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Abstract

Most scheduling problems are combinatorial optimization problems which are too difficult to
be solved optimally, and hence heuristics are used to obtain good solutions in reasonable times. The
specific goal of this paper is to investigate scheduling heuristics to seek the minimum of a positively
weighted convex sum of makespan and the number of tardy jobs in a static hybrid flow shop
environment, where at least one production stage is made up of unrelated parallel machines. In
addition, sequence - and machine - dependent setup times are considered. Some simple dispatching
rules and flow shop makespan heuristics are adapted for the sequencing problem under consideration.
The improvement heuristic algorithm proposed is a reinsertion algorithm. A simulated annealing
algorithm is presented in this paper. Three basic parameters (i.e., cooling schedules, neighborhood
structures, and initial temperatures) of a simulated annealing algorithm are briefly discussed in this
paper. The performance of the heuristics is compared relative to each other on a set of test problems
with up to 50 jobs and 20 stages.

Keywords: Hybrid flow shop scheduling; Constructive algorithms; Improvement heuristics; Simulated
Annealing algorithms.

1. Introduction

Production scheduling is a decision-making process in the operation level. It can be defined
as the allocation of available production resources to carry out certain tasks in an efficient manner. A
frequently occurring scheduling problem is difficult to solve due to the complex nature thereof.

This paper is primarily concerned with industrial scheduling problems, where one first has to
assign limited resources to jobs and then to sequence the assigned jobs on each resource over time. It is
mainly concerned with processing industries that are established as multi-stage production facilities
with multiple production units per stage (i.e., parallel machines), e.g. a textile industry (Karacapilidis
and Pappis, 1996), an automobile assembly plant (Agnetis et al., 1997), a printed circuit board
manufacture (Alisantoso, Khoo, and Jiang, 2003, and Hsieh, Chang, and Hsu, 2003), and so on. In
such industries, at some stages the facilities are duplicated in parallel to increase the overall capacities
or to balance the capacities of the stages, or either to eliminate or to reduce the impact of bottleneck
stages on the shop floor capacities. The mixed character of a production system, which lies between
flow shop and parallel machines, is known as a hybrid or flexible flow shop environment.

An ordinary flow shop model is a multi-stage production process, where the jobs have to visit
all stages in the same order string, whereas a hybrid flow shop model, a generalization of a classical
flow shop model, is more realistic, and it assumes that at least one stage must have multiple machines.
A machine can process at most one job at a time and a job can be processed by at most one machine at
a time. Preemption of processing is not allowed. The problem consists of assigning jobs to machines at
each stage and sequencing the jobs assigned to the same machine so that some optimality criteria are
minimized.

Although the hybrid flow shop problem has been widely studied in the literature, most of the
studies related to hybrid flow shop problems are concentrated on problems with identical processors,
see for instance, Gupta, Kriiger, Lauff, Werner and Sotskov (2002), Alisantoso, Khoo, and Jiang
(2003), Lin and Liao (2003) and Wang and Hunsucker (2003). In a real world situation, it is common
to find newer or more modern machines running side by side with older and less efficient machines.
Even though the older machines are less efficient, they may be kept in the production lines because of
their high replacement costs. The older machines may perform the same operations as the newer ones,
but would generally require a longer operating time for the same operation. In this paper, the hybrid
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flow shop problem with unrelated parallel machines is considered, i.e., there are different parallel
machines at every stage and speeds of the machines are dependent on the jobs. Moreover, several
industries encounter setup times which result in even more difficult scheduling problems. In this paper,
both sequence- and machine-dependent setup time restrictions are taken into account as well.

A detailed survey for the hybrid flow shop problem is given in Linn and Zhang (1999) and
Wang (2005). Most of the earlier literature has considered the simple case of only two stages. Arthanari
and Ramamurthy (1971) and Salvador (1973) are among the first who define the hybrid flow shop
problem. They propose a branch and bound method to tackle the problem. Such a method is an exact
solution technique which guarantees optimal solutions. However, the exact algorithm presented can
only be applied to very small instances. Other exact approaches for the multi-stage hybrid flow shop
problem are proposed by many authors, e.g. branch and bound algorithms are given in Brah and
Hunsucker (1991) and Moursli and Pochet (2000).

When an exact algorithm is applied to large hybrid flow shop problems in particular, the
optimum approach can take hours or days to derive a solution. On the other hand, a heuristic approach
is much faster but does not guarantee an optimum solution. Gupta (1988) proposes heuristic techniques
for a simplified hybrid flow shop makespan problem with two stages and only one machine at stage
two. The proposed heuristics are based on extensions of Johnson’s algorithm. Sriskandarajah and Sethi
(1989) develop simple heuristic algorithms for the two-stage hybrid flow shop problem. They discuss
the worst and average case performance of algorithms of finding minimum makespan schedules. Their
solutions are based on Johnson’s rule. Guinet, Solomon, Kedia and Dussauchoy (1996) propose a
heuristic for the makespan problem in a two-stage hybrid flow shop based on Johnson’s rule. They
compare this heuristic with the Shortest Processing Time (SPT) and the Longest Processing Time
(LPT) dispatching rules. They conclude that the LPT rule gives good results for the two-stage
makespan problem. Gupta and Tunc (1994) consider the two-stage hybrid flow shop scheduling
problem where there is one machine at stage one and the number of identical machines in parallel at
stage two is less than the total number of jobs. The setup and removal times of each job at each stage
are separated from the processing times. They propose heuristic algorithms that are empirically tested
to determine the effectiveness in finding an optimal one. Santos, Hunsucker, and Deal (1996)
investigate scheduling procedures which seek to minimize the makespan in the static flow shop with
multiple processors. Their method is to generate an initial permutation schedule based on the Palmer,
CDS, Gupta and Dannenbring flow shop heuristics, and then it is followed by the application of the
First in First out (FIFO) rule.

To obtain a near-optimal solution, metaheuristic algorithms have also been proposed. For
example, Nowicki and Smutnicki (1998) propose a Tabu Search (TS) algorithm for the hybrid flow
shop makespan problem. Gourgand, Grangeon, and Norre (1999) present several Simulated Annealing
(SA)-based algorithms for the hybrid flow shop problem. A specific neighborhood is used and the
authors apply the methods to a realistic industrial problem. Jin, Yang, and Ito (2006) consider a hybrid
flow shop with identical parallel machines. They propose two approaches to generate the initial job
sequence and use a simulated annealing algorithm to improve it. We have found that a simulated
annealing algorithm has been successfully applied to various combinatorial optimization problems. For
an extensive survey of the theory and applications of the SA algorithm, see Koulamas, Antony, and
Jaen (1994).

In this paper, a hybrid flow shop problem with unrelated parallel machines and setup times is
studied. The goal of the problem is to seek a schedule which minimizes a positively weighted convex
sum of makespan and the number of tardy jobs. Due to the complex of this problem, the constructive
heuristics based on dispatching rules and pure flow shop makespan heuristics are adapted and
simulated annealing (SA)-based algorithms as the iterative algorithms are proposed.

The rest of the paper is organized as follows: The problem considered in this paper is
described in Section 2. Heuristic algorithms are sketched in Section 3. Section 4 and Section 5 present
the variants of the simulated annealing algorithms. Computational results with the heuristics are briefly
discussed in Section 6 and conclusions are in Section 7.

2. Problem Statement

The hybrid flow shop system is defined by the set O = {1,..., ¢,..., k} of k processing stages.
At each stage t, t €0, there is a set M' = {1,..., i,..., m'} of m' unrelated machines. The setJ= {I,...,
J..., n} of n independent jobs has to be processed on a set M = {M’,..., M*}. Each job j, j €J, has its
release date 7, > 0 and a due date d; > 0. It has its fixed standard processing time for every stage ¢, ¢

€0. Owing to the unrelated machines, the processing time p;; of job j on machine i at stage 7 is equal
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to ps;. / v;_ , where ij. is the standard processing time of job j at stage ¢, and vitj is the relative speed

of job j which is processed by the machine i at stage ¢.

There are processing restrictions of jobs as follows: (1) jobs are processed without
preemptions on any machine; (2) a job cannot be processed before its completion of the previous
operation; (3) every machine can process only one operation at a time; (4) operations have to be
realized sequentially, without overlapping between stages; (5) job splitting is not permitted.

Setup times considered in this problem are classified into two types, namely machine-
dependent setup time and sequence-dependent setup time. A setup time of a job is machine-dependent
if it depends on the machine to which the job is assigned. It is assumed to occur only when the job is

the first job assigned on the machine. ch;; denotes the length of the machine-dependent setup time, (or

changeover time), of job j if job j is the first job assigned to machine i at stage ¢. A sequence-dependent
setup time is considered between successive jobs. A setup time of a job on a machine is sequence-

dependent if it depends on the job just completed on that machine. s;i denotes the time needed to

changeover from job / to job j at stage ¢, where job / is processed directly before job j on the same
machine. All setup times are known and constant.

The scheduling problem has dual objectives, namely minimizing the makespan and
minimizing the number of tardy jobs. Therefore, the objective function to be minimized is

ACmax + ( 1- ﬁ’)nT,

where C,,, is the makespan, which is equivalent to the completion time of the last job to leave the
system, 77 is the total number of tardy jobs in the schedule, and 4 is the weight (or relative
importance) given to C,,,, and 77, (0 < A< 1).

3. Heuristic Algorithms

Heuristic algorithms have been developed to provide good and quick solutions. They obtain
solutions to large problems with acceptable computational times. They are simple and have no
mathematical proof, see Brah and Loo (1999), and Kurz and Askin (2003). They can be divided into
either constructive or improvement algorithms. The former algorithms build a feasible solution from
scratch. The latter algorithms try to improve a previously generated solution by normally using some
form of specific problem knowledge. However, the time required for computation is usually larger
compared to the constructive algorithms. The drawback of heuristic algorithms is that they do not
generate optimality and it may be difficult to judge their effectiveness (Youssef, Sait, and Adiche,
2001).

3.1 Heuristic Construction of a Schedule

Since the hybrid flow shop scheduling problem is NP-hard, algorithms for finding an optimal
solution in polynomial time are unlikely to exist. Thus, heuristic methods are studied to find
approximate solutions. Most researchers develop existing heuristics for the classical hybrid flow shop
problem with identical machines by using a particular sequencing rule for the first stage. They follow
the same scheme, see Santos, Hunsucker, and Deal (1996).

Firstly, a job sequence is determined according to a particular sequencing rule, and we will
briefly discuss the modifications for the problem under consideration in the next section. Secondly,
jobs are assigned as soon as possible to the machines at every stage using the job sequence determined
for the first stage. There are basically two approaches for this subproblem. The first way is that for the
other stages, i.e. from stage two to stage , jobs are ordered according to their completion times at the
previous stage. This means that the FIFO (First in First out) rule is used to find the job sequence for the
next stage by means of the job sequence of the previous stage. The second way is to sequence the jobs
for the other stages by using the same job sequence as for the first stage, called the permutation rule.

Assume now that a job sequence for the first stage has already been determined. Then we have
to solve the problem of scheduling n jobs on unrelated parallel machines with sequence- and machine-
dependent setup times using this given job sequence for the first stage. We apply a greedy algorithm
which constructs a schedule for the » jobs at a particular stage provided that a certain job sequence for
this stage is known (remind that the job sequence for this particular stage is derived either from the
FIFO or from the permutation rule), where the objective is to minimize the flow time and the idle time
of the machines. The idea is to balance evenly the workload in a heuristic way as much as possible.

3.2 Constructive Heuristics

In order to determine the job sequence for the first stage by some heuristics, we remind that
the processing and setup times for every job are dependent on the machine and the previous job,
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respectively. This means that they are not fixed, until an assignment of jobs to machines for the
corresponding stage has been done. Thus, for applying an algorithm for fixing the job sequence for
stage one, an algorithm for finding the representatives of the machine speeds and the setup times is
necessary.

The representatives of machine speed v,.j/.t and setup time S,j.’ for stage ¢, t=1,...k, use the

minimum, maximum and average values of the data. Thus, the representative of the operating time of
job j at stage ¢ is the sum of the processing time pS; / v;.’ plus the representative of the setup time Sl//.t .

Nine combinations of relative speeds and setup times will be used in our algorithms. The job sequence
for the first stage is then fixed as the job sequence with the best function value obtained by all
combinations of the nine different relative speeds and setup times.

For determining the job sequence for the first stage, we adapt and develop several basic
dispatching rules and constructive algorithms for the flow shop makespan scheduling problem. Some of
the dispatching rules are related to tardiness-based criteria, while other are used mainly for comparison
purposes.

The Shortest Processing Time (SPT) rule is a simple dispatching rule, in which the jobs are
sequenced in non-decreasing order of the processing times, whereas the Longest Processing Time
(LPT) rule orders the jobs in non-increasing order of their processing times. The Earliest Release Date
first (ERD) rule is equivalent to the well-known first-in-first-out (FIFO) rule. The Earliest Due Date
first (EDD) rule schedules the jobs according to non-decreasing due dates of the jobs. The Minimum
Slack Time first (MST) rule is a variation of the EDD rule. This rule concerns the remaining slack of
each job, defined as its due date minus the processing time required to process it. The Slack time per
Processing time (S/P) is similar to the MST rule, but its slack time is divided by the processing time
required as well (Baker, 1974, and Pinedo and Chao, 1999).

The hybrid SPT and EDD (HSE) rule is developed to combine both SPT and EDD rules.
Firstly, consider the processing times of each job and determine the relative processing time compared
to the maximum processing time required. Secondly, determine the relative due date compared to the
maximum due date. Next, calculate the priority value of each job by using the weight (or relative
importance) given to C,,, and 7y for the relative processing time and relative due date.

We remind that the dispatching rules related to the processing time calculations will generate
the nine solutions from the nine combinations of the nine different relative speeds and setup times. The
best solution is selected from them.

Palmer’s heuristic (1965) is a makespan heuristic denoted by PAL in an effort to use
Johnson’s rule by proposing a slope order index to sequence the jobs on the machines based on the
processing times. The idea is to give priority to jobs that have a tendency of progressing from short
times to long times as they move through the stages. Campbell, Dudek, and Smith (1970) develop one
of the most significant heuristic methods for the makespan problem known as CDS algorithm. Its
strength lies in two properties: (1) it uses Johnson’s rule in a heuristic fashion, and (2) it generally
creates several schedules from which a “best” schedule can be chosen. In so doing, £ — 1 sub-problems
are created and Johnson’s rule is applied to each of the sub-problems. Thus, £ — 1 sequences are
generated. Since Johnson’s algorithm is a two-stage algorithm, a k-stage problem must be collapsed
into a two-stage problem. Gupta (1971) provides an algorithm denoted by GUP, in a similar manner as
algorithm PAL by using a different slope index and schedules the jobs according to the slope order.

Dannenbring (1977) denoted by DAN develops a method by using Johnson’s algorithm as a
foundation. Furthermore, the CDS and PAL algorithms are also exhibited. Dannenbring constructs
only one two-stage problem, but the processing times for the constructed jobs reflect the behavior of
PAL’s slope index. Its purpose is to provide good and quick solutions.

Nawaz, Enscore and Ham (1983) develop the probably best constructive heuristic method for
the permutation flow shop makespan problem, called the NEH algorithm. It is based on the idea that a
job with a high total operating time on the machines should be placed first at an appropriate relative
order in the sequence. Thus, jobs are sorted in non-increasing order of their total operating time
requirements. The final sequence is built in a constructive way, adding a new job at each step and
finding the best partial solution. For example, the NEH algorithm inserts a third job into the previous
partial solution that gives the best objective function value under consideration. However, the relative
position of the two previous job sequence remains fixed. The algorithm repeats the process for the
remaining jobs according to the initial ordering of the total operating time requirements.

Again, to apply the algorithms to the hybrid flow shop problem with unrelated parallel
machines, the total operating times for calculating the job sequence for the first stage are calculated for
the nine combinations of relative speeds of machines and setup times.
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3.3 Improvement Heuristics

Unlike constructive algorithms, improvement heuristics start with an already built schedule
and attempt to improve it by some given procedure. Their use is necessary since the constructive
algorithms (especially some algorithms that are adapted from pure makespan heuristics and some
dispatching rules such as SPT, LPT rules) without due date considerations. In this section, we will
improve the overall function value by concerning mainly the due date criterion.

In order to find a satisfactory solution of our due date problem, we use a polynomial heuristic
by applying the shift neighborhood as an improvement mechanism based on the idea that we will
consider the jobs that are tardy and move them left and right in all positions. The best schedule among
the (n—1)* generated neighbors (if all jobs under consideration are late, i.e. at most O(x”) job sequences
are examined by the improvement heuristics) is then taken as the result.

4. Simulated Annealing Heuristic

A simulated annealing (SA) heuristic has been introduced by Kirkpatrick, Gelatt, and Vecchi
(1984). It constitutes a class of approximate (heuristic) algorithms. It is an enhanced version of local
optimization or an iterative search method, in which an initial solution is repeatedly improved by
making small local alterations until no such alteration yields a better solution. Annealing refers to the
process which occurs when a physical substance, such as metal, is heated until it melts and then
gradually cooled (according to an annealing schedule) until the solid reaches the lowest energy or the
ground state. Due to natural variability, however, there is some probability at each stage of the cooling
process that a transition to a higher energy state will occur. As the energy state naturally declines, the
probability of moving to a higher energy state decreases. However, if the initial temperature is not high
enough or if the temperature is decreased rapidly, the solid at the ground state will have many defects
or imperfections.

Before the development of metaheuristics such as simulated annealing, tabu search, and
genetic algorithms, many local search techniques are used to solve large combinatorial optimization
problems. These heuristics start with an initial solution and randomly generate a neighborhood
solution. The cost of the generated neighborhood solution will be compared with the cost of the initial
solution. If the cost of the new solution is better than the cost of the initial solution, this solution
becomes the best solution and it is a starting solution in the next generation. Otherwise, the initial
solution is still the starting solution in the next iteration. However, the procedure often converges to a
poor local optimum. To overcome this drawback, the non-improving move technique is proposed to
avoid being trapped in a poor local optimum. Such an idea is behind SA and other metaheuristics.

A basic SA algorithm starts with generating an initial solution Sy as a current solution S,,,. and
setting the SA parameters such as initial temperature, cooling schedule, acceptance probability, and
stopping criteria. Then, at each iteration a neighbor solution §' € N(S,,,) is generated. If AS") <AS...),
the new solution §' is accepted as a current solution (i.e., set S, = §'), otherwise the acceptance
probability is considered. The acceptance probability is the probability of accepting non-improving

moves and is given by exp(—2f/T), where 2fis the change in the cost function (i.e. the cost of neighbor
solution minus the cost of the current solution, 2f' = f(S") — f(S...)), and T is the temperature control

parameter. If RN is a randomly generated number between 0 and 1, and RN < exp(—2f/T), then accept

the non-improving solution $' as the current solution S, (i.e., set S, = 5'). Otherwise, reject the non-
improving solution, and keep the current solution. The acceptance probability is initially high, but as
the search proceeds (and the temperature decreases), it will reduce as well. If fS") < f(Spes), S€t Spesr =
S..~ A neighborhood structure has to be defined from which a neighbor of the current solution is
generated. Before reducing the temperature by using the cooling schedule, NT is the preset parameter
which establishes the number of total allowed times for the annealing process as each temperature
reduction, called the epoch length. The cooling schedule is another parameter for the SA heuristic,
which is used to reduce the temperature during the execution of the algorithm.

4.1 The cooling schedule

The cooling schedule governs how likely the algorithm is to accept a bad transition as a
function of the temperature 7 at each iteration. At the beginning of the search, the algorithm is eager to
use randomness to explore the search space widely, so the probability of accepting a negative transition
is high by using a higher temperature. As the search progresses, the temperature is decreased, thus the
probability of accepting will gradually decrease, converging to a simple iterative improvement
algorithm.
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There are two most widely used cooling schedules: (1) the geometric reduction schedule using
the function T, = axT,,; and (2) the schedule suggested by Lundy and Mees (1986) using the
relation T, = To/(1+ B T,1)-

The scheme that follows a geometric law, which is one of the most often used, corresponds to
an exponential decay of the temperature. The schedule suggested by Lundy and Mees (1986) provides
a fast cooling in the early iterations and slower cooling at later iterations. Consequently, at the
beginning the search will explore the search space, while at the end the search will exploit to the local
minimum.

4.2 Neighborhoods

A key component of any local search algorithm is the move operator or neighborhood
structure. This paper considers two alternative neighborhoods: (1) a pairwise interchange (PI)
neighborhood, and (2) a shift move (SM) neighborhood.

The idea for a PI neighborhood is to exchange a pair of jobs, 7, and 7, where 1 <i <nandi =
r. Such an operation swaps the job at position r and one at position i — 7’= (7y,..., T.;, T, Teigy - T

n
1,7 Ti+1,---5 7). For the selection of a neighbor, one of all possible 5 (n—1) PI neighbors are checked

is then compared to the starting one S,

An SM neighborhood is to reposition some jobs. A job 7, at position r is shifted to position i,
while leaving all other relative job orders unchanged. If 1< r <i < n, it is called a right shift —n’=
(Bpyeees Tooly Toily oeny iy Tomenny W), If 1< 0 <p <y itis called a left shift—n'= (7;,... 7, m,..., %1, Toips
..., 7,). The SM neighborhood has (n—1)* neighbors.

5. Choice of an initial solution

A SA algorithm has been shown to be effective for many combinatorial optimization problems
(see Koulamas, Antony, and Jaen, R., 1994), and it seems easy to apply such an approach to scheduling
problems. To improve the quality of the solution finally obtained, we also investigated the influence of
the choice of an appropriate initial solution by using particular constructive algorithms. We used as an
initial solution that obtained from the constructive algorithms SPT, LPT, ERD, EDD, MST, S/P, HSE,
PAL, CDS, GUP, DAN and NEH, as well as the other improvement heuristics, respectively.

6. Computational results

Firstly, we studied the constructive algorithms that are separated into four main groups. The
first heuristic group is the simple dispatching rules such as SPT, LPT, ERD, EDD, MST, S/P, and HSE.
The second heuristic group is the flow shop makespan heuristics adapted such as PAL, CDS, GUP,
DAN, and NEH. The third and fourth heuristic groups are generated from the first two heuristics in
which they are improved by using an all-shift-move algorithm, and they are denoted by the letter “1”
before the letters denoted by the first two heuristics. We used problems with 10 jobs X 5 stages, 30 jobs
x 10 stages, and 50 jobs x 20 stages. For all problem sizes, we tested instances with A € {0, 0.05, 0.1,
0.5, and 1} in the objective function. Ten different instances for each problem size have been run.

Table 1 Average performance of constructive algorithms
Problem
A size SPT LPT ERD EDD MST S/P HSE PAL CDS GUP DAN NEH
105 23 1.7 28 31 32 30 24 19 17 18 20 05
30x10 80 89 83 124 123 122 79 80 64 78 17 24

0 50x20 74 86 7.7 162 162 143 71 97 73 79 93 23
Sum 177 192 188 31.7 31.7 295 174 19.6 154 175 19.0 5.2
10x5  18.82° 12.81 24.23 24.09 22.21 22.10 18.83 11.66 10.03 14.12 11.47 2.52
0.05 30x10 17.78 14.72 19.61 20.91 18.21 17.61 16.51 16.80 12.35 14.71 14.77 0.59
50x20  8.53 828 10.14 11.75 1096 9.87 894 790 6.99 8.03 843 0.30
Sum  45.14 35.81 53.98 56.75 51.37 49.58 44.28 36.36 29.36 36.86 34.67 3.41
10x5 1790 11.82 22.91 22.67 20.21 20.52 17.84 10.71 8.79 13.05 10.32 2.86
01 30x10  16.61 13.12 18.46 19.14 16.38 15.71 1532 15.59 11.17 13.30 13.61 0.40

50x20  8.13 7.75 9.72 10.47 9.65 877 849 727 645 7.57 7.79 0.08
Sum  42.64 32.69 51.08 52.28 46.25 45.00 41.65 33.57 26.40 33.92 31.72 3.33

115



m3lszaimmsmumsiveduiuan Usedidl wa. 2549

Table 1 Average performance of constructive algorithms
Problem
A size SPT LPT ERD EDD MST S/P HSE PAL CDS GUP DAN NEH
10x5  17.48 11.21 22.17 21.94 18.81 19.21 17.42 1033 7.87 12.44 9.74 298
3010 16.12 12.29 18.01 18.13 15.30 14.46 14.70 15.03 10.50 12.60 13.04 0.26

0.5 50x20  8.11 7.59 9.68 971 8.84 812 838 7.04 628 750 7.56 0.09
Sum  41.71 31.09 49.86 49.78 42.94 41.79 40.50 32.41 24.65 32.55 30.34 3.33

10x5 1748 11.21 22.17 21.94 18.81 19.21 17.42 1033 7.87 12.44 9.74 2098

10 30x10  16.34 12.46 18.24 18.29 1543 14.57 1634 15.24 10.68 12.77 13.24 0.38
' 50x20  8.12 7.58 9.69 9.63 8.75 805 8.12 7.03 6.27 750 7.54 0.08

Sum  41.94 31.24 50.10 49.85 42.98 41.82 41.88 32.59 24.82 32.72 30.52 3.44

10x5 10 07 14 07 10 09 07 06 05 09 10 05

0 3010 42 45 43 32 24 57 43 44 40 41 44 24

50x20 36 43 35 35 39 78 41 46 45 48 53 23

Sum 88 95 92 74 73 144 91 96 90 98 10.7 52

10x5 506 3.60 3.82 6.84 532 543 597 264 339 3.63 346 252

0.05 30x10  6.03 6.66 7.75 8.00 11.15 829 896 7.07 478 684 624 0.59
) 50x20 446 522 5.10 6.03 5.66 628 397 422 353 483 538 0.30
Sum  15.55 1549 16.67 20.88 22.14 19.99 18.90 13.93 11.70 15.30 15.08 3.41

10x5 463 395 460 640 578 448 450 1.80 201 320 194 286

01 30x10  6.10 6.14 839 794 993 783 643 623 278 557 551 0.40
' 50x20 427 522 478 556 5.66 461 373 378 3.15 488 473 0.08

Sum 1499 15.31 17.78 19.89 2136 16.93 14.66 11.81 7.93 13.66 12.18 3.33

10x5 431 284 491 6.01 580 398 538 1.71 224 255 080 298

05 30x10  6.13 6.10 894 785 9.18 720 592 519 1.65 488 595 0.26
' 50x20 437 472 481 528 544 473 373 4.06 292 479 461 0.09

Sum  14.81 13.66 18.66 19.14 20.42 15.91 15.03 10.96 6.82 12.22 11.36 3.33

10x5 431 2.84 491 6.01 580 398 538 1.71 224 255 0.80 298

10 30x10 633 6.18 9.17 7.72 933 740 633 529 1.69 498 595 0.38

50x20 439 501 491 517 545 4.09 439 405 293 477 459 0.08
Sum  15.04 14.02 18.98 18.91 20.58 15.47 16.10 11.05 6.86 12.31 11.34 3.44
*average absolute deviation for 4= 0, and " average percentage deviation for 4> 0

The results for the constructive algorithms are given in Table 1. We give the average (absolute
resp. percentage) deviation of a particular constructive algorithm from the best constructive solution for
three problem sizes nx k.

From these results it is obvious that the constructive algorithms in the fourth heuristic group
improved the pure makespan heuristics from the second heuristic group (i.e., PAL, CDS, GUP, DAN,
and NEH) are better than the dispatching rules in the first heuristic group (i.e., SPT, LPT, EDD, MST,
S/P, and HSE) as well as the third heuristic group improved from them.

Among the simple dispatching rules (heuristic Group I), the HSE rule outperforms the other
dispatching rules for A = 0, and the LPT rule is better than the other rules for A > 0. Among the
adapted flow shop makespan heuristics in the heuristic Group 11, the NEH algorithm is clearly the best
algorithm among all studied constructive heuristics. The CDS algorithm is certainly the algorithm on
the second rank whereas the remaining algorithms are slightly different from each other.

When we apply the insertion algorithm (denoted as the letter “I” first) to the dispatching rules
and adapted makespan heuristics, we have found that the quality of solution can be improved by about
50 percent except for the NEH rule. It is noted that the NEH rule is not improved by using the
improvement heuristics in algorithm INEH because the NEH algorithm is embedded by such an (re-
)insertion algorithm itself. However, the improvement of the heuristics from the adapted pure
makespan heuristics in heuristic Group IV is better than the improvement of the heuristics derived from
the dispatching rules in the heuristic Group III.

Secondly, we studied the SA algorithm with a random initial solution. The purpose of this
study is to determine the favorable SA parameters, i.e., initial temperatures, neighborhood structures,
and cooling schedules. Given the above three different problem sizes, the following SA parameter
values were used in this test.

Initial temperatures : 100 through 1000, in steps of 100
Neighborhood structures : PI, SM
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Cooling schedules : CS1 - CS3 refer to geometric reduction schedule at a {0.85, 0.90,
and 0.95}, and CS4 — CS6 are the schedules by Lundy and Mees
at 3 {0.0005, 0.001, and 0.002}

From the preliminary tests, we set the time limit equal to one second for the problems with ten
jobs, ten seconds for the problems with 30 jobs, and 30 seconds for the problems with 50 jobs. Again,
for all tests we considered instances with A € {0, 0.05, 0.1, 0.5, and 1}. Table 2 through Table 4
present the effect of the initial temperatures, neighborhood structures and cooling schedules by using
the average (absolute resp. relative) deviation from the best value as the performance measure.

From the full factorial experiment, we analyzed our results by means of a multi-factor
Analysis of Variance (ANOVA) technique using a 5% significant level. We have found that for
neighborhood structures and cooling schedules, there are statistically significant differences, whereas
there are not statistically significant differences in the initial temperatures. A low initial temperature is
however slightly preferable (we recommend 100). It was clear that pairwise interchange moves were
better than shift moves for A = 0, whereas the shift moves were better than pairwise interchange moves
for the other values. Consequently, the neighborhood structures should be based on pairwise
interchanges for A = 0 and on shifts of jobs otherwise. For cooling schedules, we observed that the
geometric cooling scheme outperforms the other cooling schedule. In particular, we recommend the
reduction scheme T, =0.85%T 4, Where Tpey and T4 denote the new and old temperatures.

Finally, we used the recommended SA parameters to test the choice of an initial solution. The
letters before SA denote the heuristic rule as an initial solution for the SA algorithm. For example,
SPTSA means that the SPT rule is used as an initial solution for the SA algorithm.

From these results in Table 5, we have found that there are no statistically significant
differences in different initial solutions. We have however found that the IEDDSA rule is a good
algorithm for problems with A= 0, and the NEHSA, and INEHSA rules are slightly better than the
others with A > 0. Consequently, in general the NEHSA and INEHSA algorithms are good choices for
the SA algorithm with using a biased initial solution.

Table 2 The effect of the various initial temperatures on the performance of the SA algorithm

A Problem size 100 200 300 400 500 600 700 800 900 1000
10x5 0.019* 0.022 0.019 0.011 0.025 0.019 0.019 0.017 0.022 0.025
30x10 2.747 2781 2767 2781 2792 2.822 2811 2839 2864 2.883

0 50x20 2461 2531 2561 2.561 2.539 2.603 2.628 2.608 2.653 2.681

Sum 5.227 5334 5347 5353 5356 5444 5458 5.464 5.539 5.589

10x5 1.954" 2140 2.171 2079 2.010 2.195 2.195 2.192 2261 2.251

0.05 30x10 7.662 7727 7979 7.816 7.880 7.809 7.925 7.877 7.770 7.838
50%20 3.901 4.010 4.100 4.161 4.117 4.145 4.151 4.232 4.197 4.277

Sum 13.517 13.877 14.250 14.056 14.007 14.149 14.271 14.301 14.228 14.366

10x5 1.707 1.647 1840 1917 1922 1.864 1.839 1969 1.895 1.893

0.1 30x10 6.126 6.137 6.218 6.237 6.218 6.254 6304 6.291 6.386 6.361
’ 50%20 3440 3446 3.535 3.596 3.608 3.652 3.626 3.658 3.750 3.675

Sum 11.273 11.230 11.593 11.750 11.748 11.770 11.769 11.918 12.031 11.929

10x5 0.850 0.884 0.873 0947 0.962 0.959 0968 1.048 1.025 1.030

05 30x10 3.723 3.781 3.814 3.898 3.931 3909 3947 3926 3915 3974
' 50x20 2125 2240 2285 2312 2360 2404 2381 2377 2414 2.338

Sum 6.698 6905 6972 7.157 7.253 7.272 7296 7351 7.354 7.342

10x5 0.513 0.641 0.633 0.653 0.690 0.726 0.705 0.756 0.721 0.684

10 30%x10 3.337 3392 3470 3.452 3.504 3497 3520 3.554 3.546 3.534

50x20 1.761 1.837 1.847 1915 1924 1987 1.942 1.963 2.007 1.953
Sum 5.611 5.870 5950 6.020 6.118 6.210 6.167 6.273 6.274 6.171
*average absolute deviation for 1= 0, and " average percentage deviation for 4> 0
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Table 3 The effect of the various neighborhood Table 4 The effect of the various cooling

structures on the performance of the SA schedules on the performance of the SA
algorithm algorithm
Problem oy sy cs3 Cs4 Cs5 Cs6
Problem size
A size PI SM 10x5  0.000 0.002 0.028 0.033 0.022 0.035
10x5 0.016 0.024 0 30x10 0.653 0.915 1.663 4.625 4.562 4.433
30x10 2.794 2.823 50x20 0.320 0.638 1.880 4.237 4.283 4.137
0 50x20 2.522 2.643 Sum 0.973 1.555 3.571 8.895 8.867 8.605
Sum 5.332 5.490 N 3.142 3.043 2.767
105 2.270" 2,020 0.05 3100x150 3388 3.443 4614 12311203 1106
3010 8.098 7.522 x20 1.059 4.411 3.101
0.05 50<00 4192 4.067 20%20 0.559 6472 6171
Sum 14.560 13.609 Sum 5.383 8.906 9.645 5 9 6
105 1.973 1.725 5770
ol 30<10  6.522 5.985 o 3100:150 e e ool 0.4 S99 293
’ 50x%20 3.646 3.551 : : : : 7 : .
Sum 2141 11261 50x20 1.000 1295 2.620 /o 5.758 4.911
105 1.136 0.773 Sum  4.59 5.093 7.906 1026 1817 15.17
0.5 30x10 4.249 3.515 5 17
: 50%20 2.425 2222 10x5  0.658 0.636 0.920 1.755 1.149 0.610
Sum 7810 6.510 0.5 30x10 2.450 2.560 2.940 6.833 4.816 3.693
10%5 0.865 0.479 50%x20 0.959 1.168 1.969 4.429 3.103 2.313
1.0 30x10 3.897 3.065 Sum 4.067 4.364 5.829 13&01 9.068 6.616
3020 2.049 L778 10x5 0590 0.546 0.782 1.122 0.628 0.364
Sum 6.811 5.322 : : : : : .

1.0 30x10 2.754 2.700 3.102 5.051 3.885 3.393
50x20 0.963 1.157 1.827 3.167 2.400 1.968

Sum 4.306 4.403 5.711 9.340 6.913 5.726
“average absolute deviation for A = 0 and ® average percentage deviation for 1> 0

7. Conclusions

In this paper, we have investigated both constructive and iterative (SA-based) approaches for
minimizing a convex combination of makespan and the number of tardy jobs for the hybrid flow shop
problem with unrelated parallel machines and setup times, which is often occurring the textile industry.
All algorithms are based on the list scheduling principle by developing job sequences for the first stage
and assigning and sequencing the remaining stages by both the permutation and FIFO approaches. The
constructive algorithms are compared to each other. It is shown that the NEH and CDS algorithms
outperform the others, respectively. In particular, the NEH algorithm is most superior to the other
constructive algorithms regardless improvement heuristics. After we apply the improvement heuristics,
the INEH algorithm based on the NEH rule is still better than others.

In addition, we use SA-based algorithms as improving algorithms. Before we studied the
influence of the initial solution on the performance of the SA algorithm, we tested the SA parameters,
i.e., initial temperatures, neighborhood structures, and cooling schedules. We have found that a low
initial temperature is slightly preferable (we recommend 100). The neighborhood structures should be
based on pairwise interchanges for A = 0 and on shifts of jobs otherwise. The geometric cooling
scheme T,.,=0.85xT,4 is recommended. For the recommended SA parameters, we investigated the
selection of a starting solution by using several constructive algorithms. The variants NEHSA and
INEHSA can both be recommended in general.

Further research can be done to use other improving algorithms such as tabu search, genetic
algorithm, or ant colony algorithms. The choice of good parameters for them should be tested. In
addition, the influence of the starting solution should be investigated. Moreover, hybrid algorithms
should be developed by using a simulated annealing as a local search algorithm within a Genetic
Algorithm or the other algorithms.
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Table 5 Comparisons of the SA algorithm with different initial solutions

Problem
A size SPTSALPTSAERDSAEDDSAMSTSAS/PSAHSESAPALSACDSSAGUPSADANSANEHSA
10x5 0* 0 0 0 0 0 0 0 0 0 0 0

30x10 084 076 086 082 076 076 0.66 0.76 0.78 084 0.78  0.82
50x20 034 03 044 032 030 034 040 036 028 038 044 038
Sum 1.18 1.06 1.3 .14  1.06 1.10 1.06 1.12 1.06 122 122 1.20
10x5  0.70° 038 072 045 059 060 058 056 0.63 066 052 0.52
0.0 30x10 243 269 283 253 270 263 256 279 263 239 257 233
5 50x20 1.09 1.07 1.12 1.21 1.06 125 107 115 1.16 1.06 1.01 1.11
Sum 422 414 467 419 435 448 421 449 442 411 410 396
10x5 064 051 039 043 065 055 055 050 044 059 055 048
30x10 2.10 237 241 222 220 207 230 236 196 233 210 2.00

0

0.1 50x20  0.86 090 092 096 103 09 097 1.08 090 1.10 1.13 0.80
Sum 359 378 372 3,60 388 3.58 383 394 331 402 378 3.28
10x5 048 039 030 039 033 034 034 027 036 034 043 043

0.5 30x10 199 205 1.82 198 188 206 197 210 1.79 194 210 170

T 50x20 097 094 083 079 075 090 075 088 080 0.8 0.77  0.63
Sum 344 337 295 316 296 330 3.06 325 296 314 329 2.6
10x5 040 033 034 024 023 038 036 035 030 027 028 036

10 30x10 238 202 229 208 234 210 248 194 208 211 231 205

5020 083 092 08 081 09 085 088 1.02 086 09 073  0.66
Sum 3.61 327 343 3.13 348 333 372 330 324 334 333 3.07

Problem
A size ISPTSA ILPTSA IERDSA IEDDSA IIMSTSA IS/PSA THSESA TPALSA ICDSSA IGUPSA IDANSA INEHSA

10x5 0 0 0 0 0 0 0 0 0 0 0 0
30x10 0.82 0.78 0.88 0.68 078 086 072 086 0.72 074 072 0.74

0 50x20 036 032 034  0.12 042 046 038 050 034 032 042 040

Sum 1.18 1.10 122  0.80 .20 132 1.10 136 1.06 1.06 1.14 1.14

10x5 051 054 059 049 038 0.61 052 054 045 062 046 050
0.05 30x10 257 260 264 281 236 238 253 254 282 239 276 232
50x20 1.17 112 130 1.15 .17 1.16 1.10 1.13 1.11 1.1 121 1.09

Sum 424 426 452 445 391 414 415 422 438 411 443 391

10x5 059 0.65 055 042 064 036 046 070 048 044 0.66 0.37

01 30x10 2.14 221 212 245 2.16 241 222 204 222 203 237 204
5020 094 091 1.19 1.02 1.02 105 1.10 099 1.06 1.04 1.04 0.82

Sum 3.67 3.77 386 3.90 382 382 378 373 376 351 407 3.23

10x5 028 038 033 032 032 025 042 040 042 037 028 0.37

05 3010 1.85 1.70 206 224 207 209 191 193 193 187 190 1.51
5020 0.83 083 0.78 0.81 0.83 080 079 090 096 089 089 0.63

Sum 296 291 3.17 3.38 322 315 3.1 323 331 313 3.07 252

10x5 030 028 0.6 0.24 027 026 038 040 032 021 022 037

1.0 30x10 215 2.09 225 205 215 230 216 1.8 2.07 215 194 203
5020 093 081 0.83 090 082 089 091 084 090 0.88 0.83 0.67

Sum 338 3.19 325 3.18 324 345 345 311 329 324 298 3.07

*average absolute deviation for 4= 0, and " average percentage deviation for 4> 0
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