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INTRODUCTION 
The properties of nanoparticles confined in microscopic spaces 
within porous materials may differ significantly from those in the 
free state due to the interface interaction. The attributes of 
constrained geometries make these structures unique and 
challenging to study. The chemistry of the molecules in confined 
phases reveals the effects of geometric constraints on the molecular 
structure [1-3]. The interest in the study of such systems reflects the 
ubiquitousness of these materials in technologies, such as 
heterogeneous catalysis, photocatalysis, or solar energy conversion.  

The filling of pores by atoms or molecules is often modeled as 
arrangements of hard spherical particles into an available space. The 
control over the density/porosity of a packing and its structural 
variables, such as the particle size, the coordination number, the 
radial distribution, the pore diameter, the void structure, etc., is 
desirable for practical applications [1,4]. The scientific interest is 
focused on the construction of a packing with given characteristics 
and its spatial-statistical analysis. This implicates a wide presence of 
mathematical and computer sciences in material research.  

This poster presents some original developments from a 
computational view point to identify principal trends in the 
modeling of consistent sphere patterns in restricted volumes. 

CONFINED STRUCTURES 

7 Burtseva, L. et al., Rev Mex Fis E, 61 (2015) 20-27. 
8 Burtseva, L. et al., Int. J. Nanotechnology, 13 (2016) 

41-56. 
9 Stoyan, Yu.G. and Yaskov, G.N. Int Trans Operational 

Res, 17 (2010) 51-70. 
10 Hopkins, A. B. and Stillinger, F. H. Phys Rev  E, 81 

(2010) 041305. 
11 Bogomolov, V.N., Petranovskii, V.P. et al. Sov Phys 

Crystallogr, 35 (1990) 119-120.  
12  Conway, J.H. and Sloane, N.J.A. Discrete Comput. 

Geom, 13 (1995) 383-403. 

CONCLUSIONS 

OPTIMIZATION PROBLEMS 

Fig. 5. a) TEM image of an opal structure from [4]. The voids of the opal 
structure can be obtained in a wide range of sizes; and they can be 
considered as excellent containers for injected substances, giving rise of 
photonic crystals. b) Modelling of packing densities in the range of D/d from 2 
to 12 [11].  
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Fig. 4. a) The diameter of the titania tube with respect to the atom size is 
relatively big.  A packing leads to a confinement without a clear structure.  
b) Crystal structure of mordenite zeolite. It has channels with a diameter of 
0.7 nm. Depending on the selected material (atoms of Li, Na, K, Rb and Cs 
have the diameters 0.31, 0.38, 0.47, 0.50 and 0.54 nm, respectively), the D/d 
ratio varies significantly, so the properties of these metals confined in a 
mordenite matrix will differ considerably. On the other hand, between more 
than 220 different zeolite structures, we can find channel ones with slightly 
different diameters; so the same metal (for example Na) forms a structure 
with distinctly different tube-to-particle aspect ratios, in this way drastically 
changing the properties of the final samples. 

Randomly packed spheres near 
the confining walls form more 
ordered structures than those in 
the internal region and should be 
taken into account in modeling 
(Fig. 3, see also Fig. 1c) [1,2,7]. 
This effect propagates from two to 
four sphere diameters into the 
bulk and influences the local 
density near the walls making the 
structural properties of the 
material near the wall different 
from the internal area. It is 
observed on all confined 
structures, but it has a more 
pronounced effect on “small” 
packings, such as cylinders with 
low diameter aspect ratio [6,7,11]. 
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The development of methods for the synthesis of complex nanomaterials 
requires the establishment of an appropriate mathematical apparatus for 
targeted searches. Long-term efforts to develop a mathematical formalism 
describing the packing in unlimited volumes were started by J. Kepler. Now, 
they move to the stage of finding adequate methods to describe the packing 
in limited nano-volumes, where boundary effects begin to play a decisive role. 
In the present study, we collected data on some existing and incoming 
methods and tools and analyzed their ability to describe different phenomena 
in such a kind of structures. 
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Fig. 2.  

There are three principal approaches 
to model a packing of spheres in a 
bounded space: 
1) Computer simulation - Monte Carlo 
method, Discrete element method, 
Molecular dynamics, among others 
[1,2,6];  
2) Mathematical tessellation (Fig. 2) 
of a packing using Voronoi diagrams. It 
is a fundamental method for modeling 
of a packing [2,8]; 
3) Mathematical programming [9,10]. 

Fig. 3. 

Fig. 6.  

Packing belongs to the optimization 
problems of discrete and computational 
geometry, and it is known to be NP-hard 
even for restricted versions with identical 
regular-shaped objects and domains of 
low-dimensional space, therefore 
approximate solutions are appropriate 
[12].  
Related optimization problems should be 
classified into two main groups:  
 

• Finding of the maximal packing density; 
• Optimization of a structural parameter. 
 

The problem of a minimal height of a bounded cylindrical channel [9] (Fig. 4a, 
right) and the problem of the minimal radius of a sphere containing a set of 
congruent spheres (with a central sphere) (Fig. 6) belong to the 1st group. The 
latter problem deals with the optimization of the structure of a cluster, and it 
is also interpreted as a packing in a circular hull [10]. Both problems are 
known to be NP-hard and are treated by non-linear programming methods. 
 

The problem of minimal total interaction energy, which is obtained varying 
the size of spheres into a spherical pore [2], is an example of the 2nd group. It 
was resolved by applying a simulated annealing metaheuristic. 

MODELING APPROACHES 

Particles of spherical shape packed in a 
confined space produce a variety of models, 
considering different dimensions and 
constraining boundaries: a narrow channel   
(Fig. 1a), a convex plane hull, usually of a 
circular shape or a simplex (Fig. 1b); a 
cylinder  (helicoidal structures are formed 
when the diameter aspect ratio is low) (Fig. 
1c); a configuration of particles confined 
between two parallel hard plates (Fig. 1d), a 
sphere, an arbitrary-shaped container (like, 
e.g. an emulsion drop) . For more examples 
see [1,5-7].  
These structures represent: a cavity of a 
porous matrix, a nanotube, a pile of 
particles encapsulated in a droplet, and they 
are modelled through an ordered or  
random packing of spheres. 
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Fig. 1.  
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