Prof. Dr. Frank Werner

Faculty of Mathematics

Institute of Mathematical Optimization (IMO)

 $http://math.uni-magdeburg.de/{\sim}werner/meth-ec-ma.html$

Methods for Economists

Lecture Notes (in extracts)

Winter Term 2015/16

Annotation:

- 1. These lecture notes do not replace your attendance of the lecture. Numerical examples are only presented during the lecture.
- 2. The symbol symbol points to additional, detailed remarks given in the lecture.
- 3. I am grateful to Julia Lange for her contribution in editing the lecture notes.

Contents

1	Bas	ic mathematical concepts	1
	1.1	Preliminaries	1
	1.2	Convex sets	6
	1.3	Convex and concave functions	7
	1.4	Quasi-convex and quasi-concave functions	8
2	Une	constrained and constrained optimization	11
	2.1	Extreme points	11
		2.1.1 Global extreme points	11
		2.1.2 Local extreme points	12
	2.2	Equality constraints	14
	2.3	Inequality constraints	16
	2.4	Non-negativity constraints	18
3	Sen	sitivity analysis	20
	3.1	Preliminaries	20
	3.2	Value functions and envelope results	20
		3.2.1 Equality constraints	20
		3.2.2 Properties of the value function for inequality constraints	21
		3.2.3 Mixed constraints	22
	3.3	Some further microeconomic applications	23
		3.3.1 Cost minimization problem	23
		3.3.2 Profit maximization problem of a competitive firm	24
4	Cor	sumer choice and general equilibrium theory	25
	4.1	Some aspects of consumer choice theory	25
	4.2	Fundamental theorems of welfare economics	28
		4.2.1 Notations and preliminaries	28
		4.2.2 First fundamental theorem of welfare economics	29
		4.2.3 Second fundamental theorem of welfare economics	30
5	Diff	erential equations	32
	5.1	Preliminaries	32

	5.2	Differential equations of the first order	33
		5.2.1 Separable equations	33
		5.2.2 First-order linear differential equations	33
	5.3	Second-order linear differential equations and systems in the plane $\ldots \ldots \ldots$	35
6	Opt	imal control theory	42
	6.1	Calculus of variations	42
	6.2	Control theory	44
		6.2.1 Basic problem	44
		6.2.2 Standard problem	45
		6.2.3 Current value formulations	47
7	Gro	owth theory and monetary economics	49
	7.1	Some growth models	49
	7.2	The Solow-Swan model	50

Chapter 1

Basic mathematical concepts

1.1 Preliminaries

Quadratic forms and their sign

Definition 1:

If $A = (a_{ij})$ is a matrix of order $n \times n$ and $\mathbf{x}^T = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, then the term

$$Q(\mathbf{x}) = \mathbf{x}^T \cdot A \cdot \mathbf{x}$$

is called a *quadratic form*.

Thus:

$$Q(\mathbf{x}) = Q(x_1, x_2, \dots, x_n) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} \cdot x_i \cdot x_j$$

EXAMPLE 1

Definition 2:

A matrix A of order $n \times n$ and its associated quadratic form $Q(\mathbf{x})$ are said to be

1. positive definite, if
$$Q(\mathbf{x}) = \mathbf{x}^T \cdot A \cdot \mathbf{x} > 0$$
 for all $\mathbf{x}^T = (x_1, x_2, \dots, x_n) \neq (0, 0, \dots, 0);$

- 2. positive semi-definite, if $Q(\mathbf{x}) = \mathbf{x}^T \cdot A \cdot \mathbf{x} \ge 0$ for all $\mathbf{x} \in \mathbb{R}^n$;
- 3. negative definite, if $Q(\mathbf{x}) = \mathbf{x}^T \cdot A \cdot \mathbf{x} < 0$ for all $\mathbf{x}^T = (x_1, x_2, \dots, x_n) \neq (0, 0, \dots, 0);$
- 4. negative semi-definite, if $Q(\mathbf{x}) = \mathbf{x}^T \cdot A \cdot \mathbf{x} \leq 0$ for all $\mathbf{x} \in \mathbb{R}^n$;
- 5. *indefinite*, if it is neither positive semi-definite nor negative semi-definite.

Remark:

In case 5., there exist vectors \mathbf{x}^* and \mathbf{y}^* such that $Q(\mathbf{x}^*) > 0$ and $Q(\mathbf{y}^*) < 0$.

Definition 3:

The leading principle minors of a matrix $A = (a_{ij})$ of order $n \times n$ are the determinants

 $D_k = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kk} \end{vmatrix}, \quad k = 1, 2, \dots, n$

(i.e., D_k is obtained from |A| by crossing out the last n - k columns and rows).

Theorem 1

Let A be a symmetric matrix of order $n \times n$. Then:

- 1. A positive definite $\iff D_k > 0$ for k = 1, 2, ..., n.
- 2. A negative definite $\iff (-1)^k \cdot D_k > 0$ for k = 1, 2, ..., n.
- 3. A positive semi-definite $\implies D_k \ge 0$ for k = 1, 2, ..., n.
- 4. A negative semi-definite $\implies (-1)^k \cdot D_k \ge 0$ for $k = 1, 2, \dots, n$.

now: necessary and sufficient criterion for positive (negative) semi-definiteness

Definition 4:

An (arbitrary) principle minor Δ_k of order $k \ (1 \le k \le n)$ is the determinant of a submatrix of A obtained by deleting all but k rows and columns in A with the same numbers.

Theorem 2

Let A be a symmetric matrix of order $n \times n$. Then:

- 1. A positive semi-definite $\iff \Delta_k \ge 0$ for all principle minors of order k = 1, 2, ..., n.
- 2. A negative semi-definite $\iff (-1)^k \cdot \Delta_k \ge 0$ for all principle minors of order $k = 1, 2, \ldots, n$.

EXAMPLE 2

 \longrightarrow alternative criterion for checking the sign of A:

Theorem 3

Let A be a symmetric matrix of order $n \times n$ and $\lambda_1, \lambda_2, \ldots, \lambda_n$ be the *real* eigenvalues of A. Then:

1. A positive definite $\iff \lambda_1 > 0, \lambda_2 > 0, \dots, \lambda_n > 0.$

2. A positive semi-definite $\iff \lambda_1 \ge 0, \lambda_2 \ge 0, \dots, \lambda_n \ge 0.$

3. A negative definite $\iff \lambda_1 < 0, \lambda_2 < 0, \dots, \lambda_n < 0.$

- 4. A negative semi-definite $\iff \lambda_1 \leq 0, \lambda_2 \leq 0, \dots, \lambda_n \leq 0.$
- 5. A indefinite \iff A has eigenvalues with opposite signs.

Example 3

Level curve and tangent line

consider:

$$z = F(x, y)$$

level curve:

$$F(x,y) = C$$
 with $C \in \mathbb{R}$

 \implies slope of the level curve F(x, y) = C at the point (x, y):

$$y' = -\frac{F_x(x,y)}{F_y(x,y)}$$

(See Werner/Sotskov(2006): Mathematics of Economics and Business, Theorem 11.6, implicit-function theorem.)

equation of the tangent line T:

$$y - y_0 = y' \cdot (x - x_0)$$

$$y - y_0 = -\frac{F_x(x_0, y_0)}{F_y(x_0, y_0)} \cdot (x - x_0)$$

$$\implies \qquad F_x(x_0, y_0) \cdot (x - x_0) + F_y(x_0, y_0) \cdot (y - y_0) = 0$$

ILLUSTRATION: equation of the tangent line T

Remark:

The gradient $\nabla F(x_0, y_0)$ is orthogonal to the tangent line T at (x_0, y_0) .

EXAMPLE 4

ø

generalization to \mathbb{R}^n :

let $\mathbf{x}^0 = (x_1^0, x_2^0, \dots, x_n^0)$ $\longrightarrow gradient \text{ of } F \text{ at } \mathbf{x}^0$:

$$\nabla F(\mathbf{x}^{0}) = \begin{pmatrix} F_{x_{1}}(\mathbf{x}^{0}) \\ F_{x_{2}}(\mathbf{x}^{0}) \\ \vdots \\ F_{x_{n}}(\mathbf{x}^{0}) \end{pmatrix}$$

 \implies equation of the tangent hyperplane T at x^0 :

$$F_{x_1}(\mathbf{x}^0) \cdot (x_1 - x_1^0) + F_{x_2}(\mathbf{x}^0) \cdot (x_2 - x_2^0) + \dots + F_{x_n}(\mathbf{x}^0) \cdot (x_n - x_n^0) = 0$$

or, equivalently:

$$[\nabla F(\mathbf{x}^0)]^T \cdot (\mathbf{x} - \mathbf{x}^0) = 0$$

Directional derivative

 \longrightarrow measures the rate of change of function f in an arbitrary direction **r**

Definition 5:

Let function $f : D_f \longrightarrow \mathbb{R}, D_f \subseteq \mathbb{R}^n$, be continuously partially differentiable and $\mathbf{r} = (r_1, r_2, \dots, r_n)^T \in \mathbb{R}^n$ with $|\mathbf{r}| = 1$. The term

$$\left[\nabla f(\mathbf{x}^0)\right]^T \cdot \mathbf{r} = f_{x_1}(\mathbf{x}^0) \cdot r_1 + f_{x_2}(\mathbf{x}^0) \cdot r_2 + \dots + f_{x_n}(\mathbf{x}^0) \cdot r_n$$

is called the *directional derivative* of function f at the point $x^0 = (x_1^0, x_2^0, \dots, x_n^0) \in D_f$.

Example 5

Homogeneous functions and Euler's theorem

Definition 6 A function $f: D_f \longrightarrow \mathbb{R}, D_f \subseteq \mathbb{R}^n$, is said to be *homogeneous of degree* k on D_f , if t > 0and $(x_1, x_2, \ldots, x_n) \in D_f$ imply

 $(t \cdot x_1, t \cdot x_2, \dots, t \cdot x_n) \in D_f$ and $f(t \cdot x_1, t \cdot x_2, \dots, t \cdot x_n) = t^k \cdot f(x_1, x_2, \dots, x_n)$

for all t > 0, where k can be positive, zero or negative.

Theorem 4 (Euler's theorem)

Let the function $f: D_f \longrightarrow \mathbb{R}, D_f \subseteq \mathbb{R}^n$, be continuously partially differentiable, where t > 0 and $(x_1, x_2, \ldots, x_n) \in D_f$ imply $(t \cdot x_1, t \cdot x_2, \ldots, t \cdot x_n) \in D_f$. Then: f is homogeneous of degree k on $D_f \iff$ $x_1 \cdot f_{x_1}(\mathbf{x}) + x_2 \cdot f_{x_2}(\mathbf{x}) + \cdots + x_n \cdot f_{x_n}(\mathbf{x}) = k \cdot f(\mathbf{x})$ holds for all $(x_1, x_2, \ldots, x_n) \in D_f$.

EXAMPLE 6

Linear and quadratic approximations of functions in \mathbb{R}^2

known: Taylor's formula for functions of one variable (See Werner/Sotskov (2006), Theorem 4.20.)

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!} \cdot (x - x_0) + \frac{f''(x_0)}{2!} \cdot (x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!} \cdot (x - x_0)^n + R_n(x)$$

 $R_n(x)$ - remainder

 $\mathit{now:}\ n=2$

z = f(x, y) defined around $(x_0, y_0) \in D_f$ let: $x = x_0 + h, \ y = y_0 + k$

Linear approximation of f:

$$f(x_0 + h, y_0 + k) = f(x_0, y_0) + f_x(x_0, y_0) \cdot h + f_y(x_0, y_0) \cdot k + R_1(x, y_0)$$

Quadratic approximation of f:

$$f(x_0 + h, y_0 + k) = f(x_0, y_0) + f_x(x_0, y_0) \cdot h + f_y(x_0, y_0) \cdot k$$
$$+ \frac{1}{2} [f_{xx}(x_0, y_0) \cdot h^2 + 2f_{xy}(x_0, y_0) \cdot h \cdot k + f_{yy}(x_0, y_0) \cdot k^2] + R_2(x, y)$$

often: $(x_0, y_0) = (0, 0)$

Example 7

Implicitly defined functions

exogenous variables: x_1, x_2, \ldots, x_n endogenous variables: y_1, y_2, \ldots, y_m ☞

$$F_{1}(x_{1}, x_{2}, \dots, x_{n}; y_{1}, y_{2}, \dots, y_{m}) = 0$$

$$F_{2}(x_{1}, x_{2}, \dots, x_{n}; y_{1}, y_{2}, \dots, y_{m}) = 0$$

$$\vdots$$

$$F_{m}(x_{1}, x_{2}, \dots, x_{n}; y_{1}, y_{2}, \dots, y_{m}) = 0$$
(1)

(m < n)

Is it possible to put this system into its reduced form:

$$y_{1} = f_{1}(x_{1}, x_{2}, \dots, x_{n})$$

$$y_{2} = f_{2}(x_{1}, x_{2}, \dots, x_{n})$$

$$\vdots$$

$$y_{m} = f_{m}(x_{1}, x_{2}, \dots, x_{n})$$
(2)

Theorem 5

Assume that:

- F_1, F_2, \ldots, F_m are continuously partially differentiable;
- $(\mathbf{x}^0, \mathbf{y}^0) = (x_1^0, x_2^0, \dots, x_n^0; y_1^0, y_2^0, \dots, y_m^0)$ satisfies (1);

•
$$|J(\mathbf{x}^0, \mathbf{y}^0)| = det\left(\frac{\partial F_j(\mathbf{x}^0, \mathbf{y}^0)}{\partial y_k}\right) \neq 0$$

(i.e., the Jacobian determinant is regular)

Then the system (1) can be put into its reduced form (2).

EXAMPLE 8

1.2 Convex sets

Definition 7

A set *M* is called *convex*, if for any two points (vectors) $\mathbf{x}^1, \mathbf{x}^2 \in M$, any convex combination $\lambda \mathbf{x}^1 + (1 - \lambda)\mathbf{x}^2$ with $0 \le \lambda \le 1$ also belongs to *M*.

ILLUSTRATION: Convex set

Remark:

The intersection of convex sets is always a convex set, while the union of convex sets is not necessarily a convex set.

ILLUSTRATION: Union and intersection of convex sets

1.3 Convex and concave functions

Definition 8 Let $M \subseteq \mathbb{R}^n$ be a convex set. A function $f: M \longrightarrow \mathbb{R}$ is called *convex* on M, if $f(\lambda \mathbf{x}^1 + (1 - \lambda)\mathbf{x}^2) \le \lambda f(\mathbf{x}^1) + (1 - \lambda)f(\mathbf{x}^2)$ for all $\mathbf{x}^1, \mathbf{x}^2 \in M$ and all $\lambda \in [0, 1]$. f is called *concave*, if

$$f(\lambda \mathbf{x}^1 + (1 - \lambda)\mathbf{x}^2) \ge \lambda f(\mathbf{x}^1) + (1 - \lambda)f(\mathbf{x}^2)$$

for all $\mathbf{x}^1, \mathbf{x}^2 \in M$ and all $\lambda \in [0, 1]$.

ILLUSTRATION: Convex and concave functions

Definition 9

The matrix

$$H_f(\mathbf{x}^0) = (f_{x_i x_j}(x^0)) = \begin{pmatrix} f_{x_1 x_1}(\mathbf{x}^0) & f_{x_1 x_2}(\mathbf{x}^0) & \cdots & f_{x_1 x_n}(\mathbf{x}^0) \\ f_{x_2 x_1}(\mathbf{x}^0) & f_{x_2 x_2}(\mathbf{x}^0) & \cdots & f_{x_2 x_n}(\mathbf{x}^0) \\ \vdots & \vdots & \ddots & \vdots \\ f_{x_n x_1}(\mathbf{x}^0) & f_{x_n x_2}(\mathbf{x}^0) & \cdots & f_{x_n x_n}(\mathbf{x}^0) \end{pmatrix}$$

is called the *Hessian matrix* of function f at the point $x^0 = (x_1^0, x_2^0, \dots, x_n^0) \in D_f \subseteq \mathbb{R}^n$.

Remark:

If f has continuous second-order partial derivatives, the Hessian matrix is symmetric.

Theorem 6

Let $f: D_f \longrightarrow \mathbb{R}, D_f \subseteq \mathbb{R}^n$, be twice continuously differentiable and $M \subseteq D_f$ be convex. Then:

- 1. f is convex on $M \iff$ the Hessian matrix $H_f(\mathbf{x})$ is positive semi-definite for all $\mathbf{x} \in M$;
- 2. f is concave on $M \iff$ the Hessian matrix $H_f(\mathbf{x})$ is negative semi-definite for all $\mathbf{x} \in M$;
- 3. the Hessian matrix $H_f(\mathbf{x})$ is positive definite for all $\mathbf{x} \in M \Longrightarrow f$ is strictly convex on M;
- 4. the Hessian matrix $H_f(\mathbf{x})$ is negative definite for all $\mathbf{x} \in M \Longrightarrow f$ is strictly concave on M.

Example 9

Theorem 7

Let $f: M \longrightarrow \mathbb{R}, g: M \longrightarrow \mathbb{R}$ and $M \subseteq \mathbb{R}^n$ be a convex set. Then:

1. f, g are convex on M and $a \ge 0, b \ge 0 \implies a \cdot f + b \cdot g$ is convex on M;

2. f, g are concave on M and $a \ge 0, b \ge 0 \implies a \cdot f + b \cdot g$ is concave on M.

Theorem 8

Let $f: M \longrightarrow \mathbb{R}$ with $M \subseteq \mathbb{R}^n$ being convex and let $F: D_F \longrightarrow \mathbb{R}$ with $R_f \subseteq D_F$. Then: 1. f is convex and F is convex and increasing $\Longrightarrow (F \circ f)(\mathbf{x}) = F(f(\mathbf{x}))$ is convex; 2. f is convex and F is concave and decreasing $\Longrightarrow (F \circ f)(\mathbf{x}) = F(f(\mathbf{x}))$ is concave; 3. f is concave and F is concave and increasing $\Longrightarrow (F \circ f)(\mathbf{x}) = F(f(\mathbf{x}))$ is concave; 4. f is concave and F is convex and decreasing $\Longrightarrow (F \circ f)(\mathbf{x}) = F(f(\mathbf{x}))$ is convex.

EXAMPLE 10

1.4 Quasi-convex and quasi-concave functions

Definition 10

Let $M \subseteq \mathbb{R}^n$ be a convex set and $f: M \longrightarrow \mathbb{R}$. For any $a \in \mathbb{R}$, the set

$$P_a = \{ \mathbf{x} \in M \mid f(\mathbf{x}) \ge a \}$$

is called an *upper level set* for f.

ILLUSTRATION: Upper level set

ø

Theorem 9

Let $M \subseteq \mathbb{R}^n$ be a convex set and $f: M \longrightarrow \mathbb{R}$. Then:

1. If f is concave, then

$$P_a = \{ \mathbf{x} \in M \mid f(\mathbf{x}) \ge a \}$$

is a convex set for any $a \in \mathbb{R}$;

2. If f is convex, then the lower level set

$$P^a = \{ \mathbf{x} \in M \mid f(\mathbf{x}) \le a \}$$

is a convex set for any $a \in \mathbb{R}$.

Definition 11

Let $M \subseteq \mathbb{R}^n$ be a convex set and $f: M \longrightarrow \mathbb{R}$. Function f is called *quasi-concave*, if the upper level set $P_a = \{\mathbf{x} \in M \mid f(\mathbf{x}) \geq a\}$ is convex for any number $a \in \mathbb{R}$. Function f is called *quasi-convex*, if -f is quasi-concave.

Remark:

f quasi-convex \iff the lower level set $P^a = \{ \mathbf{x} \in M \mid f(\mathbf{x}) \leq a \}$ is convex for any $a \in \mathbb{R}$

EXAMPLE 11

Remarks:

- 1. $f \text{ convex} \implies f \text{ quasi-convex}$ $f \text{ concave} \implies f \text{ quasi-concave}$
- 2. The sum of quasi-convex (quasi-concave) functions is not necessarily quasi-convex (quasi-concave).

Definition 12

Let $M \subseteq \mathbb{R}^n$ be a convex set and $f: M \longrightarrow \mathbb{R}$. Function f is called *strictly quasi-concave*, if

$$f(\lambda \mathbf{x}^1 + (1 - \lambda)\mathbf{x}^2) > \min\{f(\mathbf{x}^1), f(\mathbf{x}^2)\}$$

for all $\mathbf{x}^1, \mathbf{x}^2 \in M$ with $\mathbf{x}^1 \neq \mathbf{x}^2$ and $\lambda \in (0, 1)$. Function f is strictly quasi-convex, if -f is strictly quasi-concave.

Remarks:

- 1. f strictly quasi-concave $\implies f$ quasi-concave
- 2. $f: D_f \longrightarrow \mathbb{R}, D_f \subseteq \mathbb{R}$, strictly increasing (decreasing) $\Longrightarrow f$ strictly quasi-concave
- 3. A strictly quasi-concave function cannot have more than one global maximum point.

Theorem 10

Let $f: D_f \longrightarrow \mathbb{R}, D_f \subseteq \mathbb{R}^n$, be twice continuously differentiable on a convex set $M \subseteq \mathbb{R}^n$ and

$$B_{r} = \begin{vmatrix} 0 & f_{x_{1}}(\mathbf{x}) & \cdots & f_{x_{r}}(\mathbf{x}) \\ f_{x_{1}}(\mathbf{x}) & f_{x_{1}x_{1}}(\mathbf{x}) & \cdots & f_{x_{1}x_{r}}(\mathbf{x}) \\ \vdots & \vdots & \cdots & \vdots \\ f_{x_{r}}(\mathbf{x}) & f_{x_{r}x_{1}}(\mathbf{x}) & \cdots & f_{x_{r}x_{r}}(\mathbf{x}) \end{vmatrix}, \quad r = 1, 2, \dots, n$$

Then:

- 1. A necessary condition for f to be quasi-concave is that $(-1)^r \cdot B_r(\mathbf{x}) \ge 0$ for all $\mathbf{x} \in M$ and all r = 1, 2, ..., n;
- 2. A sufficient condition for f to be strictly quasi-concave is that $(-1)^r \cdot B_r(\mathbf{x}) > 0$ for all $\mathbf{x} \in M$ and all r = 1, 2, ..., n.

EXAMPLE 12

Chapter 2

Unconstrained and constrained optimization

2.1 Extreme points

Consider:

$$f(\mathbf{x}) \longrightarrow \min!$$
 (or max!)

s.t.

 $\mathbf{x} \in M$,

where $f : \mathbb{R}^n \longrightarrow \mathbb{R}, \emptyset \neq M \subseteq \mathbb{R}^n$

M - set of feasible solutions $\mathbf{x} \in M$ - feasible solution f - objective function $x_i, i = 1, 2, \dots, n$ - decision variables (choice variables)

often:

 $M = \{ \mathbf{x} \in \mathbb{R}^n \mid g_i(\mathbf{x}) \le 0, i = 1, 2, \dots, m \}$

where $g_i : \mathbb{R}^n \longrightarrow \mathbb{R}, i = 1, 2, \dots, m$

2.1.1 Global extreme points

Definition 1 A point $\mathbf{x}^* \in M$ is called a *global minimum point* for f in M if

 $f(\mathbf{x}^*) \le f(\mathbf{x})$ for all $\mathbf{x} \in M$.

The number $f^* := \min\{f(\mathbf{x}) \mid \mathbf{x} \in M\}$ is called the *global minimum*.

similarly:

- global maximum point
- global maximum

(global) extreme point: (global) minimum or maximum point

Theorem 1 (necessary first-order condition)

Let $f: M \longrightarrow \mathbb{R}$ be differentiable and $\mathbf{x}^* = (x_1^*, x_2^*, \dots, x_n^*)$ be an interior point of M. A necessary condition for \mathbf{x}^* to be an extreme point is

$$\nabla f(\mathbf{x}^*) = \mathbf{0},$$

i.e.,
$$f_{x_1}(\mathbf{x}^*) = f_{x_2}(\mathbf{x}^*) = \dots = f_{x_n}(\mathbf{x}^*) = 0.$$

Remark:

 \mathbf{x}^* is a stationary point for f

Theorem 2 (sufficient condition)

Let f: M → R with M ⊆ Rⁿ being a convex set. Then:
1. If f is convex on M, then:
x* is a (global) minimum point for f in M ⇔
x* is a stationary point for f;
2. If f is concave on M, then:
x* is a (global) maximum point for f in M ⇔
x* is a stationary point for f.

Example 1

Ð

2.1.2 Local extreme points

Definition 2

The set

 $U_{\epsilon}(\mathbf{x}^*) := \{ \mathbf{x} \in \mathbb{R}^n || \mathbf{x} - \mathbf{x}^* | < \epsilon \}$

is called an *(open)* ϵ -neighborhood $U_{\epsilon}(\mathbf{x}^*)$ with $\epsilon > 0$.

Definition 3

A point $\mathbf{x}^* \in M$ is called a *local minimum point* for function f in M if there exists an $\epsilon > 0$ such that

 $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in M \cap U_{\epsilon}(\mathbf{x}^*)$.

The number $f(\mathbf{x}^*)$ is called a *local minimum*.

similarly:

- local maximum point
- local maximum

(local) extreme point: (local) minimum or maximum point

ILLUSTRATION: Global and local minimum points

Theorem 3 (necessary optimality condition)

Let f be continuously differentiable and \mathbf{x}^* be an interior point of M being a local minimum or maximum point. Then

$$\nabla f(\mathbf{x}^*) = \mathbf{0}.$$

Theorem 4 (sufficient optimality condition)

Let f be twice continuously differentiable and \mathbf{x}^* be an interior point of M. Then:

- 1. If $\nabla f(\mathbf{x}^*) = \mathbf{0}$ and $H(\mathbf{x}^*)$ is positive definite, then \mathbf{x}^* is a local minimum point.
- 2. If $\nabla f(\mathbf{x}^*) = \mathbf{0}$ and $H(\mathbf{x}^*)$ is negative definite, then \mathbf{x}^* is a local maximum point.

Remarks:

- 1. If $H(\mathbf{x}^*)$ is only positive (negative) semi-definite and $\nabla f(\mathbf{x}^*) = 0$, then the above condition is only *necessary*.
- 2. If \mathbf{x}^* is a stationary point and $|H_f(\mathbf{x}^*)| \neq 0$ and neither of the conditions in (1) and (2) of Theorem 4 are satisfied, then \mathbf{x}^* is a saddle point. The case $|H_f(\mathbf{x}^*)| = 0$ requires further examination.

EXAMPLE 2

2.2 Equality constraints

Consider:

$$z = f(x_1, x_2, \dots, x_n) \longrightarrow \min!$$
 (or max!)

s.t.

$$g_1(x_1, x_2, \dots, x_n) = 0$$

$$g_2(x_1, x_2, \dots, x_n) = 0$$

:

$$g_m(x_1, x_2, \dots, x_n) = 0 \qquad (m < n)$$

 \longrightarrow apply Lagrange multiplier method:

$$L(\mathbf{x};\lambda) = L(x_1, x_2, \dots, x_n; \lambda_1, \lambda_2, \dots, \lambda_m)$$
$$= f(x_1, x_2, \dots, x_n) + \sum_{i=1}^m \lambda_i \cdot g_i(x_1, x_2, \dots, x_n)$$

L - Lagrangian function

 λ_i - Lagrangian multiplier

Theorem 5 (necessary optimality condition, Lagrange's theorem)

Let f and $g_i, i = 1, 2, ..., m$, be continuously differentiable, $\mathbf{x}^0 = (x_1^0, x_2^0, ..., x_n^0)$ be a local extreme point subject to the given constraints and let $|J(x_1^0, x_2^0, ..., x_n^0)| \neq 0$. Then there exists a $\lambda^0 = (\lambda_1^0, \lambda_2^0, ..., \lambda_m^0)$ such that

$$\nabla L(\mathbf{x}^0; \lambda^0) = \mathbf{0}.$$

The condition of Theorem 5 corresponds to

$$L_{x_j}(\mathbf{x}^0; \lambda^0) = 0, \qquad j = 1, 2, \dots, n;$$

 $L_{\lambda_i}(\mathbf{x}^0; \lambda^0) = g_i(x_1, x_2, \dots, x_n) = 0, \qquad i = 1, 2, \dots, m.$

Theorem 6 (sufficient optimality condition)

Let f and $g_i, i = 1, 2, ..., m$, be twice continuously differentiable and let $(\mathbf{x}^0; \lambda^0)$ with $\mathbf{x}^0 \in D_f$ be a solution of the system $\nabla L(\mathbf{x}; \lambda) = \mathbf{0}$. Moreover, let

$$H_L(\mathbf{x};\lambda) = \begin{pmatrix} 0 & \cdots & 0 & L_{\lambda_1 x_1}(\mathbf{x};\lambda) & \cdots & L_{\lambda_1 x_n}(\mathbf{x};\lambda) \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & \cdots & 0 & L_{\lambda_m x_1}(\mathbf{x};\lambda) & \cdots & L_{\lambda_m x_n}(\mathbf{x};\lambda) \\ L_{x_1 \lambda_1}(\mathbf{x};\lambda) & \cdots & L_{x_1 \lambda_m}(\mathbf{x};\lambda) & L_{x_1 x_1}(\mathbf{x};\lambda) & \cdots & L_{x_1 x_n}(\mathbf{x};\lambda) \\ \vdots & \vdots & \vdots & \vdots \\ L_{x_n \lambda_1}(\mathbf{x};\lambda) & \cdots & L_{x_n \lambda_m}(\mathbf{x};\lambda) & L_{x_n x_1}(\mathbf{x};\lambda) & \cdots & L_{x_n x_n}(\mathbf{x};\lambda) \end{pmatrix}$$

be the bordered Hessian matrix and consider its leading principle minors $D_j(\mathbf{x}^0; \lambda^0)$ of the order j = 2m + 1, 2m + 2, ..., n + m at point $(\mathbf{x}^0; \lambda^0)$. Then:

- 1. If all $D_j(\mathbf{x}^0; \lambda^0), 2m+1 \le j \le n+m$, have the sign $(-1)^m$, then $\mathbf{x}^0 = (x_1^0, x_2^0, \dots, x_n^0)$ is a local minimum point of function f subject to the given constraints.
- 2. If all $D_j(\mathbf{x}^0; \lambda^0), 2m + 1 \leq j \leq n + m$, alternate in sign, the sign of $D_{n+m}(\mathbf{x}^0; \lambda^0)$ being that of $(-1)^n$, then $\mathbf{x}^0 = (x_1^0, x_2^0, \dots, x_n^0)$ is a local maximum point of function f subject to the given constraints.
- 3. If neither the condition 1. nor those of 2. are satisfied, then \mathbf{x}^0 is not a local extreme point of function f subject to the constraints.

Here the case when one or several principle minors have value zero is not considered as a violation of condition 1. or 2.

special case: $n = 2, m = 1 \implies 2m + 1 = n + m = 3$

 \implies consider only $D_3(\mathbf{x}^0; \lambda^0)$

 $D_3(\mathbf{x}^0; \lambda^0) < 0 \implies \text{sign is } (-1)^m = (-1)^1 = -1$ $\implies \mathbf{x}^0 \text{ is a local minimum point according to } 1.$

 $D_3(\mathbf{x}^0; \lambda^0) > 0 \implies \text{sign is } (-1)^n = (-1)^2 = 1$ $\implies \mathbf{x}^0 \text{ is a local maximum point according to } 2.$

Example 3

Theorem 7 (sufficient condition for global optimality)

If there exist numbers $(\lambda_1^0, \lambda_2^0, \dots, \lambda_m^0) = \lambda^0$ and an $\mathbf{x}^0 \in D_f$ such that $\nabla L(\mathbf{x}^0, \lambda^0) = \mathbf{0}$, then: 1. If $L(\mathbf{x}) = f(\mathbf{x}) + \sum_{i=1}^m \lambda_i^0 \cdot g_i(\mathbf{x})$ is concave in x, then \mathbf{x}^0 is a maximum point.

2. If $L(\mathbf{x}) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i^0 \cdot g_i(\mathbf{x})$ is convex in x, then \mathbf{x}^0 is a minimum point.

EXAMPLE 4

2.3 Inequality constraints

Consider:

$$f(x_1, x_2, \dots, x_n) \longrightarrow \min!$$

s.t.

$$g_{1}(x_{1}, x_{2}, \dots, x_{n}) \leq 0$$

$$g_{2}(x_{1}, x_{2}, \dots, x_{n}) \leq 0$$

$$\vdots$$

$$g_{m}(x_{1}, x_{2}, \dots, x_{n}) \leq 0$$
(3)

$$\implies L(\mathbf{x};\lambda) = f(x_1, x_2, \dots, x_n) + \sum_{i=1}^m \lambda_i \cdot g_i(x_1, x_2, \dots, x_n) = f(\mathbf{x}) + \lambda^T \cdot g(\mathbf{x}),$$

where

$$\lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_m \end{pmatrix} \quad \text{and} \quad g(\mathbf{x}) = \begin{pmatrix} g_1(\mathbf{x}) \\ g_2(\mathbf{x}) \\ \vdots \\ g_m(\mathbf{x}) \end{pmatrix}$$

Definition 4

A point $(\mathbf{x}^*; \lambda^*)$ is called a *saddle point* of the Lagrangian function L, if

$$L(\mathbf{x}^*; \lambda) \le L(\mathbf{x}^*; \lambda^*) \le L(\mathbf{x}; \lambda^*)$$
(2.1)

for all $\mathbf{x} \in \mathbb{R}^n, \lambda \in \mathbb{R}^m_+$.

Theorem 8

If $(\mathbf{x}^*; \lambda^*)$ with $\lambda^* \ge \mathbf{0}$ is a saddle point of L, then \mathbf{x}^* is an optimal solution of problem (3).

Question: Does any optimal solution correspond to a saddle point? \longrightarrow additional assumptions required

Slater condition (S):

There exists a $\mathbf{z} \in \mathbb{R}^n$ such that for all nonlinear constraints g_i inequality $g_i(\mathbf{z}) < 0$ is satisfied.

Remarks:

- 1. If all constraints g_1, \ldots, g_m are nonlinear, the Slater condition implies that the set M of feasible solutions contains interior points.
- 2. Condition (S) is one of the *constraint qualifications*.

Remark:

Condition (2.1) is often difficult to check. It is a global condition on the Lagrangian function. If all functions f, g_1, \ldots, g_m are continuously differentiable and convex, then the saddle point condition of Theorem 9 can be replaced by the following equivalent local conditions.

Theorem 10

If condition (S) is satisfied and functions f, g_1, \ldots, g_m are continuously differentiable and convex, then \mathbf{x}^* is an optimal solution of problem (4) if and only if the following Karush-Kuhn-Tucker (KKT)-conditions are satisfied.

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* \cdot \nabla g_i(\mathbf{x}^*) = \mathbf{0}$$
(2.2)

$$\lambda_i^* \cdot g_i(\mathbf{x}^*) = 0 \tag{2.3}$$

$$g_i(\mathbf{x}^*) \le 0 \tag{2.4}$$

$$\lambda_i^* \ge 0 \tag{2.5}$$

$$i = 1, 2, \ldots, m$$

Remark:

Without convexity of the functions f, g_1, \ldots, g_m the KKT-conditions are only a necessary optimality condition, i.e.: If \mathbf{x}^* is a local minimum point, condition (S) is satisfied and functions f, g_1, \ldots, g_m are continuously differentiable, then the KKT-conditions (2.2)-(2.5) are satisfied. Summary:

Example 5

2.4 Non-negativity constraints

s.t.

Consider a problem with additional non-negativity constraints:

$$f(\mathbf{x}) \longrightarrow \min!$$

$$g_i(\mathbf{x}) \le 0, \quad i = 1, 2, \dots, m$$

$$\mathbf{x} \ge \mathbf{0}$$
(5)

EXAMPLE 6

 \longrightarrow To find KKT-conditions for problem (5) introduce a Lagrangian multiplier μ_j for any nonnegativity constraint $x_j \ge 0$ which corresponds to $-x_j \le 0$.

KKT-conditions:

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* \nabla g_i(\mathbf{x}^*) - \mu^* = \mathbf{0}$$
(2.6)

$$\lambda_i^* \cdot g_i(\mathbf{x}^*) = 0, \quad i = 1, 2, \dots, m$$
 (2.7)

$$\mu_j^* \cdot x_j^* = 0, \quad j = 1, 2, \dots, n \tag{2.8}$$

$$g_i(\mathbf{x}^*) \le 0 \tag{2.9}$$

$$\mathbf{x}^* \ge \mathbf{0}, \ \lambda^* \ge \mathbf{0}, \ \mu^* \ge \mathbf{0} \tag{2.10}$$

 \square

 \square

Using (2.6) to (2.10), we can rewrite the KKT-conditions as follows:

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* \nabla g_i(\mathbf{x}^*) \ge \mathbf{0}$$

$$\lambda_i^* \cdot g_i(\mathbf{x}^*) = 0, \quad i = 1, 2, \dots, m$$

$$x_j^* \cdot \left(\frac{\partial f}{\partial x_j}(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* \cdot \frac{\partial g_i}{\partial x_j}(\mathbf{x}^*)\right) = 0, \quad j = 1, 2, \dots, n$$

$$g_i(\mathbf{x}^*) \le 0$$

$$\mathbf{x}^* \ge \mathbf{0}, \ \lambda^* \ge \mathbf{0}$$

i.e., the new Lagrangian multipliers μ_j have been eliminated.

EXAMPLE 7

Some comments on quasi-convex programming

Theorem 11

Consider a problem (5), where function f is continuously differentiable and quasi-convex. Assume that there exist numbers $\lambda_1^*, \lambda_2^*, \ldots, \lambda_m^*$ and a vector \mathbf{x}^* such that

- 1. the KKT-conditions are satisfied;
- 2. $\nabla f(\mathbf{x}^*) \neq \mathbf{0};$

3. $\lambda_i^* \cdot g_i(\mathbf{x})$ is quasi-convex for $i = 1, 2, \dots, m$.

Then \mathbf{x}^* is optimal for problem (5).

Remark:

Theorem 11 holds analogously for problem (3).

Chapter 3

Sensitivity analysis

3.1 Preliminaries

Question: How does a change in the parameters affect the solution of an optimization problem?

 \longrightarrow sensitivity analysis (in optimization)

 \longrightarrow comparative statics (or dynamics) (in economics)

EXAMPLE 1

3.2 Value functions and envelope results

3.2.1 Equality constraints

Consider:

 $f(\mathbf{x};\mathbf{r}) \longrightarrow \min!$

s.t.

 $g_i(\mathbf{x};\mathbf{r})=0, \quad i=1,2,\ldots,m$

where $\mathbf{r} = (r_1, r_2, \dots, r_k)^T$ - vector of parameters

Remark:

In (6), we optimize w.r.t. x with r held constant.

Notations:

 $x_1(\mathbf{r}), x_2(\mathbf{r}), \dots, x_n(\mathbf{r})$ - optimal solution in dependence on \mathbf{r} $f^*(\mathbf{r}) = f(x_1(\mathbf{r}), x_2(\mathbf{r}), \dots, x_n(\mathbf{r}))$ - (minimum) value function (6)

 $\lambda_i(\mathbf{r})$ (i = 1, 2, ..., m) - Lagrangian multipliers in the necessary optimality condition Lagrangian function:

$$\begin{split} L(\mathbf{x}; \lambda; \mathbf{r}) &= f(\mathbf{x}; \mathbf{r}) + \sum_{i=1}^{m} \lambda_i \cdot g_i(\mathbf{x}; \mathbf{r}) \\ &= f(\mathbf{x}(\mathbf{r}); \mathbf{r}) + \sum_{i=1}^{m} \lambda_i(\mathbf{r}) \cdot g_i(\mathbf{x}(\mathbf{r}); \mathbf{r}) = L^*(\mathbf{r}) \end{split}$$

Theorem 1 (Envelope Theorem for equality constraints) For j = 1, 2, ..., k, we have: $\frac{\partial f^*(\mathbf{r})}{\partial t^*} = \left(\frac{\partial L(\mathbf{x}; \lambda; \mathbf{r})}{\partial t^*}\right) = \frac{\partial L^*(\mathbf{r})}{\partial t^*}$

$$\frac{\partial f^*(\mathbf{r})}{\partial r_j} = \left(\frac{\partial L(\mathbf{x};\lambda;\mathbf{r})}{\partial r_j}\right)_{\begin{vmatrix} \mathbf{x}(\mathbf{r}) \\ \lambda(\mathbf{r}) \end{vmatrix}} = \frac{\partial L^*(\mathbf{r})}{\partial r_j}$$

Remark:

Notice that $\frac{\partial L^*}{\partial r_j}$ measures the total effect of a change in r_j on the Lagrangian function, while $\frac{\partial L}{\partial r_j}$ measures the partial effect of a change in r_j on the Lagrangian function with \mathbf{x} and λ being held constant.

EXAMPLE 2

3.2.2 Properties of the value function for inequality constraints

Consider:

$$f(\mathbf{x}, \mathbf{r}) \longrightarrow \min!$$

s.t.

$$g_i(\mathbf{x}, \mathbf{r}) \le 0, \quad i = 1, 2, \dots, m$$

minimum value function:

$$f^*(\mathbf{b}) = \min\{f(\mathbf{x}) \mid g_i(\mathbf{x}) - b_i \le 0, \ i = 1, 2, \dots, m\}$$

 $\mathbf{b} \longrightarrow f^*(\mathbf{b})$

 $\mathbf{x}(\mathbf{b})$ - optimal solution

 $\lambda_i(\mathbf{b})$ - corresponding Lagrangian multipliers

$$\implies \quad \frac{\partial f^*(\mathbf{b})}{\partial \mathbf{b}_i} = -\lambda_i(\mathbf{b}), \quad i = 1, 2, \dots, m$$

Remark:

Function f^* is not necessarily continuously differentiable.

Theorem 2

If function $f(\mathbf{x})$ is concave and functions $g_1(\mathbf{x}), g_2(\mathbf{x}), \ldots, g_m(\mathbf{x})$ are convex, then function $f^*(\mathbf{b})$ is concave.

EXAMPLE 3:

A firm has L units of labour available and produces 3 goods whose values per unit of output are a, b and c, respectively. Producing x, y and z units of the goods requires αx^2 , βy^2 and γz^2 units of labour, respectively. We maximize the value of output and determine the value function.

3.2.3 Mixed constraints

Consider:

$$f(\mathbf{x}, \mathbf{r}) \longrightarrow \min!$$

s.t.

$$\mathbf{x} \in M(\mathbf{r}) = \{ \mathbf{x} \in \mathbb{R}^n \mid g_i(\mathbf{x}, \mathbf{r}) \le 0, \ i = 1, 2, \dots, m'; \ g_i(\mathbf{x}, \mathbf{r}) = 0, \ i = m' + 1, m' + 2, \dots, m \}$$

(minimum) value function:

$$f^*(\mathbf{r}) = \min \{ f(\mathbf{x}, \mathbf{r}) = f(x_1(\mathbf{r}), x_2(\mathbf{r}), \dots, x_n(\mathbf{r})) \mid \mathbf{x} \in M(\mathbf{r}) \}$$

Lagrangian function:

$$\begin{split} L(\mathbf{x}; \lambda; \mathbf{r}) &= f(\mathbf{x}; \mathbf{r}) + \sum_{i=1}^{m} \lambda_i \cdot g_i(\mathbf{x}; \mathbf{r}) \\ &= f(\mathbf{x}(\mathbf{r}); \mathbf{r}) + \sum_{i=1}^{m} \lambda_i(\mathbf{r}) \cdot g_i(\mathbf{x}(\mathbf{r}); \mathbf{r}) = L^*(\mathbf{r}) \end{split}$$

Theorem 3 (Envelope Theorem for mixed constraints)

For
$$j = 1, 2, ..., k$$
, we have:

$$\frac{\partial f^*(\mathbf{r})}{\partial r_j} = \left(\frac{\partial L(\mathbf{x}; \lambda; \mathbf{r})}{\partial r_j}\right)_{\begin{vmatrix} \mathbf{x}(\mathbf{r}) \\ \lambda(\mathbf{r}) \end{vmatrix}} = \frac{\partial L^*(\mathbf{r})}{\partial r_j}$$

EXAMPLE 4

 \square

3.3 Some further microeconomic applications

3.3.1 Cost minimization problem

Consider:

$$C(\mathbf{w}, \mathbf{x}) = \mathbf{w}^T \cdot \mathbf{x}(\mathbf{w}, y) \longrightarrow \min!$$

s.t.

$$y - f(\mathbf{x}) \le 0$$
$$\mathbf{x} \ge \mathbf{0}, \ y \ge 0$$

- Assume that $\mathbf{w} > \mathbf{0}$ and that the partial derivatives of C are > 0.
- Let $\mathbf{x}(\mathbf{w}, y)$ be the optimal input vector and $\lambda(\mathbf{w}, y)$ be the corresponding Lagrangian multiplier.

$$L(\mathbf{x}; \lambda; \mathbf{w}, y) = \mathbf{w}^T \cdot \mathbf{x} + \lambda \cdot (y - f(\mathbf{x}))$$
$$\implies \quad \frac{\partial C}{\partial y} = \frac{\partial L}{\partial y} = \lambda = \lambda(\mathbf{w}, y)$$
(3.1)

i.e., λ signifies marginal costs

Shepard(-McKenzie) Lemma:

$$\frac{\partial C}{\partial w_i} = x_i = x_i(\mathbf{w}, y), \quad i = 1, 2, \dots, n$$
(3.2)

Remark:

Assume that C is twice continuously differentiable. Then the Hessian H_C is symmetric.

Differentiating (3.1) w.r.t. w_i and (3.2) w.r.t. y, we obtain

Samuelson's reciprocity relation:

$$\implies \qquad \frac{\partial x_j}{\partial w_i} = \frac{\partial x_i}{\partial w_j} \qquad \text{and} \qquad \frac{\partial x_i}{\partial y} = \frac{\partial \lambda}{\partial w_i}, \quad \text{ for all } i \text{ and } j$$

Interpretation of the first result:

A change in the *j*-th factor input w.r.t. a change in the *i*-th factor price (output being constant) must be equal to the change in the *i*-th factor input w.r.t. a change in the *j*-th factor price.

3.3.2 Profit maximization problem of a competitive firm

Consider:

$$\pi(\mathbf{x}, \mathbf{y}) = \mathbf{p}^T \cdot \mathbf{y} - \mathbf{w}^T \cdot \mathbf{x} \longrightarrow \max! \qquad (-\pi \longrightarrow \min!)$$
s.t.
$$g(\mathbf{x}, \mathbf{y}) = \mathbf{y} - f(\mathbf{x}) \le 0$$
$$\mathbf{x} \ge \mathbf{0}, \ \mathbf{y} \ge \mathbf{0},$$

where:

$$\begin{split} \mathbf{p} &> \mathbf{0} \text{ - output price vector} \\ \mathbf{w} &> \mathbf{0} \text{ - input price vector} \\ \mathbf{y} &\in \mathbb{R}^m_+ \text{ - produced vector of output} \\ \mathbf{x} &\in \mathbb{R}^n_+ \text{ - used input vector} \\ f(\mathbf{x}) \text{ - production function} \end{split}$$

Let:

 $\mathbf{x}(\mathbf{p}, \mathbf{w}), \mathbf{y}(\mathbf{p}, \mathbf{w})$ be the optimal solutions of the problem and $\pi(\mathbf{p}, \mathbf{w}) = \mathbf{p}^T \cdot \mathbf{y}(\mathbf{p}, \mathbf{w}) - \mathbf{w}^T \cdot \mathbf{x}(\mathbf{p}, \mathbf{w})$ be the (maximum) profit function.

$$L(\mathbf{x}, \mathbf{y}; \lambda; \mathbf{p}, \mathbf{w}) = -\mathbf{p}^T \mathbf{y} + \mathbf{w}^T \mathbf{x} + \lambda \cdot (\mathbf{y} - f(\mathbf{x}))$$

The Envelope theorem implies

Hotelling's lemma:

1.
$$\frac{\partial(-\pi)}{\partial p_i} = \frac{\partial L}{\partial p_i} = -y_i$$
 i.e.: $\frac{\partial \pi}{\partial p_i} = y_i > 0, \ i = 1, 2, \dots, m$ (3.3)

2.
$$\frac{\partial(-\pi)}{\partial w_i} = \frac{\partial L}{\partial w_i} = x_i$$
 i.e.: $\frac{\partial \pi}{\partial w_i} = -x_i < 0, \ i = 1, 2, \dots, m$ (3.4)

Interpretation:

- 1. An increase in the price of any output increases the maximum profit.
- 2. An increase in the price of any input lowers the maximum profit.

Remark:

Let $\pi(\mathbf{p}, \mathbf{w})$ be twice continuously differentiable. Using (3.3) and (3.4), we obtain Hotelling's symmetry relation:

$$\frac{\partial y_j}{\partial p_i} = \frac{\partial y_i}{\partial p_j}, \qquad \frac{\partial x_j}{\partial w_i} = \frac{\partial x_i}{\partial w_j}, \qquad \frac{\partial x_j}{\partial p_i} = -\frac{\partial y_i}{\partial w_j}, \qquad \text{for all } i \text{ and } j.$$

Chapter 4

Applications to consumer choice and general equilibrium theory

4.1 Some aspects of consumer choice theory

Consumer choice problem

Let:

 $\mathbf{x} \in \mathbb{R}^n_+$ - commodity bundle of consumption $U(\mathbf{x})$ - utility function $\mathbf{p} \in \mathbb{R}^n_+$ - price vector

 ${\cal I}$ - income

Then:

$$U(\mathbf{x}) \longrightarrow \max! \qquad (-U(\mathbf{x}) \longrightarrow \min!)$$

s.t.

$$\mathbf{p}^T \cdot \mathbf{x} \le I \qquad (g(\mathbf{x}) = \mathbf{p}^T \cdot \mathbf{x} - I \le 0)$$
$$\mathbf{x} \ge \mathbf{0}$$

assumption: U quasi-concave $(\implies -U$ quasi-convex)

$$L(\mathbf{x}; \lambda) = -U(\mathbf{x}) + \lambda(\mathbf{p}^T \cdot \mathbf{x} - I)$$

KKT-conditions:

$$-U_{x_i}(\mathbf{x}) + \lambda p_i \ge 0 \tag{4.1}$$

$$\lambda(\mathbf{p}^T \cdot \mathbf{x} - I) = 0 \tag{4.2}$$

$$x_i(-U_{x_i}(\mathbf{x}) + \lambda p_i) = 0$$
$$\mathbf{p}^T \cdot \mathbf{x} - I \le 0$$
$$\mathbf{x} \ge \mathbf{0}, \quad \lambda \ge 0$$

Suppose that $\forall U(\mathbf{x}^*) \neq 0$ and that \mathbf{x}^* is feasible. $\stackrel{\text{Thm. 11, Ch.2}}{\Longrightarrow} \mathbf{x}^* \text{ solves the problem and satisfies the KKT-conditions.}$

If additionally $U_{x_i}(\mathbf{x}^*) \ge 0$ is assumed for $i = 1, 2, \ldots, n$ $\forall U \underbrace{(\mathbf{x}^*)}_{ \longrightarrow} \neq \mathbf{0}$ There exists a j such that $U_{x_j}(\mathbf{x}^*) > 0$ (4.1) $\lambda > 0$ (4.2) $\mathbf{p}^T \cdot \mathbf{x} = I$, i.e., all income is spent.

Consider now the following version of the problem:

$$egin{aligned} U(\mathbf{x}) & \longrightarrow \max! \ & \mathbf{p}^T \cdot \mathbf{x} = I \ & \mathbf{x} \geq \mathbf{0} \end{aligned}$$

Let:

 $\mathbf{r}^T = (\mathbf{p}, I)$ - vector of parameters $\mathbf{x}^* = \mathbf{x}(\mathbf{p}, I)$ - optimal solution

s.t.

 $\lambda(\mathbf{p},I)$ - corresponding Lagrangian multiplier

 \longrightarrow maximum value U depends on **p** and I:

$$U^* = U(\mathbf{x}(\mathbf{p}, I))$$
 – indirect utility function

Ι

We determine

$$\frac{\partial U^*}{\partial I}$$
 and $\frac{\partial U^*}{\partial p_i}$

$$L(\mathbf{x}; \lambda; \mathbf{p}, I) = -U(\mathbf{x}; \mathbf{p}, I) + \lambda(I - \mathbf{p}^T \mathbf{x})$$

$$\frac{\partial L}{\partial I}\Big|_{\begin{pmatrix}\mathbf{x}(\mathbf{p},I)\\\lambda(\mathbf{p},I)\end{pmatrix}} = \lambda = \lambda(\mathbf{p},I).$$

$$\stackrel{\text{Thm. 1,Ch. 3}}{\Longrightarrow} \qquad \frac{\partial (-U^*)}{\partial I} = \lambda \qquad \Longrightarrow \qquad \frac{\partial U^*}{\partial I} = -\lambda \tag{4.3}$$

$$\stackrel{\text{Thm. 1,Ch. 3}}{\Longrightarrow} \qquad \frac{\partial (-U^*)}{\partial p_i} = \frac{\partial L}{\partial p_i \Big| \binom{\mathbf{x}(\mathbf{p},I)}{\lambda(\mathbf{p},I)}} = -\lambda x_i^*, \quad i = 1, 2, \dots, n$$

$$\stackrel{(4.3),(4.4)}{\Longrightarrow} \qquad \underbrace{\frac{\partial (-U^*)}{\partial p_i} + x_i^* \frac{\partial (-U^*)}{\partial I} = 0}_{\text{ROY's identity}}$$

$$(4.4)$$

Pareto-efficient allocation of commodities

Let:

 $U^{i}(\mathbf{x}) = U^{i}(x_{1}, x_{2}, \dots, x_{l})$ - utility function of consumer $i = 1, 2, \dots, k$ in dependence on the amounts x_{j} of commodity $j, j = 1, 2, \dots, l$

Definition 1

An allocation $\mathbf{x} = (x_1, x_2, \dots, x_l)$ is said to be *pareto-efficient* (or pareto-optimal), if there does not exist an allocation $\mathbf{x}^* = (x_1^*, x_2^*, \dots, x_l^*)$ such that $U^i(\mathbf{x}^*) \ge U^i(\mathbf{x})$ for $i = 1, 2, \dots, k$ and $U^i(\mathbf{x}^*) > U^i(\mathbf{x})$ for at least one $i \in \{1, 2, \dots, k\}$. If such an allocation \mathbf{x}^* would exist, \mathbf{x}^* is said to be *pareto-superior* to \mathbf{x} .

Preference relation \succeq : $\mathbf{x}^* \succeq \mathbf{x}$ (\mathbf{x}^* is preferred to \mathbf{x} or they are indifferent)

The Edgeworth box

- efficient allocation of commodities among customers (or of resources in production)
- two customers (k = 2) and two commodities (l = 2)
- graph indifference (level) curves $U^i = \text{const.}$ into a coordinate system

ILLUSTRATION: Edgeworth box

Characterization of pareto-efficient allocations

They correspond to those points, where the slopes of the indifference curves of both customers coincide.

Definition 2

The *contract curve* is defined as the set of all points which represent pareto-efficient allocations of the commodities.

Remark:

The contract curve describes all equilibrium allocations.

ILLUSTRATION: Contract curve

similarly: market price system

Here prices adjust, so that supply equals demand in all markets.

4.2 Fundamental theorems of welfare economics

4.2.1 Notations and preliminaries

Consider an exchange economy with $n \pmod{p}$ markets.

 $\mathbf{p} = (p_1, p_2, \dots, p_n), \ p_i > 0, \ i = 1, 2, \dots, n \text{ - price vector}$ k consumers (households) $i \in I = \{1, 2, \dots, k\}$ l producers $j \in J = \{1, 2, \dots, l\}$

Let:

- $\mathbf{x}^i = (x_1^i, x_2^i, \dots, x_n^i) \in \mathbb{R}^n_+$ consumption bundle and $U^i = U^i(x^i) \in \mathbb{R}$ utility function of consumer $i \in I$.
- $\mathbf{y}^j = (y_1^j, y_2^j, \dots, y_n^j) \in \mathbb{R}^n_+$ technology of firm $j \in J$.
- $\mathbf{e} = (e_1, e_2, \dots, e_n) \in \mathbb{R}^n_+$ (initial) endowment and $\mathbf{e}^i = (e_1^i, e_2^i, \dots, e_n^i) \in \mathbb{R}^n_+$ - endowment of consumer $i \in I$.

Pure exchange economy:

$$E = \left[(\mathbf{x}^i, U^i)_{i \in I}, \ (\mathbf{y}^j)_{j \in J}, \ \mathbf{e} \right]$$

Definition 3 An allocation $[(\mathbf{x}^i)_{i \in I}, (\mathbf{y}^j)_{j \in J}]$ is *feasible*, if

$$\sum_{i=1}^k \mathbf{x}^i \le \mathbf{e} + \sum_{j=1}^l \mathbf{y}^j.$$

Interpretation: consumption \leq endowment + production

Competitive economy with private ownership

Each consumer (household) $i \in I$ is characterized by

- an endowment $\mathbf{e}^i = (e_1^i, e_2^i, \dots, e_n^i) \in \mathbb{R}^n_+$ and
- the ownership share α_j^i of firm $j \ (j \in J)$: $\alpha^i = (\alpha_1^i, \dots, \alpha_l^1)$.

Competitive equilibrium for E^*

Definition 4

For the economy E^* with private ownership, a *competitive equilibrium* is defined as a triplet

$$[(\mathbf{x}^{i*})_{i\in I}, (\mathbf{y}^{j*})_{j\in J}, \mathbf{p}^*]$$

with the following properties:

- 1. The allocation $\left[(\mathbf{x}^{i*})_{i \in I}, (\mathbf{y}^{j*})_{j \in J} \right]$ is feasible in E^* ;
- 2. Given the equilibrium prices \mathbf{p}^* , each firm maximizes its profit, i.e., for each $j \in J$, we have

$$\mathbf{p}^{*T}\mathbf{y}^{j} \le \mathbf{p}^{*T}\mathbf{y}^{j*} \qquad \text{for all } \mathbf{y}^{j};$$

3. Given the equilibrium prices **p**^{*} and the budget, each consumer maximizes the utility, i.e., let

$$X = \{\mathbf{x}^i \mid \mathbf{p}^{*T} \mathbf{x}^i \le \mathbf{p}^{*T} \mathbf{e}^i + \sum_{j=1}^l \alpha_j^i \mathbf{p}^{*T} \mathbf{y}^{j*}\}$$

Then: $\mathbf{x}^{i^*} \in X$ and $U^i(\mathbf{x}^{i^*}) \geq U^i(\mathbf{x}^i)$ for all $\mathbf{x}^i \in X$.

Remark:

The above equilibrium is denoted as Walrasian equilibrium.

4.2.2 First fundamental theorem of welfare economics

Theorem 1

For the economy E^* with strictly monotonic utility functions $U^i: \mathbb{R}^n \longrightarrow \mathbb{R}, i \in I$, let

$$\left[(\mathbf{x}^{i*})_{i\in I}, \; (\mathbf{y}^{j*})_{j\in J}, \; \mathbf{p}^*
ight]$$

be a Walrasian equilibrium.

Then the Walrasian equilibrium allocation

$$[(\mathbf{x}^{i*})_{i\in I}, (\mathbf{y}^{j*})_{j\in J}]$$

is pareto-efficient for E^* .

Interpretation: Theorem 1 states that any Walrasian equilibrium leads to a pareto-efficient allocation of resources.

Remark:

Theorem 1 does not require convexity of tastes (preferences) and technologies.

4.2.3 Second fundamental theorem of welfare economics

 \rightarrow Consider a more abstract economy with transfers (e.g. positive/negative taxes).

Let:

 $w = (w^1, w^2, \dots, w^k) \in \mathbb{R}^k$ - wealth vector

Definition 5

For a competitive economy E the triplet

$$[(\mathbf{x}^{i*})_{i\in I}, (\mathbf{y}^{j*})_{j\in J}, \mathbf{p}^*]$$

is a quasi-equilibrium with transfers if and only if there exists a vector $w \in \mathbb{R}^k$ with

$$\sum_{i=1}^{k} w^{i} = \mathbf{p}^{*T} \cdot \mathbf{e} + \sum \mathbf{p}^{*T} \cdot \mathbf{y}^{j^{3}}$$

such that

- 1. The allocation $[(\mathbf{x}^{i*})_{i \in I}, (\mathbf{y}^{j*})_{j \in J}]$ is feasible in E;
- 2. Given the equilibrium prices \mathbf{p}^* , each firm maximizes its profit, i.e., for each $j \in J$, we have

$$\mathbf{p}^{*T}\mathbf{y}^{j} \le \mathbf{p}^{*T}\mathbf{y}^{j*} \qquad \text{for all } \mathbf{y}^{j};$$

3. Given the equilibrium prices \mathbf{p}^* and the budget, each consumer maximizes the utility, i.e., let

$$X = \{ \mathbf{x}^i \mid \mathbf{p}^{*T} \mathbf{x}^i \le w^i \}$$

Then: $\mathbf{x}^{i^*} \in X$ and $U^i(\mathbf{x}^{i^*}) \ge U^i(\mathbf{x}^i)$ for all $\mathbf{x}^i \in X$.

Theorem 2

For the economy E with strictly monotonic utility functions $U^i : \mathbb{R}^n \longrightarrow \mathbb{R}, i \in I$, let the preferences and \mathbf{y}^j be convex.

Then:

To any pareto-efficient allocation

$$\left[(\mathbf{x}^{i*})_{i\in I}, \ (\mathbf{y}^{j*})_{j\in J} \right],$$

there exists a price vector $\mathbf{p}^* > 0$ such that

$$\left[(\mathbf{x}^{i*})_{i \in I}, \ (\mathbf{y}^{j*})_{j \in J}, \ \mathbf{p}^* \right]$$

is a quasi-equilibrium with transfers.

Interpretation: Out of all possible pareto-efficient allocations, one can achieve any particular one by enacting a lump-sum wealth redistribution and then letting the market take over.

Shortcomings:

Transfers have to be lump-sum, government needs to have perfect information on tastes of customers and possibilities of firms, and preferences and technologies have to be convex.

Chapter 5

Differential equations

5.1 Preliminaries

Definition 1

A relationship

 $F(x, y, y', y'', \dots, y^{(n)}) = 0$

between the independent variable x, a function y(x) and its derivatives is called an *ordinary* differential equation. The order of the differential equation is determined by the highest order of the derivatives appearing in the differential equation.

Explicit representation:

$$y^{(n)} = f(x, y, y', y'', \dots, y^{(n-1)})$$

Example 1

Definition 2

A function y(x) for which the relationship $F(x, y, y', y'', \dots, y^{(n)}) = 0$ holds for all $x \in D_y$ is called a *solution* of the differential equation.

The set

$$S = \{y(x) \mid F(x, y, y', y'', \dots, y^{(n)}) = 0 \text{ for all } x \in D_y\}$$

is called the set of solutions or the general solution of the differential equation.

in economics often:

time t is the independent variable, solution x(t) with

$$\dot{x} = \frac{dx}{dt}, \quad \ddot{x} = \frac{d^2x}{dt^2}, \quad \text{etc.}$$

5.2 Differential equations of the first order

implicit form:

explicit form:

 $\dot{x} = f(t, x)$

 $F(t, x, \dot{x}) = 0$

Graphical solution:

given: $\dot{x} = f(t, x)$

At any point (t_0, x_0) the value $\dot{x} = f(t_0, x_0)$ is given, which corresponds to the slope of the tangent at point (t_0, x_0) .

 \longrightarrow graph the direction field (or slope field)

Example 2

5.2.1 Separable equations

$$\dot{x} = f(t, x) = g(t) \cdot h(x)$$

$$\implies \int \frac{dx}{h(x)} = \int g(t) \cdot dt$$

$$\implies H(x) = G(t) + C$$

 \longrightarrow solve for x (if possible)

 $x(t_0) = x_0$ given:

 $\longrightarrow C$ is assigned a particular value

 $\implies x_p$ - particular solution

Example 3

Example 4

5.2.2 First-order linear differential equations

 $\dot{x} + a(t) \cdot x = q(t) \qquad q(t)$ - forcing term

⊜

(a) $\underline{a(t)} = a$ and q(t) = q

 \longrightarrow multiply both sides by the integrating factor $e^{at} > 0$

$$\implies \dot{x}e^{at} + axe^{at} = qe^{at}$$
$$\implies \frac{d}{dt}(x \cdot e^{at}) = qe^{at}$$
$$\implies x \cdot e^{at} = \int qe^{at}dt = \frac{q}{a}e^{at} + C$$

i.e.

$$\dot{x} + ax = q \quad \iff \quad x = Ce^{-at} + \frac{q}{a} \quad (C \in \mathbb{R})$$
 (5.1)

$$C = 0 \implies x(t) = \frac{q}{a} = \text{constant}$$

 $x = \frac{q}{a}$ - equilibrium or stationary state

Remark:

The equilibrium state can be obtained by letting $\dot{x} = 0$ and solving the remaining equation for x. If a > 0, then $x = Ce^{-at} + \frac{q}{a}$ converges to $\frac{q}{a}$ as $t \to \infty$, and the equation is said to be stable (every solution converges to an equilibrium as $t \to \infty$).

EXAMPLE 5

(b) a(t) = a and q(t)

 \longrightarrow multiply both sides by the integrating factor $e^{at} > 0$

$$\implies \dot{x}e^{at} + axe^{at} = q(t) \cdot e^{at}$$
$$\implies \frac{d}{dt}(x \cdot e^{at}) = q(t) \cdot e^{at}$$
$$\implies x \cdot e^{at} = \int q(t) \cdot e^{at} dt + C$$

i.e.

$$\dot{x} + ax = q(t) \quad \iff \quad x = Ce^{-at} + e^{-at} \int e^{at} q(t) dt$$
 (5.2)

(c) <u>General case</u>

 \longrightarrow multiply both sides by $e^{A(t)}$

$$\implies \qquad \dot{x}e^{A(t)} + a(t)xe^{A(t)} = q(t) \cdot e^{A(t)}$$

 \longrightarrow choose A(t) such that $A(t) = \int a(t)dt$ because

$$\frac{d}{dt}(x \cdot e^{A(t)}) = \dot{x} \cdot e^{A(t)} + x \cdot \underbrace{\dot{A}(t)}_{a(t)} \cdot e^{A(t)}$$
$$\implies \qquad x \cdot e^{A(t)} = \int q(t) \cdot e^{A(t)} dt + C \qquad | \cdot e^{-A(t)}$$

$$\implies \qquad x = Ce^{-A(t)} + e^{-A(t)} \int q(t) \cdot e^{A(t)} dt, \qquad \text{where } A(t) = \int a(t) dt$$

Example 6

(d) Stability and phase diagrams

Consider an autonomous (i.e. time-independent) equation

$$\dot{x} = F(x) \tag{5.3}$$

and a phase diagram:

<u>Illustration</u>: Phase diagram

Definition 3

A point a represents an equilibrium or stationary state for equation (5.3) if F(a) = 0.

 \implies x(t) = a is a solution if $x(t_0) = x_0$.

 \implies x(t) converges to x = a for any starting point (t_0, x_0) .

<u>Illustration</u>: Stability

5.3 Second-order linear differential equations and systems in the plane

$$\ddot{x} + a(t)\dot{x} + b(t)x \equiv q(t) \tag{5.4}$$

Homogeneous differential equation:

$$q(t) \equiv 0 \qquad \Longrightarrow \qquad \ddot{x} + a(t)\dot{x} + b(t)x = 0 \tag{5.5}$$

 \square

Theorem 1

The homogeneous differential equation (5.5) has the general solution

$$x_H(t) = C_1 x_1(t) + C_2 x_2(t), \qquad C_1, C_2 \in \mathbb{R}$$

where $x_1(t)$, $x_2(t)$ are two solutions that are not proportional (i.e., linearly independent). The non-homogeneous equation (5.4) has the general solution

$$x(t) = x_H(t) + x_N(t) = C_1 x_1(t) + C_2 x_2(t) + x_N(t),$$

where $x_N(t)$ is any particular solution of the non-homogeneous equation.

(a) Constant coefficients a(t) = a and b(t) = b

$$\ddot{x} + a\dot{x} + bx = q(t)$$

Homogeneous equation:

$$\ddot{x} + a\dot{x} + bx = 0$$

 \longrightarrow use the setting $x(t) = e^{\lambda t} \quad (\lambda \in \mathbb{R})$

$$\implies \qquad \dot{x}(t) = \lambda e^{\lambda t}, \qquad \ddot{x}(t) = \lambda^2 e^{\lambda t}$$

 \implies Characteristic equation:

$$\lambda^2 + a\lambda + b = 0 \tag{5.6}$$

3 cases:

1. (5.6) has two distinct real roots λ_1 , λ_2

$$\implies \quad x_H(t) = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t}$$

2. (5.6) has a real double root $\lambda_1 = \lambda_2$

$$\implies x_H(t) = C_1 e^{\lambda_1 t} + C_2 t e^{\lambda_1 t}$$

3. (5.6) has two complex roots $\lambda_1 = \alpha + \beta \cdot i$ and $\lambda_2 = \alpha - \beta \cdot i$

$$x_H(t) = e^{\alpha t} (C_1 \cos \beta t + C_2 \sin \beta t)$$

Non-homogeneous equation:

$$\ddot{x} + a\dot{x} + bx = q(t)$$

Discussion of special forcing terms:

Forcing term $q(t)$	Setting $x_N(t)$
1. $q(t) = p \cdot e^{st}$	 (a) x_N(t) = A ⋅ est - if s is not a root of the characteristic equation (b) x_N(t) = A ⋅ t^kest - if s is a root of multiplicity k (k ≤ 2) of the characteristic equation
2. $q(t) = p_n t^n + p_{n-1} t^{n-1} + \dots + p_1 t + p_0$	 (a) x_N(t) = A_ntⁿ + A_{n-1}tⁿ⁻¹ + · · · + A₁t + A₀ - if b ≠ 0 in the homogeneous equation (b) x_N(t) = t^k · (A_ntⁿ + A_{n-1}tⁿ⁻¹ + · · · + A₁t + A₀) - with k = 1 if a ≠ 0, b = 0 and k = 2 if a = b = 0
3. $q(t) = p \cos st + r \sin st$	 (a) x_N(t) = A cos st + B sin st - if si is not a root of the characteristic equation (b) x_N(t) = t^k ⋅ (A cos st + B sin st) - if si is a root of multiplicity k of the characteristic equation

 \rightarrow Use the above setting and insert it and the derivatives into the non-homogeneous equation. Determine the coefficients A, B and A_i , respectively.

Example 7

(b) Stability

Consider equation (5.4)

Definition 4

Equation (5.4) is called *globally asymptotically stable* if every solution $x_H(t) = C_1 x_1(t) + C_2 x_2(t)$ of the associated homogeneous equation tends to 0 as $t \to \infty$ for all values of C_1 and C_2 .

Remark:

 $x_H(t) \to 0 \text{ as } t \to \infty \quad \Longleftrightarrow \quad x_1(t) \to 0 \text{ and } x_2(t) \to 0 \text{ as } t \to \infty$

EXAMPLE 8

Theorem 2

Equation $\ddot{x} + a\dot{x} + bx = q(t)$ is globally asymptotically stable if and only if a > 0 and b > 0.

(c) Systems of equations in the plane

Consider:

$$\begin{aligned} \dot{x} &= f(t, x, y) \\ \dot{y} &= g(t, x, y) \end{aligned} \tag{7}$$

Solution: pair (x(t), y(t)) satisfying (7)

Initial value problem:

The initial conditions $x(t_0) = x_0$ and $y(t_0) = y_0$ are given.

A solution method:

Reduce the given system (7) to a second-order differential equation in only one unknown.

1. Use the first equation in (7) to express y as a function of t, x, \dot{x} .

$$y = h(t, x, \dot{x})$$

- 2. Differentiate y w.r.t. t and substitute the terms for y and \dot{y} into the second equation in (7).
- 3. Solve the resulting second-order differential equation to determine x(t).
- 4. Determine

$$y(t) = h(t, x(t), \dot{x}(t))$$

Example 9

(d) Systems with constant coefficients

Consider:

$$\dot{x} = a_{11}x + a_{12}y + q_1(t)$$

 $\dot{y} = a_{21}x + a_{22}y + q_2(t)$

Solution of the homogeneous system:

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

we set

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} e^{\lambda t}$$
$$\implies \quad \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \lambda \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} e^{\lambda t}$$

 \implies we obtain the eigenvalue problem:

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \lambda \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$$

or equivalently

$$\begin{pmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

 \longrightarrow Determine the eigenvalues λ_1 , λ_2 and the corresponding eigenvectors

$$\mathbf{z}^1 = \begin{pmatrix} z_1^1 \\ z_2^1 \end{pmatrix}$$
 and $\mathbf{z}^2 = \begin{pmatrix} z_1^2 \\ z_2^2 \end{pmatrix}$.

 \longrightarrow Consider now the cases in a similar way as for a second-order differential equation, e.g. $\lambda_1 \in \mathbb{R}, \ \lambda_2 \in \mathbb{R} \text{ and } \lambda_1 \neq \lambda_2.$

 \implies General solution:

$$\begin{pmatrix} x_H(t) \\ y_H(t) \end{pmatrix} = C_1 \begin{pmatrix} z_1^1 \\ z_2^1 \end{pmatrix} e^{\lambda_1 t} + C_2 \begin{pmatrix} z_1^2 \\ z_2^2 \end{pmatrix} e^{\lambda_2 t}$$

Solution of the non-homogeneous system:

A particular solution of the non-homogeneous system can be determined in a similar way as for a second-order differential equation. Note that all occurring specific functions $q_1(t)$ and $q_2(t)$ have to be considered in each function $x_N(t)$ and $y_N(t)$.

EXAMPLE 10

(e) Equilibrium points for linear systems with constant coefficients and forcing term

Consider:

$$\dot{x} = a_{11}x + a_{12}y + q_1$$

 $\dot{y} = a_{21}x + a_{22}y + q_2$

For finding an equilibrium point (state), we set $\dot{x} = \dot{y} = 0$ and obtain

$$a_{11}x + a_{12}y = -q_1$$
$$a_{21}x + a_{22}y = -q_2$$

 $\stackrel{\text{Cramer's rule}}{\Longrightarrow} \text{ equilibrium point:}$

$$x^* = \frac{\begin{vmatrix} -q_1 & a_{12} \\ -q_2 & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}} = \frac{a_{12}q_2 - a_{22}q_1}{|A|}$$
$$y^* = \frac{\begin{vmatrix} a_{11} & -q_1 \\ a_{21} & -q_2 \end{vmatrix}}{\begin{vmatrix} a_{11} & -q_1 \\ a_{21} & -q_2 \end{vmatrix}} = \frac{a_{21}q_1 - a_{11}q_2}{|A|}$$

Example 11

Theorem 3

Suppose that $|A| \neq 0$. Then the equilibrium point (x^*, y^*) for the linear system

$$\dot{x} = a_{11}x + a_{12}y + q_1$$

$$\dot{y} = a_{21}x + a_{22}y + q_2$$

is globally asymptotically stable if and only if

$$tr(A) = a_{11} + a_{22} < 0$$
 and $|A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} > 0,$

where tr(A) is the trace of A (or equivalently, if and only if both eigenvalues of A have negative real parts).

Example 12

_			
_			
_			
	0		►.

(f) Phase plane analysis

Consider an autonomous system:

$$\dot{x} = f(x, y)$$

 $\dot{y} = g(x, y)$

 \longrightarrow Rates of change of x(t) and y(t) are given by f(x(t), y(t)) and g(x(t), y(t)), e.g.

if f(x(t), y(t)) > 0 and g(x(t), y(t)) < 0 at a point P = (x(t), y(t)), then (as t increases) the system will move from point P down and to the right.

 \implies $(\dot{x}(t), \dot{y}(t))$ gives direction of motion, length of $(\dot{x}(t), \dot{y}(t))$ gives speed of motion

<u>Illustration</u>: Motion of a system

Graph a sample of these vectors. \implies phase diagram

Equilibrium point: point (a, b) with f(a, b) = g(a, b) = 0

 \longrightarrow equilibrium points are the points of the intersection of the nullclines f(x,y) = 0 and g(x,y) = 0

 \longrightarrow Graph the nullclines:

- At point P with f(x, y) = 0, $\dot{x} = 0$ and the velocity vector is vertical, it points up if $\dot{y} > 0$ and down if $\dot{y} < 0$.
- At point Q with g(x, y) = 0, $\dot{y} = 0$ and the velocity vector is horizontal, it points to the right if $\dot{x} > 0$ and to the left if $\dot{x} < 0$.

 \longrightarrow Continue and graph further arrows.

EXAMPLE 13

Chapter 6

Optimal control theory

6.1 Calculus of variations

Consider:

$$\int_{t_0}^{t_1} F(t, x, \dot{x}) dt \longrightarrow \max!$$

$$x(t_0) = x_0, \quad x(t_1) = x_1$$
(8)

Illustration

s.t.

necessary optimality condition:

Function x(t) can only solve problem (8) if x(t) satisfies the following differential equation.

 \longrightarrow Euler equation:

$$\frac{\partial F}{\partial x} - \frac{d}{dt} \left(\frac{\partial F}{\partial \dot{x}} \right) = 0 \tag{6.1}$$

we have

$$\frac{d}{dt}\left(\frac{\partial F(t,x,\dot{x})}{\partial \dot{x}}\right) = \frac{\partial^2 F}{\partial t \partial \dot{x}} + \frac{\partial^2 F}{\partial x \partial \dot{x}} \cdot \dot{x} + \frac{\partial^2 F}{\partial \dot{x} \partial \dot{x}} \cdot \ddot{x}$$

 \implies (6.1) can be rewritten as

$$\frac{\partial^2 F}{\partial \dot{x} \partial \dot{x}} \cdot \ddot{x} + \frac{\partial^2 F}{\partial x \partial \dot{x}} \cdot \dot{x} + \frac{\partial^2 F}{\partial t \partial \dot{x}} - \frac{\partial F}{\partial x} = 0$$

 \square

Theorem 1

If $F(t, x, \dot{x})$ is concave in (x, \dot{x}) , a feasible $x^*(t)$ that satisfies the Euler equation solves the maximization problem (8).

EXAMPLE 1

More general terminal conditions

Consider:

$$\int_{t_0}^{t_1} F(t, x, \dot{x}) dt \longrightarrow \max!$$

$$x(t_0) = x_0$$
(a) $x(t_1)$ free or (b) $x(t_1) \ge x_1$
(9)

ILLUSTRATION

s.t.

 \implies transversality condition needed to determine the second constant

Theorem 2 (Transversality conditions)

If $x^*(t)$ solves problem (9) with either (a) or (b) as the terminal condition, then $x^*(t)$ must satisfy the Euler equation.

With the terminal condition (a), the transversality condition is

$$\left(\frac{\partial F^*}{\partial \dot{x}}\right)_{t=t_1} = 0. \tag{6.2}$$

With the terminal condition (b), the transversality condition is

$$\left(\frac{\partial F^*}{\partial \dot{x}}\right)_{t=t_1} \le 0 \qquad \left[\left(\frac{\partial F^*}{\partial \dot{x}}\right)_{t=t_1} = 0, \text{ if } x^*(t_1) > x_1\right] \tag{6.3}$$

If $F(t, x, \dot{x})$ is concave in (x, \dot{x}) , then a feasible $x^*(t)$ that satisfies both the Euler equation and the appropriate transversality condition will solve problem (9).

EXAMPLE 2

6.2 Control theory

6.2.1 Basic problem

Let:

x(t) - characterization of the state of a system u(t) - control function; $t \geq t_0$ $J = \int_{t_0}^{t_1} f(t, x(t), u(t)) dt \text{ - objective function}$

Given:

$$\dot{x}(t) = g(t, x(t), u(t)),$$

 $x(t_0) = x_0$
(10)

Problem:

Among all pairs (x(t), u(t)) that obey (10) find one such that

$$J = \int_{t_0}^{t_1} f(t, x(t), u(t)) dt \quad \longrightarrow \max!$$

Example 3

Optimality conditions:

Consider:

$$J = \int_{t_0}^{t_1} f(t, x(t), u(t))dt \quad \longrightarrow \max!$$
(6.4)

s.t.

$$\dot{x}(t) = g(t, x(t), u(t)), \quad x(t_0) = x_0, \quad x(t_1) \text{ free}$$
(6.5)

 \longrightarrow Introduce the Hamiltonian function

$$H(t, x, u, p) = f(t, x, u) + p \cdot g(t, x, u)$$

p = p(t) - costate variable (adjoint function)

Suppose that $(x^*(t), u^*(t))$ is an optimal pair for problem (6.4) - (6.5). Then there exists a continuous function p(t) such that

1. $u = u^*(t)$ maximizes

$$H(t, x^*(t), u, p(t)) \quad \text{for} \quad u \in (-\infty, \infty)$$
(6.6)

2.

$$\dot{p}(t) = -H_x(t, x^*(t), u^*(t), p(t)), \qquad \underbrace{p(t_1) = 0}_{\text{transversality condition}}$$
(6.7)

Theorem 4

If the condition

$$H(t, x, u, p(t))$$
 is concave in (x, u) for each $t \in [t_0, t_1]$ (6.8)

is added to the conditions in Theorem 3, we obtain a sufficient optimality condition, i.e., if we find a triple $(x^*(t), u^*(t), p^*(t))$ that satisfies (6.5), (6.6), (6.7) and (6.8), then $(x^*(t), u^*(t))$ is optimal.

EXAMPLE 4

6.2.2 Standard problem

Consider the "standard end constrained problem" :

$$\int_{t_0}^{t_1} f(t, x, u) dt \longrightarrow \max!, \quad u \in U \subseteq \mathbb{R}$$
(6.9)

s.t.

 $\dot{x}(t) = g(t, x(t), u(t)), \quad x(t_0) = x_0$ (6.10)

with one of the following terminal conditions

(a)
$$x(t_1) = x_1$$
, (b) $x(t_1) \ge x_1$ or (c) $x(t_1)$ free. (6.11)

Define now the Hamiltonian function as follows:

$$H(t, x, u, p) = p_0 \cdot f(t, x, u) + p \cdot g(t, x, u)$$

Theorem 5 (Maximum principle for standard end constraints)

Suppose that $(x^*(t), u^*(t))$ is an optimal pair for problem (6.9) - (6.11). Then there exist a continuous function p(t) and a number $p_0 \in \{0, 1\}$ such that for all $t \in [t_0, t_1]$ we have $(p_0, p(t)) \neq (0, 0)$ and, moreover:

1. $u = u^*(t)$ maximizes the Hamiltonian $H(t, x^*(t), u, p(t))$ w.r.t. $u \in U$, i.e.,

$$H(t, x^{*}(t), u, p(t)) \le H(t, x^{*}(t), u^{*}(t), p(t))$$
 for all $u \in U$

2.

$$\dot{p}(t) = -H_x(t, x^*(t), u^*(t), p(t))$$
(6.12)

3. Corresponding to each of the terminal conditions (a), (b) and (c) in (6.11), there is a transversality condition on $p(t_1)$:

- (a') no condition on $p(t_1)$
- (b') $p(t_1) \ge 0$ (with $p(t_1) = 0$ if $x^*(t_1) > x_1$)
- (c') $p(t_1) = 0$

Theorem 6 (Mangasarian)

Suppose that $(x^*(t), u^*(t))$ is a feasible pair with the corresponding costate variable p(t) such that conditions 1. - 3. in Theorem 5 are satisfied with $p_0 = 1$. Suppose further that the control region U is convex and that H(t, x, u, p(t)) is concave in (x, u) for every $t \in [t_0, t_1]$.

Then $(x^*(t), u^*(t))$ is an optimal pair.

General approach:

- 1. For each triple (t, x, p) maximize H(t, x, u, p) w.r.t. $u \in U$ (often there exists a unique maximization point $u = \hat{u}(t, x, p)$).
- 2. Insert this function into the differential equations (6.10) and (6.12) to obtain

$$\dot{x}(t) = g(t, x, \hat{u}(t, x(t), p(t)))$$

and

$$\dot{p}(t) = -H_x(t, x(t), \hat{u}(t, x(t), p(t)))$$

(i.e., a system of two first-order differential equations) to determine x(t) and p(t).

3. Determine the constants in the general solution (x(t), p(t)) by combining the initial condition $x(t_0) = x_0$ with the terminal conditions and transversality conditions.

 \implies state variable $x^*(t)$, corresponding control variable $u^*(t) = \hat{u}(t, x^*(t), p(t))$

Remarks:

1. If the Hamiltonian is not concave, there exists a weaker sufficient condition due to Arrow: If the maximized Hamiltonian

$$\hat{H}(t, x, p) = \max_{u} H(t, x, u, p)$$

is concave in x for every $t \in [t_0, t_1]$ and conditions 1. - 3. of Theorem 5 are satisfied with $p_0 = 1$, then $(x^*(t), u^*(t))$ solves problem (6.9) - (6.11). (Arrow's sufficient condition)

2. If the resulting differential equations are non-linear, one may linearize these functions about the equilibrium state, i.e., one can expand the functions into Taylor polynomials with n = 1 (see linear approximation in Section 1.1).

EXAMPLE 5

6.2.3 Current value formulations

Consider:

$$\max_{u \in U \subseteq \mathbb{R}} \int_{t_0}^{t_1} f(t, x, u) e^{-rt} dt, \quad \dot{x} = g(t, x, u)$$

$$x(t_0) = x_0$$
(11)
(a) $x(t_1) = x_1$ (b) $x(t_1) \ge x_1$ or (c) $x(t_1)$ free

 e^{-rt} - discount factor

 \implies Hamiltonian

$$H = p_0 \cdot f(t, x, u)e^{-rt} + p \cdot g(t, x, u)$$

 \implies Current value Hamiltonian (multiply H by e^{rt})

$$H^{c} = He^{rt} = p_{0} \cdot f(t, x, u) + e^{rt} \cdot p \cdot g(t, x, u)$$

 $\lambda = e^{rt} \cdot p$ - current value shadow price, $\lambda_0 = p_0$

$$\implies H^{c}(t, x, u, \lambda) = \lambda_{0} \cdot f(t, x, u) + \lambda \cdot g(t, x, u)$$

Theorem 7 (Maximum principle, current value formulation)

Suppose that $(x^*(t), u^*(t))$ is an optimal pair for problem (11) and let H^c be the current value Hamiltonian.

Then there exist a continuous function $\lambda(t)$ and a number $\lambda_0 \in \{0, 1\}$ such that for all $t \in [t_0, t_1]$ we have $(\lambda_0, \lambda(t)) \neq (0, 0)$ and, moreover:

- 1. $u = u^*(t)$ maximizes $H^c(t, x^*(t), u, \lambda(t))$ for $u \in U$
- 2.

$$\dot{\lambda}(t) - r\lambda(t) = -\frac{\partial H^c(t, x^*(t), u^*(t), \lambda(t))}{\partial x}$$

- 3. The transversality conditions are:
 - (a') no condition on $\lambda(t_1)$
 - (b') $\lambda(t_1) \ge 0$ (with $\lambda(t_1) = 0$ if $x^*(t_1) > x_1$)
 - (c') $\lambda(t_1) = 0$

Remark:

The conditions in Theorem 7 are sufficient for optimality if $\lambda_0 = 1$ and

 $H^{c}(t, x, u, \lambda(t))$ is concave in (x, u) (Mangasarian)

or more generally

$$\hat{H}^{c}(t, x, \lambda(t)) = \max_{u \in U} H^{c}(t, x, u, \lambda(t)) \text{ is concave in } x \qquad (Arrow).$$

EXAMPLE 6

Remark:

If explicit solutions for the system of differential equations are not obtainable, a phase diagram may be helpful.

ILLUSTRATION: Phase diagram for example 6

Chapter 7

Applications to growth theory and monetary economics

7.1 Some growth models

EXAMPLE 1: Economic growth I

Let

X = X(t) - national product at time tK = K(t) - capital stock at time tL = L(t) - number of workers (labor) at time t

and

 $X = A \cdot K^{1-\alpha} \cdot L^{\alpha}$ - Cobb-Douglas production function $\dot{K} = s \cdot X$ - aggregate investment is proportional to output $L = L_0 \cdot e^{\lambda t}$ - labor force grows exponentially $(A, \alpha, s, L, \lambda > 0; \ 0 < \alpha < 1).$

EXAMPLE 2: Economic growth II

Let

X(t) - total domestic product per year K(t) - capital stock σ - average productivity of capital s - savings rate $H(t) = H_0 \cdot e^{\mu t} \quad (\mu \neq s \cdot \sigma)$ - net inflow of foreign investment per year at time t

7.2 The Solow-Swan model

- neoclassical Solow-Swan model: model of long-run growth
- generalization of the model in Example 1 in Section 7.1

Assumptions and notations:

Y = Y(t) - (aggregate) output at time t K = K(t) - capital stock at time t L = L(t) - number of workers (labor) at time tF(K, L) - production function (assumption: constant returns to scale, i.e., F is homogeneous of degree 1)

 $\implies Y = F(K, L) \text{ or equivalently } y = f(k), \text{ where}$ $y = \frac{Y}{L} \text{ - output per worker}$ $k = \frac{K}{L} \text{ - capital stock per worker}$ C - consumption

 $c = \frac{C}{L}$ - consumption per worker

s - savings rate (0 < s < 1)

$$\implies$$
 $C = (1-s)Y$ or equivalently $c = (1-s)y$

i - investment per worker

$$\implies y = c + i = (1 - s)y + i$$
$$\implies i = s \cdot y = s \cdot f(k)$$

ILLUSTRATION: Output, investment and capital stock per worker

δ - depreciation rate

Law of motion of capital stock

$$\dot{k} = \underbrace{s \cdot f(k)}_{investment} - \underbrace{\delta k}_{depreciation}$$

equilibrium state k^* :

$$\dot{k} = 0 \implies s \cdot f(k^*) = \delta k^*$$
(7.1)

ILLUSTRATION: Equilibrium state

Golden rule level of capital accumulation

The government would choose an equilibrium state at which consumption is maximized. To alter the equilibrium state, the government must change the savings rate s:

$$c = f(k) - s \cdot f(k)$$

$$\stackrel{(7.1)}{\Longrightarrow} \qquad c = f(k^*) - \delta \cdot k^* \qquad (\text{at the equilibrium state } k^*)$$

 \implies necessary optimality condition for $c \longrightarrow \max!$

$$f'(k^*) - \delta = 0 \implies f'(k^*) = \delta \tag{7.2}$$

Using (7.1) and (7.2), we obtain:

$$s^* \cdot f(k) = f'(k) \cdot k \qquad \Longrightarrow \qquad s^* = \frac{f'(k) \cdot k}{f(k)}$$

 s^\ast - savings rate, that maximizes consumption at the equilibrium state

Example 3

Introducing population growth

Let

 $\lambda = \frac{\dot{L}}{L}$ - growth rate of the labor force.

 \implies equilibrium state k^* :

$$s \cdot f(k^*) = (\delta + \lambda)k^*$$

Introducing technological progress

 \longrightarrow technological progress results from increased efficiency E of labor

Let

 $g=\frac{\dot{E}}{E}$ - growth rate of efficiency of labor.

$$Y = F(K, L \cdot E) \implies \qquad y = f\left(\frac{K}{L \cdot E}\right) = f(k)$$

equilibrium state k^* :

$$s \cdot f(k^*) = (\delta + \lambda + g)k^*$$

 \square

Interpretation:

At $k^* y$ and k are constant. Thus:

- 1. Since $y = \frac{Y}{L \cdot E}$, L grows at rate λ , E grows at rate $g \implies Y$ must grow at rate $\lambda + g$.
- 2. Since $k = \frac{K}{L \cdot E}$, L grows at rate λ , E grows at rate $g \implies K$ must grow at rate $\lambda + g$.

ILLUSTRATION: effect of technological progress

Golden rule level of capital accumulation: (maximizes consumption at the equilibrium state)

$$f'(k^*) = \delta + \lambda + g$$

EXAMPLE 4

⊜