
Chapter 10

STABILITY OF OPTIMAL LINE BALANCE
WITH GIVEN STATION SET

Yuri N. Sotskov, Alexandre Dolgui, Nadezhda Sotskova, Frank Werner

Abstract: We consider the simple assembly line balancing problem. For an optimal line
balance, we investigate its stability with respect to simultaneous independent
variations of the processing times of the manual operations. In particular, we
prove necessary and sufficient conditions when optimality of a line balance is
stable with respect to sufficiently small variations of operation times. We
show how to calculate lower and upper bounds for the stability radius, i.e., the
maximal value of simultaneous independent variations of operation times with
definitely keeping the optimality of line balance.
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1. INTRODUCTION

We consider a single-model paced assembly line, which continuously
manufactures a homogeneous product in large quantities as in mass
production (see [4] for definitions). An assembly line is a sequence of m
linearly ordered stations, which are linked by a conveyor belt. A station has
to perform the same set of operations repeatedly during the whole life cycle
of the assembly line. The set of operations V, which have to be processed by
all m stations within one cycle-time c, is fixed. Each operation is
considered as indivisible. All the m stations start simultaneously with the
processing of the sequence of their operations and buffers between stations
are absent. Technological factors define a partial order on the set of
operations, namely, the digraph G = (V, A) with vertices V and arcs A
defines a partially ordered set of operations V = {1, 2 , . . . ,n}.
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We assume that set V includes operations of two types. More precisely,
the non-empty set includes all manual operations, and the set
includes all automated operations. Without loss of generality, we assume
that and where We use
the following notations for the vectors of the operation times:

and
The Simple Assembly Line Balancing Problem is to find an optimal

balance of the assembly line for a given number m of stations, i.e., to find a
feasible assignment of all operations V to exactly m stations in such a way
that the cycle-time c is minimal. In [1, 4], the abbreviation SALBP-2 is used
for this problem.

Let the set of operations be assigned to station

Assignment of operations V to m ordered

stations (where is called a line

balance, if the following two conditions hold.
1. Assignment does not violate the partial order given by digraph G=
(V, A), i.e., inclusion implies that operation i is assigned to
station and operation j is assigned to station  such that
2. Assignment uses exactly m stations:
Line balance is optimal if along with conditions 1 and 2, it has the

minimal cycle-time. We denote the cycle-time for line balance with the
vector t of operation times as

Optimality of line balance with vector t of operation times may be defined
as the following condition 3.

3. where is the set of
all line balances.
If then the processing time of operation j is a given non-negative

real number: However, the value of the manual operation time can

vary during the life cycle of the assembly line and can even be equal to zero.
A zero operation time means that operation is processed

by an additional worker simultaneously (in parallel) with other operations
assigned to station in such a way that the processing of operation j does
not increase the station time for
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Obviously, the latter equality is only possible if

If then operation time is a real number fixed during the whole
life cycle of the assembly line. We can assume that for each automated
operation Indeed, an operation with fixed zero processing time (if
any) has no influence on the solution of SALBP-2, and therefore in what
follows, we will consider automated operations, which have only strictly
positive processing times.

In contrast to usual stochastic problems (see survey [2]), we do not
assume any probability distribution known in advance for the random
processing times of the manual operations. Moreover, this chapter does not
deal with concrete algorithms for constructing an optimal line balance in a
stochastic environment. It is assumed that the optimal line balance b0 is
already constructed for the given vector of the operation
times. Our aim is to investigate the stability of the optimality of a line
balance with respect to independent variations of the processing times of
all manual operations or a portion of the manual operations.
More precisely, we investigate the stability radius of an optimal line balance

which may be interpreted as the maximum of simultaneous independent
variations of the manual operation times with definitely keeping optimality
of line balance

It will be assumed that all operation times are real numbers in
contrast to the usual assumption that they are integral numbers (see [4]). We
need this assumption for the sake of appropriate definitions introduced in
Section 2 for a sensitivity analysis. In Section 3, we prove necessary and
sufficient conditions for the existence of an unstable optimal line balance,
i.e., when its stability radius is equal to zero. In Section 4, we show how to
calculate the exact value of the stability radius or its upper bound. An
algorithm for selecting all stable optimal line balances is discussed in
Section 4. Concluding remarks are given in Section 5.

2. DEFINITION OF THE STABILITY RADIUS

The main question under consideration may be formulated as follows.
How much can all components of vector simultaneously and
independently be modified such that the given line balance remains
definitely optimal? To answer this question, we study the notion of the
stability radius. The stability radius of an optimal line balance may be
defined similarly to the stability radius of an optimal schedule introduced in
[5] for a machine scheduling problem. (A survey of known results on
sensitivity analysis in machine scheduling is presented in [8].) On the one
hand, if the stability radius of line balance is strictly positive, then any
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simultaneous independent changes of the operation times within the
ball with this radius definitely keep optimality of line balance On the
other hand, if the stability radius of line balance is equal to zero, then
even small changes of the processing times of the manual operations may
deprive optimality of line balance

We consider the space of real vectors with the

Chebyshev metric. So, the distance between vector and

vector is calculated as follows:

where denotes the absolute value of the difference We also

consider the space of non-negative real vectors:

Let B(t) denote the set of all line balances in the set B, which are optimal for
the given vector t of the operation times. The formal definition of the
stability radius of an optimal line balance may be given as follows.

Definition 1: The closed ball in the space with the radius

and the center is called a stability ball of the line balance

if  for each vector  of the operation times with

line balance remains optimal. The maximal value of

the radius of a stability ball of the line balance  is called the
stability radius denoted by

In Definition 1, vector of the automated

operation times and vector of all operation times

are fixed, while vector of the manual operation times

may vary within the intersection of the closed ball with the space

To illustrate the above notations, we use the following example of
SALBP-2.

Let m = 3, ñ = 2, n = 7 and Thus, set

is the set of manual operations, and set is
the set of automated operations. The digraph G = (V, A) and the operation
times are represented in Figure 10-1.
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Figure 10-1. Digraph G = (V, A) and operation times

Next, we show that the following line balance

is optimal. To this end, we can use the obvious lower bound (1) for the
minimal cycle-time.

If all operation times are integral numbers, then

Hereafter, denotes the smallest integral number greater than or equal

to a. For the above line balance we have the following equalities:

which imply that is an optimal line balance since is equal to the
right-hand side of inequality (1).

Let denote the subset of all manual operations of set For each

optimal line balance we can define a set of all subsets

such that

It should be noted that set may include the empty set as its element.
E.g., in the example presented in Figure 10-1 for the optimal line balance

we have since and
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Note that the empty set may be considered as a proper subset of any non-

empty set, e.g., we can write

3. ZERO STABILITY RADIUS

In this section, we derive necessary and sufficient conditions for the
existence of an unstable optimal line balance

Theorem 1: Let inequality hold for each manual operation
Then for line balance equality holds if and only if there

exists a line balance such that condition does not
hold.

Proof: Sufficiency. Let there exist a line balance for which
condition does not hold.

Hence, there exists at least one set which does not belong
to the set We have to consider the following three possible cases (i),
(ii) and (iii).

Case (i): There exists a set such that is a proper subset

of set i.e. and inequality

holds.
From the inclusion it follows that set is a non-

empty set. Let be any arbitrarily small real number such that and

We can construct the following vector where

For all other manual operations we set Note that due to

assumption for each operation all components of vector are

non-negative, and therefore Inequality (2) implies

Therefore, since for each operation we obtain
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where Due to inequality (2) and equalities ,

we obtain

Since set is a non-empty set and equalities (3)

and (4) imply the strict inequality
As a result, we conclude that for any arbitrarily small

there exists a vector such that and

Therefore, we obtain Since vector may be as close to

vector as desired, we obtain equality in case (i).

Case (ii): There exists a set such that is a proper subset

of set and inequality holds.

Since there exists at least one operation which

does not belong to set For any arbitrarily small

we can construct vector where

Since for each operation , the following equalities must

hold:

where
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Next, we consider two possible subcases: either

If then due to equalities (5) and  we obtain

If then we can conclude that set does not contain the

empty set as its element. Indeed, if for some index then

which contradicts to the above assumption about the set

Therefore, due to equalities we obtain

In the case of an empty set condition (5) turns into equality

From (6) and (7), it follows that Thus, using the

same arguments for vector as for vector (see case (i)), we conclude
that and therefore, in case (ii) as well.

Case (iii): There is no set such that is a subset of set

It is clear that (otherwise For any

arbitrarily small real we can construct the following

vector where

It is easy to convince that

The latter inequality follows from the fact that set is not contained in

any set and for each operation Using
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similar arguments for vector as for vector (see case (i)), we
conclude that and therefore, in case (iii) as well.

Necessity: Assume that there does not exist a line balance for
which condition does not hold.

In other words, either or for any line balance
condition holds. Thus, we have to consider the following two
possible cases (j) and (jj).

Case (j):
Let us compare line balance with an arbitrary line balance

Since line balance is not optimal for vector t of the operation times,
the strict inequality must hold. Therefore, for any vector

with the opposite inequality

may hold for vector only if

Indeed, one can overcome the strictly positive difference
only via changing the processing times of the manual operations

Recall that Due to bound (8), the desired vector cannot be

arbitrarily close to vector
Since bound (8) must hold for any non-optimal line balance, we conclude

that condition (9) holds for the desired vector

As a result we obtain

Case (jj):
Obviously, the lower bound (9) for the distance between vector and

the desired vector is correct in case (jj) as well. Therefore, we have to
compare line balance only with other optimal line balances.

Let be an arbitrary line balance from the set Due to
condition there exists a subset of the set such
that

If there exists an index such that
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then we set

Due to (10), the strict inequality

If for each index then we set

We consider an arbitrarily small real number where and

an arbitrary vector for which equality holds.
Hereafter, we use the notation

where denotes a vector the components of which are used in the right-hand
side of equality (11). Inequality implies

where For any line balance we obtain

From (12) and (13), it follows that As a consequence,
for any inequality holds for an

arbitrary vector with distance
From the latter statement and inequalities (9), it follows that

Thus, Theorem 1 is proven.
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The above proof implies the following corollaries.
Corollary 1: If then

Corollary 2: If then

The latter claim gives a lower bound for a strictly positive stability radius.

4. STABLE OPTIMAL LINE BALANCE

Next, we present an algorithm for selecting the set of stable optimal line
balances i.e., all optimal line balances with strictly
positive stability radii:

Algorithm 1
INPUT: G=(V, A),
OUTPUT: Set of all stable optimal line balances.
1.Construct the optimal line balances

2.Construct set for each optimal line balance
Set

3.DO for r = 0,
DO for

IF condition does not hold, THEN GOTO 5.
IF THEN GOTO 4.

END
4. Line balance is stable:

Set GOTO 6.
5. Line balance is unstable:

6. END
Due to Theorem 1, all stable optimal line balances are selected by

Algorithm 1. Within step 1 of Algorithm 1, one has to solve problem
SALBP-2 which is binary NP-hard even if m = 2 and A = Ø. The latter
claim may be easily proven by a polynomial reduction of the NP-complete
partition problem to SALBP-2 with m = 2 (see e.g. [4]). To reduce the
calculations in steps 2 – 6, we can consider a proper subset of set B(t) instead
of the whole set.

Returning to the example of problem SALBP-2 presented in Section 2
(see Figure 10-1), we can construct the set of all optimal
line balances, where
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We find the sets and since

and Due to Theorem 1, we obtain equality

since condition does not hold for line balance
Similarly, due to Theorem 1, since condition does

not hold. The only optimal line balance with a strictly positive stability
radius is line balance Indeed, for any optimal line balance
condition holds. Thus, Algorithm 1 gives the singleton

Next, we show how to use Theorem 1 for the calculation of the exact
value of a strictly positive stability radius for line balance

For calculating we have to find a line balance and a vector

such that

where and vector is the closest vector to vector for which
inequality (14) holds.

Since value linearly depends on the components of vector
before reaching inequality (14) via a continuous change of the components

of vector we first reach equality for some new vector

for which the optimal line balance becomes not stable, i.e.,
equality (15) holds:

Let denote the set of all subsets with the

valid equality

Due to equality (15) (see Theorem 1), there exists a line balance
such that condition does not hold. Therefore,

using the same arguments as in the sufficiency proof of Theorem 1 (see
cases (i), (ii) and (iii)), we can construct a vector for which inequality
(14) holds and where may be chosen as small as desired.
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Thus, the calculation of for line balance is reduced to the

construction of the closest vector to vector t for which equality (15) holds.
Next, we demonstrate this construction for the example shown in Figure

10-1. Namely, we consider two possibilities (see case (l) and case (ll)) how
we can reach equality (15) for line balance
Case (l):

Since condition

holds for any optimal line balance (see Theorem 1). In order to get
equality (15) we have to violate a condition like (17), namely, for a new
vector condition

must be incorrect. To violate condition (18), we can include a new element
into set or delete corresponding elements from the set The latter
possibility cannot be realized since set includes the empty set as its
element. Therefore, we only can include a new element into the set

It is clear that the only candidate for such an inclusion is the subset

of set If we set and then

we obtain and

condition (18) does not hold. Therefore,

Case (ll):
In this case, we have to make line balance optimal for a

new vector violating condition (18). It is easy to see that line

balance

may be included into set with a cycle time equal to 9. To this end, we
can set and obtain

Thus, in both cases (l) and (ll), we have It is easy to

convince that vectors  constructed in case (l) and case (ll) are the closest
to vector with equality (15) being correct. Therefore, due to Theorem 1
we obtain
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The same cases (l) and (ll) have to be considered for calculating the
stability radius for any line balance In case (l), we have to
compare line balance with all line balances and calculate the
following upper bound for the stability radius

where the sign denotes the direct sum of two sets.
In case (ll),  we have to compare line balance with line balances

and calculate the following upper bound for the stability radius

If all competitive line balances will be compared with line balance
then we calculate the exact value of otherwise we obtain

an upper bound for the stability radius. In order to restrict the set of line
balances which have to be compared with we can use an approach similar
to the one derived in [7] for the stability radius of an optimal schedule.

5. CONCLUSION
We can give two remarks how to restrict the set of optimal line balances

considered in Algorithm 1. First, it should be noted that we do not
distinguish line balances which have only different orders of the subsets

but their set of subsets is the same.
Second, in practice not all optimal line balances are suitable for a realization
since not only precedence constraints defined by the arc set A have to be
taken into account. Therefore, the cardinality of set B(t) used in Algorithm 1
may be essentially smaller than

It is easy to show that SALBP-2 may be considered as the problem of
scheduling n partially ordered jobs on m parallel (identical) machines with
the makespan criterion. In [3], this problem is denoted as
Therefore, the above results for an optimal line balance may be interpreted
as results on the stability analysis of an optimal schedule for problem

At the stage of the design of the assembly line, another mathematical
problem (denoted as SALBP-1) has to be considered. Problem SALBP-1 is
to minimize the number of stations when the cycle-time is given and fixed.
The stability of feasibility and optimality of a line balance for problem
SALBP-1 have been considered in [6].
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