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Abstract. The goal of this paper is to investigate scheduling heuristics to seek the minimum of a positively 
weighted convex sum of makespan and the number of tardy jobs in a static hybrid flow shop environment 
where at least one production stage is made up of unrelated parallel machines.  In addition, sequence - and 
machine - dependent setup times are considered.  The problem is a combinatorial optimization problem 
which is too difficult to be solved optimally for large problem sizes, and hence heuristics are used to obtain 
good solutions in a reasonable time.  Some dispatching rules and flow shop makespan heuristics are 
developed. Then this solution may be improved by fast polynomial heuristic improvement algorithms based 
on shift moves and pairwise interchanges. In addition, metaheuristic proposed is a tabu search algorithm.  
Three basic parameters (i.e., number of neighbors, neighborhood structure, and size of tabu list in each 
iteration) of a tabu search algorithm are briefly discussed in this paper. The performance of the heuristics is 
compared relative to each other on a set of test problems with up to 50 jobs and 20 stages. 
 
Keywords: Hybrid flow shop scheduling; Unrelated parallel machines; Setup times; Constructive algorithms; 
Improvement heuristics; Tabu Search algorithm.  

 
 

1.  INTRODUCTION 
 
Industrial scheduling presents a complex decision-

making scenario. Operations managers are confronted with 
the tough task to find an optimal solution from the large 
number of possible combinations that should be considered. 
This type of problem is also related to combinatorial 
optimization and NP-hardness, and consequently the search 
for efficient methods providing a good feasible solution 
continues to be a challenge. Once efficient algorithm 
methods are found, computational tools can be built that 
will allow managers to make rapid decisions with 
flexibility and efficiency.  

This article has been concerned with heuristics to 
provide good and quick feasible solutions. They obtain 
solutions to large problems with limited computational 
effort. The heuristics concerned in this paper can be 
classified into two types; constructive (conventional) and 
iterative (modern) heuristic algorithms. 

In a constructive algorithm, single or several solutions 

are generated, but the only best one is chosen as the final 
solution.  In this paper, several simple dispatching rules 
and flow shop heuristics are adapted to find a solution for 
the problem.  Additionally, we investigate how to improve 
the quality of the solution by using several fast polynomial 
improvement algorithms. 

The interest in iterative algorithms is due to the 
difficulty of solving real large-size problems by using an 
exact algorithm, while such metaheuristic algorithms can 
treat large complex problems and for this reason, they have 
got a considerable research attention over the last decades. 
This study will limit to one of the popular iterative 
algorithms known as a Tabu Search (TS) algorithm. It is 
originally proposed by Glover (1986).  The TS algorithm 
is among the most cited and used metaheuristics for the 
combinatorial problems (Blum and Roli 2003). It has been 
successfully applied in a lot of different areas: scheduling, 
transportation, telecommunications, layout and circuit 
design, graphs, expert systems, and so on (see Glover and 
Laguna 1993 for a survey).  
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Hence, in this paper TS-based algorithms will be used 
to solve the problem of scheduling a given set of n jobs at k 
stages on m unrelated parallel machines.  Such a problem 
occurs in real world problems such as e.g. in the textile 
industry.   

A textile manufacturer supervises workers who make 
products that contain fibers, such as clothing, tires, and 
yarn.  Whatever the industry, the task of a textile 
manufacturer is the same: to convert raw products into 
usable goods.  Typically, a textile production unit can 
hardly fit in any classical scheduling model.  Instead, such 
a production unit is characterized by a multi-stage 
manufacturing process with multiple production units per 
stage (i.e., parallel machines), which makes production 
management quite complex.  This combined model is 
referred to as the hybrid flow shop (HFS) or flexible flow 
shop (FFS) problem as shown in Figure 1.  It can be noted 
that this problem is also known as the flow shop problem 
because the process follows a flow shop characteristic, but 
there are some processing stages having parallel machines 
to increase the overall capacities, to balance the capacities 
of the stages, or either to eliminate or reduce the impact of 
bottleneck stages on the overall shop floor capacities. Most 
textile companies are ageing while the technology changes 
rapidly.  It is common to find newer or more modern 
machines running side by side with older and less efficient 
machines.  Hence, these companies own machines of 
different ages, which may perform the same operations as 
the newer ones, but would generally require a longer 
operating time for the same operation.   

 

 
 
Figure 1: A general schematic of the hybrid flow shop. 

 
Sequence-dependent setup times and costs incur when 

machines often have to be reconfigured or cleaned between 
jobs. This process is known as a changeover or setup. If the 
length of the setup depends on the job just completed and 
on the one about to be started, then the setup times are 
sequence-dependent. For instance, in the weaving phase the 
setup times are depending on the types of clothes being 
processed in sequence.  Another example is dying 
operations which often require setups.  Every time a new 

color is used, the painting devices must be cleaned.  The 
cleanup time often depends on the color just used as well as 
the color about to be used.  Such a resection is called a 
sequence-dependent setup time. 

For the past three decades, the hybrid flow shop 
scheduling problem has attracted many researchers. 
Numerous research articles have been published on this 
topic (see e.g. Wang 2005). There are two main reasons for 
this, among many others.  Firstly, a hybrid flow shop 
environment is a category of machine scheduling problems 
which is difficult to solve (Garey and Johnson 1979; Gupta 
1971). Thus, it is unlikely that polynomial time algorithms 
exist for the exact solution of the general problem. 
Secondly, this type of machine scheduling problem can find 
many real-world applications.  

Although the hybrid flow shop problem has been 
widely studied in the literature, most of the studies related 
to hybrid flow shop problems concentrate on problems with 
identical processors, see for instance, Gupta, Krüger, Lauff, 
Werner and Sotskov (2002), Alisantoso, Khoo, and Jiang 
(2003), Lin and Liao (2003), and Wang and Hunsucker 
(2003).  In this paper, however, the hybrid flow shop 
problem with unrelated non-identical parallel machines and 
sequence-dependent setup times is considered. This 
complex problem, which is encountered by many industries, 
is very difficult to solve. 

Consequently, in this paper the hybrid flow shop with 
unrelated parallel machines like the textile industry will be 
solved by using some constructive and TS-based 
algorithms.  The rest of this paper is organized as follows: 
The problem considered in this paper is described in 
Section 2.  Some heuristic algorithms are proposed in 
Section 3.  A TS algorithm is presented in Section 4.  
Computational results and conclusions are shown in 
Section 5 and Section 6, respectively. 

 
 

2.  STATEMENT OF THE PROBLEM 
 
The hybrid flow shop system is defined by a set O = 

{1,…, t,…, k} of k processing stages. At each stage t, t ∈ O, 
there is a set Mt = {1,…, i,…, mt} of mt unrelated machines.  
The set J = {1,…, j,…, n} of n independent jobs has to be 
processed on machine of set M1,…, Mk.  Each job j, j ∈ J, 
has its release date rj ≥ 0 and a due date dj ≥ 0. It has its 
fixed standard processing time for every stage t, t ∈ O.  
Owing to the unrelated machines, the processing time pt

ij of 
job j on machine i at stage t is equal to pst

j/ vt
ij, where pst

j is 
the standard processing time of job j at stage t, and vt

ij is the 
relative speed of job j which is processed by the machine i 
at stage t. 

There are processing restrictions of the jobs as 
follows: (1) jobs are processed without preemptions on any 
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machine; (2) every machine can process only one operation 
at a time; (3) operations have to be realized sequentially, 
without overlapping between the stages; (4) job splitting is 
not permitted. 

Setup times considered in this problem are classified 
into two types, namely a machine-dependent setup time and 
a sequence-dependent setup time.  A setup time of a job is 
machine-dependent if it depends on the machine to which 
the job is assigned.  It is assumed to occur only when the 
job is the first job assigned to the machine. cht

ij denotes the 
length of the machine-dependent setup time, (or 
changeover time), of job j if job j is the first job assigned to 
machine i at stage t. A sequence-dependent setup time is 
considered between successive jobs. A setup time of a job 
on a machine is sequence-dependent if it depends on the 
job just completed on that machine. st

lj denotes the time 
needed to changeover from job l to job j at stage t, where 
job l is processed directly before job j on the same machine.  
All setup times are known and constant.   

The scheduling problem has dual objectives, namely 
minimizing the makespan and minimizing the number of 
tardy jobs. Therefore, the objective function to be 
minimized is 

λCmax + ( 1 – λ)ηT    (1) 

where Cmax  is the makespan, which is equivalent to the 
completion time of the last job to leave the system, ηT is the 
total number of tardy jobs in the schedule, and λ  is the 
weight (or relative importance) given to Cmax and ηT , (0 ≤ 
λ ≤ 1). 

 
 

3.  HEURISTIC ALGORITHMS 
 
Heuristic algorithms have been developed to provide 

good and quick solutions.  They obtain solutions to large 
problems with acceptable computational times, but they do 
not generate optimality and it may be difficult to judge their 
effectiveness. They can be divided into either constructive 
or improvement algorithms.  The former algorithms build 
a feasible solution from scratch.  The latter algorithms try 
to improve a previously generated solution by normally 
using some form of specific problem knowledge.  
However, the time required for computation is usually 
larger compared to the constructive algorithms. 
 
3.1 Heuristic Construction of a Schedule 

 
Since the hybrid flow shop scheduling problem is NP-

hard, algorithms for finding an optimal solution in 
polynomial time are unlikely to exist. Thus, heuristic 
methods are studied to find approximate solutions. Most 
researchers develop existing heuristics for the classical 

hybrid flow shop problem with identical machines by using 
a particular sequencing rule for the first stage. They follow 
the same scheme, see Santos, Hunsucker, and Deal (1996).  

Firstly, a job sequence is determined according to a 
particular sequencing rule, and we will briefly discuss the 
modifications for the problem under consideration in the 
next section. Secondly, jobs are assigned as soon as 
possible to the machines at every stage using the job 
sequence determined for the first stage. There are basically 
two approaches for this subproblem. The first way is that 
for the other stages, i.e. from stage two to stage k, jobs are 
ordered according to their completion times at the previous 
stage. This means that the FIFO (First in First out) rule is 
used to find the job sequence for the next stage by means of 
the job sequence of the previous stage. The second way is 
to sequence the jobs for the other stages by using the same 
job sequence as for the first stage, called the permutation 
rule. 

Assume now that a job sequence for the first stage has 
already been determined. Then we have to solve the 
problem of scheduling n jobs on unrelated parallel 
machines with sequence- and machine-dependent setup 
times using this given job sequence for the first stage. We 
apply a greedy algorithm which constructs a schedule for 
the n jobs at a particular stage provided that a certain job 
sequence for this stage is known (remind that the job 
sequence for this particular stage is derived either from the 
FIFO rule or from the permutation rule), where the 
objective is to minimize the flow time and the idle time of 
the machines. The idea is to balance evenly the workload in 
a heuristic way as much as possible. 
 
3.2 Constructive Heuristics 

 
In order to determine the job sequence for the first 

stage by some heuristics, we remind that the processing and 
setup times for every job are dependent on the machine and 
the previous job, respectively. This means that they are not 
fixed, until an assignment of jobs to machines for the 
corresponding stage has been done. Thus, for applying an 
algorithm for fixing the job sequence for stage one, an 
algorithm for finding the representatives of the machine 
speeds and the setup times is necessary. 

The representatives of machine speed v′tij and setup 
time s′tlj for stage t, t=1,…k, use the minimum, maximum 
and average values of the data. Thus, the representative of 
the operating time of job j at stage t is the sum of the 
processing time pst

j/v′tij plus the representative of the setup 
time s′tlj. Nine combinations of relative speeds and setup 
times will be used in our algorithms. The job sequence for 
the first stage is then fixed as the job sequence with the best 
function value obtained by all combinations of the nine 
different relative speeds and setup times.  
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For determining the job sequence for the first stage, 
we adapt and develop several basic dispatching rules and 
constructive algorithms for the flow shop makespan 
scheduling problem. Some of the dispatching rules are 
related to tardiness-based criteria, whereas others are used 
mainly for comparison purposes. 

 The Shortest Processing Time (SPT) rule is a simple 
dispatching rule, in which the jobs are sequenced in non-
decreasing order of the processing times, whereas the 
Longest Processing Time (LPT) rule orders the jobs in non-
increasing order of their processing times. The Earliest 
Release Date first (ERD) rule is equivalent to the well-
known first-in-first-out (FIFO) rule. The Earliest Due Date 
first (EDD) rule schedules the jobs according to non-
decreasing due dates of the jobs. The Minimum Slack Time 
first (MST) rule is a variation of the EDD rule.  This rule 
concerns the remaining slack of each job, defined as its due 
date minus the processing time required to process it. The 
Slack time per Processing time (S/P) is similar to the MST 
rule, but its slack time is divided by the processing time 
required as well (Pinedo and Chao 1999). 

The hybrid SPT and EDD (HSE) rule is developed to 
combine both SPT and EDD rules.  Firstly, consider the 
processing times of each job and determine the relative 
processing time compared to the maximum processing time 
required.  Secondly, determine the relative due date 
compared to the maximum due date.  Next, calculate the 
priority value of each job by using the weight (or relative 
importance) given to Cmax and ηT for the relative processing 
time and relative due date.  

Palmer’s heuristic (1965) is a makespan heuristic 
denoted by PAL in an effort to use Johnson’s rule by 
proposing a slope order index to sequence the jobs on the 
machines based on the processing times. The idea is to give 
priority to jobs that have a tendency of progressing from 
short times to long times as they move through the stages. 
Campbell, Dudek, and Smith (1970) develop one of the 
most significant heuristic methods for the makespan 
problem known as CDS algorithm.  Its strength lies in two 
properties: (1) it uses Johnson’s rule in a heuristic fashion, 
and (2) it generally creates several schedules from which a 
“best” schedule can be chosen.  In so doing, k – 1 sub-
problems are created and Johnson’s rule is applied to each 
of the sub-problems.  Thus, k – 1 sequences are generated.  
Since Johnson’s algorithm is a two-stage algorithm, a k-
stage problem must be collapsed into a two-stage problem.   

Gupta (1971) provides an algorithm denoted by GUP, 
in a similar manner as algorithm PAL by using a different 
slope index and scheduling the jobs according to the slope 
order. Dannenbring (1977) develops a method, denoted by 
DAN, by using Johnson’s algorithm as a foundation.  
Furthermore, the CDS and PAL algorithms are also 
exhibited.  Dannenbring constructs only one two-stage 

problem, but the processing times for the constructed jobs 
reflect the behavior of PAL’s slope index.  Its purpose is to 
provide good and quick solutions. 

Nawaz, Enscore and Ham (1983) develop the probably 
best constructive heuristic method for the permutation flow 
shop makespan problem, called the NEH algorithm. It is 
based on the idea that a job with a high total operating time 
on the machines should be placed first at an appropriate 
relative order in the sequence. Thus, jobs are sorted in non-
increasing order of their total operating time requirements. 
The final sequence is built in a constructive way, adding a 
new job at each step and finding the best partial solution.  
For example, the NEH algorithm inserts a third job into the 
previous partial solution of two jobs which gives the best 
objective function value under consideration.  However, 
the relative position of the two previous job sequence 
remains fixed.  The algorithm repeats the process for the 
remaining jobs according to the initial ordering of the total 
operating time requirements. 

Again, to apply these algorithms to the hybrid flow 
shop problem with unrelated parallel machines, the total 
operating times for calculating the job sequence for the first 
stage are calculated for the nine combinations of relative 
speeds of machines and setup times. 

 
3.3 Improvement Heuristics 

 
Unlike constructive algorithms, improvement 

heuristics start with an already built schedule and try to 
improve it by some given procedures. Their use is 
necessary since the constructive algorithms (especially 
some algorithms that are adapted from pure makespan 
heuristics and some dispatching rules such as the SPT, and 
LPT rules) do not consider due dates. In this section, some 
fast improvement heuristics will be investigated to improve 
the overall function value by concerning mainly the due 
date criterion. 

The iterative algorithms described in the following 
and in Section 4 are based on the shift move (SM) and the 
pairwise interchange (PI) neighborhoods.  

The SM neighborhood repositions a chosen job. This 
means that an arbitrary job πr at position r is shifted to 
position i, while leaving all other relative job orders 
unchanged.  If 1≤ r < i ≤ n, it is called a right shift and 
yields π’= (π1,…, πr-1, πr+1, …, πi, πr,…, πn).  If 1≤ i < r ≤ 
n, it is called a left shift and yields π’= (π1,… πr, πi,…,πr-1, 
πr+1, …, πn). For instance, assume that randomly one 
solution in the current generation is selected, say [8 9 4 3 1 
7 6 5 2], and then randomly a couple of job positions for 
performing the shift is selected, e.g. positions 2 and 7 (in 
this case, it is a right shift). The new solution will be [8 4 3 
1 7 6 9 5 2].  However, if positions 7 and 2 are randomly 
selected (i.e. it is a left shift), the new solution will be [8 6 
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9 4 3 1 7 5 2]. In the SM neighborhood, the current solution 
has (n–1)2 neighbors. 

The PI neighborhood exchanges a pair of arbitrary 
jobs πr, and πi, where 1 ≤ i, r ≤ n and i ≠ r.  Such an 
operation swaps the jobs at positions r and i, which yields 
π’= [π1,…, πr-1, πi, πr+1, …, πi-1,πr, πi+1,…, πn]. For example, 
assume that the current solution is [8 9 4 3 1 7 6 5 2], and 
then randomly the couple of job positions to be exchanged 
is selected, e.g. positions 1 and 3. Thus, the new solution 
will be [4 9 8 3 1 7 6 5 2]. In the PI neighborhood, the 
current solution has n×(n-1)/2 neighbors. 

In order to find a satisfactory solution of the due date 
problem, we apply fast polynomial heuristics by applying 
either the shift move (SM) algorithm as an improvement 
mechanism based on the idea that we will consider the jobs 
that are tardy and move them left and right or the pairwise 
interchange (PI) algorithm, where tardy jobs are swapped 
to different job positions left and right, either to randomly 
determined two positions (denoted by the number “2”) or to 
all other positions (denoted by the letter “A”). The best 
schedule among the generated neighbors is then taken as 
the result. 
 
 
4.  TABU SEARCH ALGORITHM 

 
A TS algorithm is an iterative improvement approach 

designed to avoid terminating prematurely at a local 
optimum for combinatorial optimization problems. Similar 
to a simulating annealing (SA) algorithm (see  e.g. 
Jungwattanakit, Reodecha, Chaovalitwongse, and Werner 
2006a,b), the TS algorithm is based on the idea of 
exploring the solution space of a problem by moving from 
one region of the search space to another in order to look 
for a better solution. However, to escape from a local 
optimum, the SA algorithm accepts an inferior solution, 
which may lead to better solutions later by using an 
acceptance probability. In contrast, the TS algorithm allows 
the search to move to the best solution among a set of 
candidate moves as defined by the neighborhood structure, 
although it can move to a neighbor with an inferior solution. 
Nevertheless, subsequent iterations may cause the search to 
move repeatedly back to the same local optimum. In order 
to prevent cycling back to recently visited solutions, it 
should be forbidden or declared tabu for a certain number 
of iterations, called the size (or length) of the list.  Its size 
is a key controllable parameter of the TS algorithm.  This 
is accomplished by keeping the attributes of the forbidden 
moves in a list, called the tabu list. 

Additionally, an aspiration criterion is defined to deal 
with the case in which a move leading to a new best 
solution is tabu. If a current tabu move satisfies the 
aspiration criterion, its tabu status is canceled and it 

becomes an allowable move. The use of the aspiration 
criterion allows TS to lift the restrictions and intensify the 
search into a particular solution region. 

 
4.1 Choice of an Initial Solution 

 
A TS algorithm has been shown to be effective for 

many combinatorial optimization problems (see Glover and 
Laguna 1993), and it seems easy to apply such an approach 
to scheduling problems. To improve the quality of the 
solution finally obtained, we also investigated the influence 
of the choice of an appropriate initial solution by using 
particular constructive algorithms. We used as an initial 
solution that obtained from the constructive algorithms SPT, 
LPT, ERD, EDD, MST, S/P, HSE, PAL, CDS, GUP, DAN 
and NEH, as well as the other fast improvement (SM, PI) 
heuristics, respectively.   

 
 

5.  COMPUTATIONAL RESULTS 
 

Firstly, the overall constructive algorithms and 
different fast improvement heuristics are studied.  The 
constructive algorithms (denoted by letter “CA”) are the 
simple dispatching rules such as the SPT, LPT, ERD, EDD, 
MST, S/P, and HSE rules, and the flow shop makespan 
heuristics adapted such as the PAL, CDS, GUP, DAN, and 
NEH rules.  Then, we applied the fast polynomial 
improvement heuristics based on four cases stated above in 
Section 3.3.   They are denoted by 2-SM, A-SM, 2-PI, 
and A-PI, respectively.  We used problems with 10 jobs × 
5 stages, 30 jobs × 10 stages, and 50 jobs × 20 stages. For 
all problem sizes, we tested instances with λ ∈ {0, 0.001, 
0.005, 0.01 0.05, 0.1, 0.5, 1} in the objective function. Ten 
different instances for each problem size have been run.   

An experiment was conducted to test with data such as 
the standard processing times, relative machine speeds, 
setup times, release dates and due dates.  The standard 
processing times are generated uniformly from the interval 
[10,100]. Due to the unrelated machine problem, the 
relative speeds are distributed uniformly in the interval 
[0.7,1.3]. The setup times, both sequence- and machine-
dependent setup times, are generated uniformly from the 
interval [0,50], whereas the release dates are generated 
uniformly from the interval between 0 and half of  their 
total standard processing time mean.  The due date of a 
job is set in a way that it is similar to the approach 
presented by Rajendaran and Ziegler (2003) and is as 
follows: 
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dj  = total of mean setup time of a job on all stages + 

(n – 1)×(mean processing time of a job on one 

machine)×U(0,1) +∑
=

k

t

t
jps

1

+ rj 

 

 

 

(2) 

The results for the constructive algorithms and 
improvement heuristics are given in Table 1. We give the 
average (absolute for λ = 0 resp. percentage for λ > 0) 
deviation of a particular algorithm from the best solution in 
these tests for three problem sizes n×k. 
 
Table 1: Average overall performance of constructive and 

improvement heuristics. 

λ 
Problem 

size 
CA 2-SM A-SM 2-PI A-PI 

10×5 
30×10 
50×20 

3.025a 

7.050 
9.567 

1.525 
3.933 
5.717 

1.192 
3.008 
4.575 

1.650 
4.267 
5.550 

1.200 
2.050 
2.192 

0 

Sum 19.642 11.175 8.775 11.467 5.442 
10×5 

30×10 
50×20 

78.540b 

88.360 
35.280 

28.530 
36.950 
12.600 

19.060 
23.810 
12.180 

32.590 
36.840 
9.710 

21.360 
19.040 
5.500 

0.001 

Sum 202.180 78.080 55.050 79.140 45.900 
10×5 

30×10 
50×20 

41.340 
40.100 
19.775 

15.070 
16.200 
8.748 

9.490 
10.620 
8.126 

17.900 
17.490 
8.416 

11.780 
8.740 
4.536 

0.005 

Sum 101.215 40.018 28.236 43.806 25.056 
10×5 

30×10 
50×20 

29.640 
27.977 
15.136 

10.860 
12.313 
8.373 

6.910 
7.857 
7.512 

13.530 
14.122 
8.679 

8.430 
6.802 
5.397 

0.01 

Sum 72.753 31.546 22.279 36.331 20.629 
10×5 

30×10 
50×20 

17.267 
16.803 
9.697 

6.292 
8.225 
5.697 

4.703 
6.185 
5.348 

8.344 
9.980 
6.533 

5.394 
5.019 
5.035 

0.05 

Sum 43.767 20.214 16.236 24.857 15.448 
10×5 

30×10 
50×20 

15.783 
14.945 
9.162 

5.520 
6.759 
5.255 

4.187 
4.827 
5.128 

8.520 
8.614 
5.776 

4.847 
3.761 
4.766 

0.1 

Sum 39.890 17.534 14.142 22.910 13.374 
10×5 

30×10 
50×20 

15.531 
14.780 
8.984 

5.675 
7.244 
5.269 

4.043 
5.583 
4.993 

7.762 
8.332 
6.602 

4.537 
4.340 
4.676 

0.5 

Sum 39.295 18.188 14.619 22.696 13.553 
10×5 

30×10 
50×20 

15.832 
14.887 
8.879 

5.213 
7.070 
5.340 

4.338 
5.361 
4.862 

7.894 
9.309 
6.051 

4.617 
4.314 
4.632 

1.0 

Sum 39.598 17.623 14.561 23.254 13.563 
a average absolute deviation for λ = 0, b average percentage deviation for λ 

 
From these results it is obvious that the improvement 

heuristics can improve the quality of constructive 

algorithms by about 60–70 percent.  In addition, we have 
found that for the problem size 10 jobs × 5 stages the all 
shift moves are slightly better than the others, whereas the 
all pairwise interchange -based improvement heuristics are 
the best algorithm otherwise.  However, in general the all 
pairwise interchange algorithm should be selected as the 
improvement algorithm.  Consequently, in this paper we 
use in the following only the all pairwise interchange-based 
improvement heuristics.  However, when comparing 
between the 2-SM and 2-PI algorithms whose CPU time is 
smaller than both the A-SM and A-PI algorithms, we have 
found that the 2-SM algorithm certainly became better than 
the 2-PI algorithm. 

 
Table 2: Average performance of constructive (Group I) 

algorithms. 

λ 
Problem 

size 
SPT LPT ERD EDD MST S/P HSE 

10×5 
30×10 
50×20 

3.000a 

6.900 
8.700 

3.200 
7.900 
8.200 

3.500 
7.700 
11.100 

4.600 
7.900 

15.800 

4.100 
8.400 

14.600

4.100 
7.900 

14.100

2.800 
7.200 
7.900 

0 

Sum 18.600 19.300 22.300 28.300 27.100 26.100 17.900
10×5 

30×10 
50×20 

90.920b

89.090
31.830

94.290 
104.510 
34.420 

87.880 
94.730 
42.570 

102.460 
90.250 
49.770 

91.560
100.510
45.600

90.930
91.170
43.960

90.910
87.730
30.970

0.001

Sum 211.840 233.220 225.180 242.480 237.670 226.060 209.610
10×5 

30×10 
50×20 

45.290
42.140
18.812

44.130 
45.420 
18.338 

44.710 
43.800 
23.140 

58.240 
43.640 
28.685 

52.180
46.770
26.281

52.520
41.540
25.233

45.250
41.360
18.798

0.005

Sum 106.242 107.888 111.650 130.565 125.231 119.293 105.408
10×5 

30×10 
50×20 

33.300
30.633
14.895

30.430 
30.954 
14.199 

31.040 
30.780 
17.734 

41.170 
31.752 
21.330 

36.990
33.282
19.445

37.630
28.880
18.625

33.270
29.870
14.996

0.01 

Sum 78.828 75.583 79.554 94.252 89.717 85.135 78.136
10×5 

30×10 
50×20 

22.154
20.477
10.406

16.778 
17.413 
9.721 

17.176 
19.306 
11.872 

21.889 
21.227 
12.748 

20.413
21.110
11.476

19.662
16.986
10.838

21.591
19.431
10.425

0.05 

Sum 53.037 43.912 48.354 55.864 52.999 47.486 51.447
10×5 

30×10 
50×20 

21.084
18.691
10.029

15.177 
15.309 
9.384 

15.656 
17.482 
11.335 

19.457 
19.453 
11.772 

18.163
19.007
10.554

17.181
15.058
9.935 

20.257
17.658
10.053

0.1 

Sum 49.804 39.870 44.473 50.682 47.724 42.174 47.968
10×5 

30×10 
50×20 

21.203
18.759
9.985 

14.852 
15.021 
9.394 

15.456 
17.524 
11.181 

18.446 
19.528 
11.244 

17.310
18.653
10.068

16.114
14.916
9.446 

20.073
17.669
10.011

0.5 

Sum 49.947 39.267 44.161 49.218 46.031 40.476 47.753
10×5 

30×10 
50×20 

21.473
18.793
9.892 

15.061 
15.018 
9.308 

15.696 
17.551 
11.073 

18.567 
19.567 
11.087 

17.426
18.630
9.918 

16.214
14.923
9.296 

21.473
18.793
9.892 

1.0 

Sum 50.158 39.387 44.320 49.221 45.974 40.433 50.158
a average absolute deviation for λ = 0, b average percentage deviation for λ 
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Next, we present the constructive algorithms that are 
separated into four main groups.  The first heuristic group 
includes the simple dispatching rules such as SPT, LPT, 
ERD, EDD, MST, S/P, and HSE.  The second heuristic 
group includes the flow shop makespan heuristics adapted 
such as PAL, CDS, GUP, DAN, and NEH.  The third and 
fourth heuristic groups are generated from the first two 
groups of heuristics where the solutions are improved by 
the selected polynomial improvement algorithm based on 
all pairwise interchange-based improvement heuristics, and 
they are denoted by the first letter “I” in front of the letters 
describing the heuristics of the first two groups.  
 
Table 3: Average performance of constructive (Group II) 

algorithms. 
λ Problem size PAL CDS GUP DAN NEH 

10×5 
30×10 
50×20 

2.700a 

7.700 
9.400 

2.200 
6.100 
6.600 

2.800 
7.300 
8.600 

2.600 
7.800 
8.800 

0.700 
1.800 
1.000 

0 

Sum 19.800 14.900 18.700 19.200 3.500 
10×5 
30×10 
50×20 

73.220b 

101.410 
37.030 

61.630 
77.990 
27.000 

77.800 
94.510 
34.620 

70.370 
98.410 
35.200 

10.470 
29.980 
10.320 

0.001 

Sum 211.660 166.620 206.930 203.980 50.770 
10×5 
30×10 
50×20 

38.870 
44.290 
20.046 

31.010 
34.330 
15.791 

41.540 
42.650 
18.867 

36.150 
43.740 
18.902 

6.250 
11.500 
4.411 

0.005 

Sum 103.206 81.131 103.057 98.792 22.161 
10×5 
30×10 
50×20 

28.570 
29.870 
15.440 

22.230 
23.506 
12.655 

30.560 
29.744 
14.646 

25.780 
29.561 
14.514 

4.710 
6.887 
3.160 

0.01 

Sum 73.880 58.391 74.950 69.855 14.757 
10×5 
30×10 
50×20 

18.069 
16.766 
10.355 

12.421 
13.394 
8.400 

19.019 
17.207 
9.898 

15.633 
15.928 
9.457 

2.399 
2.386 
0.765 

0.05 

Sum 45.190 34.215 46.124 41.018 5.550 
10×5 
30×10 
50×20 

17.073 
14.637 
9.877 

11.196 
11.722 
8.016 

17.585 
15.071 
9.523 

14.471 
13.784 
8.985 

2.097 
1.470 
0.479 

0.1 

Sum 41.587 30.934 42.179 37.240 4.046 
10×5 
30×10 
50×20 

17.373 
14.368 
9.754 

11.176 
11.768 
7.933 

17.221 
14.794 
9.489 

14.448 
13.488 
8.866 

2.700 
0.869 
0.436 

0.5 

Sum 41.495 30.877 41.504 36.802 4.005 
10×5 
30×10 
50×20 

17.674 
14.367 
9.651 

11.400 
11.785 
7.837 

17.418 
14.780 
9.399 

14.701 
13.477 
8.766 

2.885 
0.964 
0.428 

1.0 

Sum 41.692 31.022 41.597 36.944 4.277 
a average absolute deviation for λ = 0, b average percentage deviation for λ 

 
The results for the constructive and polynomial 

improvement algorithms are given in Table 2 through Table 

5. From these results it can be seen that the improvement 
algorithms in the fourth heuristic group improved from 
flow shop makespan heuristics from the second heuristic 
group (i.e., PAL, CDS, GUP, DAN, and NEH) are better 
than the dispatching rules in the first heuristic group (i.e., 
SPT, LPT, ERD, EDD, MST, S/P, and HSE) as well as the 
third heuristic group improved from them.   
 
Table 4: Average performance of improvement (Group III) 

algorithms. 
λ Problem size ISPT ILPT IERD IEDD IMST IS/P IHSE

10×5 
30×10 
50×20 

1.400a 

2.100
1.300

1.300 
2.500 
2.300 

1.200 
2.400 
3.000 

1.000 
1.500 
3.000 

1.300
1.200
4.900

1.300
1.800
3.300

1.100
2.100
1.700

0 

Sum 4.800 6.100 6.600 5.500 7.400 6.400 4.900
10×5 

30×10 
50×20 

16.220b

20.310
6.730

24.020 
18.910 
5.150 

12.550 
18.970 
7.690 

13.710 
13.200 
5.010 

18.940
15.710
4.040

18.870
13.910
6.960

23.880
19.090
2.990

0.001 

Sum 43.260 48.080 39.210 31.920 38.690 39.740 45.960
10×5 

30×10 
50×20 

10.000
9.690
3.924

13.410 
8.150 
5.228 

8.170 
8.610 
5.514 

8.650 
7.530 
6.051 

11.990
7.520
3.554

11.740
6.610
5.631

14.840
10.300
3.922

0.005 

Sum 23.614 26.788 22.294 22.231 23.064 23.981 29.062
10×5 

30×10 
50×20 

8.890
6.373
4.699

9.450 
9.709 
6.427 

7.030 
5.676 
5.749 

6.640 
6.753 
6.264 

7.690
4.762
6.890

9.540
4.076
6.583

9.080
9.096
5.198

0.01 

Sum 19.962 25.586 18.455 19.657 19.342 20.199 23.374
10×5 

30×10 
50×20 

5.476
4.820
4.778

5.281 
6.313 
5.247 

4.900 
2.768 
5.438 

6.629 
6.397 
7.221 

5.643
5.431
6.010

5.620
4.893
6.711

7.194
6.431
5.028

0.05 

Sum 15.074 16.841 13.106 20.247 17.084 17.224 18.653
10×5 

30×10 
50×20 

4.546
3.255
5.169

5.404 
4.743 
4.241 

4.787 
1.718 
5.024 

6.318 
5.523 
6.681 

5.721
4.957
5.831

4.877
5.033
5.788

5.763
4.619
5.173

0.1 

Sum 12.970 14.388 11.529 18.522 16.509 15.698 15.555
10×5 

30×10 
50×20 

4.969
3.929
5.453

4.932 
5.283 
4.244 

5.195 
2.404 
5.090 

5.707 
6.727 
6.215 

6.287
5.135
5.900

4.629
6.897
4.725

5.414
4.730
5.406

0.5 

Sum 14.351 14.459 12.689 18.649 17.322 16.251 15.550
10×5 

30×10 
50×20 

5.018
4.155
5.346

5.073 
4.838 
4.147 

5.268 
2.421 
5.107 

5.741 
6.843 
6.079 

5.935
5.932
5.731

4.840
6.940
4.523

5.018
4.155
5.346

1.0 

Sum 14.519 14.058 12.796 18.663 17.598 16.303 14.519
a average absolute deviation for λ = 0, b average percentage deviation for λ 

 
Among the simple dispatching rules (heuristic Group 

I), the SPT, LPT, ERD, and HSE rules are good dispatching 
rules.  However, in general the HSE rule outperforms the 
other dispatching rules for λ < 0.01, and the LPT rule is 
better than the other rules otherwise.  Among the adapted 
flow shop makespan heuristics in heuristic Group II, the 
NEH algorithm is clearly the best algorithm among all 
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studied constructive heuristics (but in fact, this algorithm 
takes the convex combination of both criteria into account 
when selecting partial sequences).  The CDS algorithm is 
certainly the algorithm on the second rank (but it is 
substantially worse than the NEH algorithm even if the 
makespan portion in the objective function value is 
dominant, i.e. for large λ values).  These results are 
similar to the conclusions of Jungwattanakit, Reodecha, 
Chaovalitwongse, and Werner (2006c) whose experiments 
compared the results for small problem sizes with the 
optimal solutions.       

 
Table 5: Average performance of improvement (Group IV) 

algorithms. 
λ Problem size IPAL ICDS IGUP IDAN INEH 

10×5 
30×10 
50×20 

1.400a 

2.500 
1.700 

1.300 
2.300 
0.700 

1.100 
2.100 
2.000 

1.300 
2.300 
1.400 

0.700 
1.800 
1.000 

0 

Sum 5.600 4.300 5.200 5.000 3.500 
10×5 
30×10 
50×20 

35.200b 

17.750 
8.750 

23.980 
18.110 
2.640 

35.630 
21.450 
3.260 

22.840 
21.140 
2.460 

10.470 
29.980 
10.320 

0.001 

Sum 61.700 44.730 60.340 46.440 50.770 
10×5 
30×10 
50×20 

13.980 
9.650 
5.453 

14.060 
6.050 
3.306 

15.260 
9.020 
3.734 

12.970 
10.200 
3.703 

6.250 
11.500 
4.411 

0.005 

Sum 29.083 23.416 28.014 26.873 22.161 
10×5 
30×10 
50×20 

8.460 
7.585 
6.183 

9.810 
4.935 
4.934 

10.130 
8.988 
3.431 

9.770 
6.782 
5.251 

4.710 
6.887 
3.160 

0.01 

Sum 22.228 19.679 22.549 21.803 14.757 
10×5 
30×10 
50×20 

6.322 
5.865 
5.486 

4.229 
4.227 
3.139 

5.675 
5.282 
5.538 

5.365 
5.419 
5.064 

2.399 
2.386 
0.765 

0.05 

Sum 17.673 11.595 16.495 15.848 5.550 
10×5 
30×10 
50×20 

5.749 
4.193 
5.336 

3.752 
2.241 
3.126 

4.154 
3.848 
5.394 

4.996 
3.537 
4.955 

2.097 
1.470 
0.479 

0.1 

Sum 15.278 9.119 13.396 13.488 4.046 
10×5 
30×10 
50×20 

4.327 
4.936 
5.163 

2.790 
2.812 
3.450 

4.147 
4.611 
5.125 

3.346 
3.745 
4.906 

2.700 
0.869 
0.436 

0.5 

Sum 14.426 9.052 13.883 11.997 4.005 
10×5 
30×10 
50×20 

4.527 
4.910 
5.044 

3.195 
2.405 
3.808 

4.378 
4.666 
5.046 

3.531 
3.543 
4.976 

2.885 
0.964 
0.428 

1.0 

Sum 14.481 9.408 14.090 12.050 4.277 
a average absolute deviation for λ = 0, b average percentage deviation for λ 

 
Thirdly, we studied the TS algorithm with a random 

initial solution.  The purpose of this study is to determine 
the favorable TS parameters, i.e., number of neighbors, 

neighborhood structure, and size of tabu list in each 
iteration.  Given the above three different problem sizes, 
the following TS parameter values were used in this test. 

Number of neighbors : 10 through 50, in step of 10 
Neighborhood structures : PI and SM 
Sizes of tabu list : 5, 10, 15, and 20 
From the preliminary tests, we set the time limit equal 

to one second for the problems with ten jobs, ten seconds 
for the problems with 30 jobs, and 30 seconds for the 
problems with 50 jobs. Again, for all tests we considered 
instances with λ ∈ {0, 0.001, 0.005, 0.01 0.05, 0.1, 0.5, and 
1}. Table 6 through Table 8 present the effect of the number 
of neighbors, neighborhood structure, and size of tabu list 
by using the average (absolute resp. relative) deviation 
from the best value as the performance measure. 

 
Table 6: The effect of the various numbers of neighbors on 

the performance of the TS algorithm. 
λ Problem size 10 20 30 40 50 

10×5 
30×10 
50×20 

0.029a 

0.400 

0.050 

0.017 

0.242 

0.146 

0.033 

0.313 

0.346 

0.050 

0.392 

0.533 

0.083 

0.463 

0.625 
0 

Sum 0.479 0.404 0.692 0.975 1.171 
10×5 
30×10 
50×20 

0.954b 

7.912 

0.981 

0.989 

5.236 

0.945 

0.943 

4.940 

2.040 

1.477 

5.640 

3.409 

3.281 

6.250 

4.250 
0.001 

Sum 9.847 7.170 7.923 10.526 13.781 
10×5 
30×10 
50×20 

1.136 

6.057 

1.875 

0.648 

3.942 

1.663 

0.618 

3.611 

2.623 

0.799 

4.134 

3.493 

1.282 

4.195 

4.099 
0.005 

Sum 9.068 6.253 6.852 8.426 9.576 
10×5 
30×10 
50×20 

0.781 

5.264 

2.171 

0.419 

3.653 

1.807 

0.474 

3.549 

2.783 

0.730 

3.931 

3.744 

1.099 

4.390 

4.161 
0.01 

Sum 8.216 5.879 6.806 8.405 9.650 
10×5 
30×10 
50×20 

0.535 

4.585 

2.410 

0.176 

3.727 

1.734 

0.166 

3.632 

2.793 

0.191 

3.777 

3.338 

0.332 

4.119 

3.905 
0.05 

Sum 7.530 5.637 6.591 7.306 8.356 
10×5 
30×10 
50×20 

0.381 

4.067 

2.174 

0.119 

3.542 

1.491 

0.158 

3.458 

2.313 

0.154 

3.773 

2.925 

0.344 

3.714 

3.555 
0.1 

Sum 6.622 5.152 5.929 6.851 7.613 
10×5 
30×10 
50×20 

0.331 

3.705 

2.008 

0.164 

2.962 

1.304 

0.108 

3.168 

2.098 

0.228 

3.182 

2.860 

0.282 

3.569 

3.510 
0.5 

Sum 6.044 4.430 5.374 6.269 7.360 
10×5 
30×10 
50×20 

0.358 

3.523 

2.129 

0.127 

2.805 

1.415 

0.152 

2.877 

2.321 

0.218 

3.169 

2.861 

0.327 

3.299 

3.551 
1.0 

Sum 6.011 4.347 5.351 6.249 7.177 
a average absolute deviation for λ = 0, b average percentage deviation for λ 
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From the full factorial experiment, we analyzed our 
results by means of a multi-factor Analysis of Variance 
technique using a 5% significant level.  We have found 
that for all TS parameters, there are significant differences.   

For the number of neighbors, the 20 and 30 nontabu 
neighbors are good parameters, but 20 nontabu neighbors 
are better than the other.  It is clear that pairwise 
interchange (PI) moves are better than shift moves (SM) for 
λ < 0.005, whereas for λ = 0.005 and the problem sizes 10 
jobs × 5 stages as well as 50 jobs × 20 stages, there are not 
statistically significantly differences in both neighborhood 
structures, but they are statistically significant for the 
problem size 30 jobs × 10 stages.  For the problem size 50 
jobs × 20 stages and λ ≥ 0.1, although the average main 
effect of the PI moves is better than the other, it has been 
found that there is a statistically significant interaction 
between the neighborhood structure and the number of 
neighbors, that is, for 20 nontabu SM neighbors become 
better than PI moves.  Hence, in general the SM should be 
selected as the neighborhood structure for λ ≥ 0.005. For 
the size of the tabu list, it is shown that a size of 10 and 15 
works best, but the size 10 of the tabu list is recommended. 

 
Table 7: The effect of the various neighborhood structures 

on the performance of the TS algorithm. 
λ Problem size PI SM 

10×5 
30×10 
50×20 

0.033a 

0.337 
0.163 

0.052 
0.387 
0.517 

0 

Sum 0.533 0.955 
10×5 
30×10 
50×20 

0.911b 

5.923 
2.050 

2.146 
6.068 
2.600 

0.001 

Sum 8.884 10.814 
10×5 
30×10 
50×20 

0.826 
4.650 
2.635 

0.967 
4.125 
2.867 

0.005 

Sum 8.111 7.959 
10×5 
30×10 
50×20 

0.667 
4.413 
2.759 

0.735 
3.903 
3.108 

0.01 

Sum 7.839 7.746 
10×5 
30×10 
50×20 

0.379 
4.298 
2.839 

0.181 
3.638 
2.834 

0.05 

Sum 7.516 6.653 
10×5 
30×10 
50×20 

0.324 
4.004 
2.407 

0.138 
3.418 
2.576 

0.1 

Sum 6.735 6.132 

0.5 

10×5 
30×10 

0.283 
3.561 

0.162 
3.073 

50×20 2.310 2.402 
Sum 6.154 5.637 
10×5 
30×10 
50×20 

0.290 
3.341 
2.345 

0.183 
2.928 
2.566 

1.0 

Sum 5.976 5.677 
a average absolute deviation for λ = 0, b average percentage deviation for λ 
 
Table 8: The effect of the various sizes of tabu list on the 

performance of the TS algorithm. 
λ Problem size 5 10 15 20 

10×5 
30×10 
50×20 

0.057a 

0.380 

0.380 

0.030 

0.367 

0.347 

0.040 

0.347 

0.287 

0.043 

0.353 

0.347 
0 

Sum 0.817 0.743 0.673 0.743 
10×5 

30×10 
50×20 

2.254b 

6.046 

2.511 

1.152 

5.912 

2.221 

0.924 

6.412 

2.339 

1.786 

5.612 

2.228 
0.001 

Sum 10.811 9.285 9.675 9.626 
10×5 

30×10 
50×20 

1.036 

4.325 

2.837 

0.707 

4.354 

2.746 

0.894 

4.341 

2.711 

0.949 

4.532 

2.710 
0.005 

Sum 8.198 7.807 7.946 8.191 
10×5 

30×10 
50×20 

0.855 

4.097 

2.933 

0.534 

4.165 

3.134 

0.552 

4.238 

2.687 

0.863 

4.131 

2.979 
0.01 

Sum 7.885 7.833 7.477 7.973 
10×5 

30×10 
50×20 

0.261 

3.939 

2.667 

0.239 

4.019 

2.905 

0.257 

3.989 

2.903 

0.364 

3.926 

2.869 
0.05 

Sum 6.867 7.163 7.149 7.159 
10×5 

30×10 
50×20 

0.278 

3.684 

2.513 

0.150 

3.769 

2.444 

0.230 

3.682 

2.427 

0.267 

3.708 

2.582 
0.1 

Sum 6.475 6.363 6.339 6.557 
10×5 

30×10 
50×20 

0.219 

3.379 

2.369 

0.190 

3.219 

2.340 

0.217 

3.375 

2.431 

0.264 

3.295 

2.283 
0.5 

Sum 5.967 5.749 6.023 5.842 
10×5 

30×10 
50×20 

0.290 

3.171 

2.434 

0.167 

3.105 

2.451 

0.207 

3.085 

2.521 

0.283 

3.177 

2.416 
1.0 

Sum 5.895 5.723 5.813 5.876 
a average absolute deviation for λ = 0, b average percentage deviation for λ 

 
Finally, we used the recommended TS parameters to 

test the choice of an initial solution. The letters before TS 
denote the heuristic rule as an initial solution for the TS 
algorithm. For example, SPTTS means that the SPT rule is 
used as an initial solution for the TS algorithm. From these 
results in Table 9 through Table 12, we have found that 
there are no statistically significant differences in the 
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different initial solutions for the problem sizes 10 jobs × 5 
stages and 30 jobs × 10 stages, but it became statistically 
significantly different in the problem size 50 jobs × 20 
stages especially for λ ≥ 0.05 we have found that 
algorithms INEHTS and NEHTS are better than the others.  
Consequently, in general algorithms INEHTS and NEHTS 
are good choices for the TS algorithm with using a biased 
initial solution. 
 
Table 9: Comparison of the TS algorithm with different 

initial solutions (Group I). 

λ 
Problem 

size 
SPTTS LPTTS ERDTS EDDTS MSTTS S/PTS HSETS

10×5 
30×10 
50×20 

0.020a 

0.220 

0.060 

0.000 

0.220 

0.060 

0.020
0.260
0.100 

0.000 

0.240 

0.060 

0.020 

0.260 

0.040 

0.000
0.240
0.060 

0.040
0.220
0.020 

0 

Sum 0.300 0.280 0.380 0.300 0.320 0.300 0.280 
10×5 

30×10 
50×20 

0.014b 

3.674 

0.667 

0.090 

4.649 

0.938 

0.071
4.377
1.415 

0.589 

4.152 

0.937 

0.023 

4.544 

0.634 

0.064
4.928
0.614 

1.027
3.954
0.512 

0.001 

Sum 4.355 5.677 5.863 5.678 5.201 5.606 5.493 
10×5 

30×10 
50×20 

0.306 

2.892 

1.363 

0.984 

3.177 

1.223 

0.912
2.847
1.491 

0.280 

3.034 

1.285 

1.067 

3.484 

0.838 

0.770
2.735
1.044 

0.421
3.107
0.992 

0.005 

Sum 4.561 5.384 5.250 4.599 5.389 4.549 4.520 
10×5 

30×10 
50×20 

0.598 

3.063 

1.068 

0.551 

3.562 

0.851 

0.356
2.373
1.180 

0.206 

3.003 

1.451 

0.377 

3.189 

0.690 

0.373
2.577
0.944 

0.323
3.237
1.113 

0.01 

Sum 4.729 4.964 3.909 4.660 4.256 3.894 4.673 
10×5 

30×10 
50×20 

0.039 

3.252 

1.064 

0.033 

3.513 

0.959 

0.029
2.357
1.146 

0.049 

3.499 

1.031 

0.059 

2.677 

0.764 

0.026
3.117
1.040 

0.095
3.388
1.206 

0.05 

Sum 4.355 4.505 3.532 4.579 3.500 4.183 4.689 
10×5 

30×10 
50×20 

0.039 

2.698 

0.947 

0.057 

2.633 

1.183 

0.009
1.947
1.166 

0.021 

2.440 

1.470 

0.030 

2.231 

0.956 

0.008
2.477
0.991 

0.020
2.769
1.262 

0.1 

Sum 3.685 3.872 3.122 3.931 3.218 3.476 4.052 
10×5 

30×10 
50×20 

0.061 

2.307 

0.938 

0.015 

2.396 

1.047 

0.055
1.872
1.228 

0.039 

2.421 

1.336 

0.031 

2.152 

1.027 

0.019
2.471
0.936 

0.107
2.180
1.041 

0.5 

Sum 3.306 3.458 3.155 3.796 3.210 3.426 3.327 
10×5 

30×10 
50×20 

0.096 

2.264 

0.878 

0.059 

2.517 

0.981 

0.054
1.808
1.107 

0.067 

2.342 

1.300 

0.011 

2.560 

0.931 

0.048
1.925
0.986 

0.096
2.266
0.878 

1.0 

Sum 3.237 3.557 2.969 3.709 3.502 2.960 3.239 
a average absolute deviation for λ = 0, b average percentage deviation for λ 

 
 
6.  CONCLUSIONS 

 
In this paper, some constructive algorithms have first 

been investigated for minimizing a convex combination of 

makespan and the number of tardy jobs for the hybrid flow 
shop problem with unrelated parallel machines and setup 
times, which is often occurring in the real world problems.  
All algorithms are based on the list scheduling principle by 
developing job sequences for the first stage and assigning 
and sequencing the remaining stages by both the 
permutation and FIFO approaches.  

 
Table 10: Comparison of the TS algorithm with different 

initial solutions (Group II). 
λ Problem size PALTS CDSTS GUPTS DANTS NEHTS

10×5 
30×10 
50×20 

0.000 
0.260 
0.120 

0.000 
0.340 
0.020 

0.020 
0.220 
0.060 

0.020 
0.280 
0.040 

0.000 
0.180 
0.000 

0 

Sum 0.380 0.360 0.300 0.340 0.180 
10×5 
30×10 
50×20 

0.163 
4.142 
0.648 

0.100 
3.715 
0.544 

1.041 
4.193 
0.761 

1.528 
4.993 
0.470 

0.166 
3.413 
0.343 

0.001 

Sum 4.953 4.359 5.995 6.991 3.922 
10×5 
30×10 
50×20 

0.615 
2.776 
1.395 

1.179 
2.967 
0.876 

0.602 
3.014 
0.985 

0.649 
3.069 
1.238 

1.076 
3.353 
0.540 

0.005 

Sum 4.786 5.022 4.601 4.956 4.969 
10×5 
30×10 
50×20 

0.420 
3.490 
0.970 

0.779 
2.851 
1.371 

0.394 
3.538 
1.107 

0.398 
3.108 
1.384 

0.664 
3.068 
0.539 

0.01 

Sum 4.880 5.001 5.039 4.890 4.271 
10×5 
30×10 
50×20 

0.039 
3.036 
1.083 

0.029 
3.030 
1.421 

0.022 
3.032 
1.303 

0.058 
3.255 
1.356 

0.042 
2.128 
0.491 

0.05 

Sum 4.158 4.480 4.357 4.670 2.661 
10×5 
30×10 
50×20 

0.017 
2.515 
0.822 

0.025 
2.295 
1.182 

0.014 
2.161 
1.064 

0.033 
1.978 
1.327 

0.030 
1.839 
0.415 

0.1 

Sum 3.354 3.502 3.239 3.338 2.285 
10×5 
30×10 
50×20 

0.006 
2.549 
0.904 

0.039 
2.426 
1.306 

0.015 
1.801 
0.798 

0.049 
2.341 
1.132 

0.039 
1.407 
0.327 

0.5 

Sum 3.458 3.771 2.615 3.522 1.773 
10×5 
30×10 
50×20 

0.042 
2.787 
1.172 

0.069 
2.468 
1.356 

0.029 
2.243 
1.041 

0.075 
2.449 
1.289 

0.047 
1.741 
0.362 

1.0 

Sum 4.000 3.893 3.313 3.813 2.150 
a average absolute deviation for λ = 0, b average percentage deviation for λ 

 
The constructive algorithms are compared to the best 

solutions.  It is shown that in particular, for the simple 
dispatching rules the SPT, LPT, ERD, and HSE rules are 
good algorithms whereas for the flow shop makespan 
heuristics, the NEH algorithm is most superior to the other 
constructive algorithms.  When we have applied the 
polynomial improvement algorithm, we have found that the 
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all-pairwise interchange algorithm is a good improvement 
algorithm.  Next, we used TS-based algorithms as 
improving algorithms.  Before we studied the influence of 
the initial solution on the performance of the TS algorithm, 
we tested the TS parameters, i.e., number of neighbors, 
neighborhood structure, and size of tabu list.  We have 
found that a constant number of 20 neighbors works best. 
The neighborhood structures should be based on shift 
moves for λ ≥ 0.05 and on pairwise interchanges of jobs 
otherwise. The size of tabu list should be selected as 10. 
For the recommended TS parameters, we investigated the 
selection of a starting solution by using several constructive 
and improvement algorithms. The variants INEHTS and 
NEHTS can both be recommended in general.  

 
Table 11: Comparison of the TS algorithm with different 

initial solutions (Group III). 

λ 
Problem 

size 
ISPTT

S 
ILPTT

S 
IERDT

S 
IEDDT

S 
IMSTT

S 
IS/PTS

IHSET
S 

10×5 
30×10 
50×20 

0.000a 

0.280 

0.100 

0.000 

0.220 

0.120 

0.000 

0.220 

0.080 

0.020 

0.260 

0.000 

0.000 

0.240 

0.000 

0.000
0.240
0.040

0.000
0.220
0.000

0 

Sum 0.380 0.340 0.300 0.280 0.240 0.280 0.220
10×5 

30×10 
50×20 

0.531b 

4.107 

0.847 

0.575 

3.829 

1.014 

0.044 

4.898 

0.797 

0.544 

3.386 

1.174 

0.525 

2.985 

0.555 

0.526
3.963
0.805

0.043
3.743
0.358

0.001 

Sum 5.485 5.418 5.739 5.104 4.065 5.294 4.144
10×5 

30×10 
50×20 

0.573 

2.906 

0.932 

1.279 

3.068 

1.745 

1.044 

3.140 

2.025 

0.589 

2.514 

2.273 

0.272 

2.904 

0.803 

0.413
3.509
1.730

0.795
3.137
1.122

0.005 

Sum 4.411 6.092 6.209 5.376 3.979 5.652 5.054
10×5 

30×10 
50×20 

0.468 

3.824 

1.241 

0.481 

3.346 

1.775 

0.477 

2.963 

1.635 

0.485 

2.936 

1.437 

0.405 

3.065 

1.266 

0.344
2.968
1.132

0.312
3.497
1.470

0.01 

Sum 5.533 5.602 5.075 4.858 4.736 4.444 5.279
10×5 

30×10 
50×20 

0.076 

3.094 

1.027 

0.052 

2.692 

1.146 

0.057 

2.743 

1.700 

0.052 

3.343 

1.494 

0.065 

2.860 

1.056 

0.041
2.697
1.316

0.039
2.588
1.152

0.05 

Sum 4.196 3.891 4.500 4.889 3.981 4.054 3.779
10×5 

30×10 
50×20 

0.010 

2.569 

0.946 

0.035 

2.628 

1.304 

0.031 

2.107 

1.302 

0.046 

2.528 

1.222 

0.039 

2.259 

1.052 

0.055
2.166
1.071

0.010
2.661
1.229

0.1 

Sum 3.524 3.966 3.440 3.796 3.350 3.292 3.899
10×5 

30×10 
50×20 

0.027 

2.179 

0.927 

0.035 

2.256 

1.249 

0.061 

2.004 

1.172 

0.043 

2.276 

1.326 

0.043 

2.127 

1.214 

0.031
2.321
1.185

0.004
2.188
1.061

0.5 

Sum 3.133 3.540 3.237 3.645 3.384 3.537 3.253
10×5 

30×10 
50×20 

0.037 

2.366 

0.972 

0.065 

2.433 

1.226 

0.066 

2.082 

1.172 

0.035 

2.177 

1.192 

0.075 

1.960 

1.208 

0.035
2.116
1.060

0.048
2.203
0.972

1.0 

Sum 3.375 3.724 3.320 3.404 3.243 3.211 3.223
a average absolute deviation for λ = 0, b average percentage deviation for λ 

Further research can be done to use other improving 
algorithms such as genetic or ant colony algorithms.  The 
choice of good parameters for them should be tested.  The 
influence of the starting solution should be investigated.  
Moreover, hybrid algorithms should be developed by using 
a tabu search algorithm as a local search algorithm within a 
genetic algorithm or the other algorithms. 

 
Table 12: Comparison of the TS algorithm with different 

initial solutions (Group IV). 
λ Problem size IPALTS ICDSTS IGUPTS IDANTS INEHTS

10×5 
30×10 
50×20 

0.000a 

0.220 

0.140 

0.020 

0.300 

0.040 

0.000 

0.260 

0.060 

0.020 

0.200 

0.040 

0.000 

0.160 

0.000 
0 

Sum 0.360 0.360 0.320 0.260 0.160 
10×5 
30×10 
50×20 

1.024b 

4.915 

1.087 

1.056 

4.934 

0.380 

0.544 

4.743 

0.369 

0.100 

4.804 

0.758 

0.534 

3.421 

0.350 
0.001 

Sum 7.026 6.370 5.656 5.662 4.305 
10×5 
30×10 
50×20 

0.832 

3.182 

2.089 

1.103 

3.329 

0.676 

0.527 

2.910 

0.778 

0.732 

3.278 

1.441 

0.721 

3.461 

0.543 
0.005 

Sum 6.103 5.108 4.215 5.451 4.725 
10×5 
30×10 
50×20 

0.628 

3.274 

1.782 

0.387 

3.109 

1.124 

0.286 

3.316 

0.942 

0.603 

3.597 

1.557 

0.706 

2.994 

0.539 
0.01 

Sum 5.684 4.620 4.544 5.757 4.239 
10×5 
30×10 
50×20 

0.059 

3.512 

1.531 

0.054 

3.238 

0.891 

0.070 

2.731 

1.189 

0.022 

2.439 

1.302 

0.029 

2.233 

0.491 
0.05 

Sum 5.101 4.183 3.990 3.763 2.753 
10×5 
30×10 
50×20 

0.009 

2.682 

1.266 

0.021 

2.356 

1.036 

0.012 

2.620 

0.782 

0.010 

1.914 

1.284 

0.012 

1.832 

0.416 
0.1 

Sum 3.957 3.413 3.414 3.208 2.260 
10×5 
30×10 
50×20 

0.019 

1.999 

1.495 

0.041 

2.288 

0.876 

0.044 

2.121 

1.056 

0.044 

2.049 

0.937 

0.039 

1.456 

0.314 
0.5 

Sum 3.514 3.205 3.221 3.030 1.809 
10×5 
30×10 
50×20 

0.016 

2.654 

1.328 

0.024 

2.181 

1.033 

0.047 

2.179 

1.020 

0.011 

2.053 

1.358 

0.035 

1.747 

0.362 
1.0 

Sum 3.998 3.237 3.246 3.422 2.143 
a average absolute deviation for λ = 0, b average percentage deviation for λ 
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