remark:
If explicit solutions for the system of differential equations are not obtainable, a phase diagram
may be helpful.

Illustration: Phase diagram for example 6 /



Chapter 7

Applications to growth theory and
monetary economics

7.1 Some growth models

Example 1: Economic growth I /

Let

X = X(t) - national product at time t
K = K(t) - capital stock at time t
L = L(t) - number of workers (labor) at time t

and

X = A ·K1−α · Lα - Cobb-Douglas production function
K̇ = s ·X - aggregate investment is proportional to output
L = L0 · eλt - labor force grows exponentially
(A,α, s, L, λ > 0; 0 < α < 1).

Example 2: Economic growth II /

Let

X(t) - total domestic product per year
K(t) - capital stock
σ - average productivity of capital
s - savings rate
H(t) = H0 · eµt (µ 6= s · σ) - net inflow of foreign investment per year at time t

49
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7.2 The Solow-Swan model

• neoclassical Solow-Swan model: model of long-run growth

• generalization of the model in Example 1 in Section 7.1

Assumptions and notations:

Y = Y (t) - (aggregate) output at time t
K = K(t) - capital stock at time t
L = L(t) - number of workers (labor) at time t
F (K,L) - production function (assumption: constant returns to scale, i.e., F is homogeneous of
degree 1)

=⇒ Y = F (K,L) or equivalently y = f(k), where

y = Y
L - output per worker

k = K
L - capital stock per worker

C - consumption
c = C

L - consumption per worker

s - savings rate (0 < s < 1)

=⇒ C = (1− s)Y or equivalently c = (1− s)y

i - investment per worker

=⇒ y = c+ i = (1− s)y + i

=⇒ i = s · y = s · f(k)

Illustration: Output, investment and capital stock per worker /

δ - depreciation rate

Law of motion of capital stock
k̇ = s · f(k)︸ ︷︷ ︸

investment

− δk︸︷︷︸
depreciation

equilibrium state k∗:
k̇ = 0 =⇒ s · f(k∗) = δk∗ (7.1)

Illustration: Equilibrium state /
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Golden rule level of capital accumulation

The government would choose an equilibrium state at which consumption is maximized. To alter
the equilibrium state, the government must change the savings rate s:

c = f(k)− s · f(k)

(7.1)
=⇒ c = f(k∗)− δ · k∗ (at the equilibrium state k∗)

=⇒ necessary optimality condition for c −→ max!

f ′(k∗)− δ = 0 =⇒ f ′(k∗) = δ (7.2)

Using (7.1) and (7.2), we obtain:

s∗ · f(k) = f ′(k) · k =⇒ s∗ =
f ′(k) · k
f(k)

s∗ - savings rate, that maximizes consumption at the equilibrium state

Example 3 /

Introducing population growth

Let

λ = L̇
L - growth rate of the labor force.

=⇒ equilibrium state k∗:
s · f(k∗) = (δ + λ)k∗

Introducing technological progress

−→ technological progress results from increased efficiency E of labor

Let

g = Ė
E - growth rate of efficiency of labor.

Y = F (K,L · E) =⇒ y = f

(
K

L · E

)
= f(k)

equilibrium state k∗:
s · f(k∗) = (δ + λ+ g)k∗
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Interpretation:

At k∗ y and k are constant. Thus:

1. Since y = Y
L·E , L grows at rate λ, E grows at rate g

=⇒ Y must grow at rate λ+ g.

2. Since k = K
L·E , L grows at rate λ, E grows at rate g

=⇒ K must grow at rate λ+ g.

Illustration: effect of technological progress /

Golden rule level of capital accumulation:

(maximizes consumption at the equilibrium state)

f ′(k∗) = δ + λ+ g

Example 4 /


