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ABSTRACT

A mixed graph coloring is an assignment of positive integers (colors) to
vertices of a mixed graph such that, if two vertices are joined by an edge,
then their colors have to be different and if two vertices are joined by
an arc, then the color of the start vertex has to be not greater than the
color of the end vertex. We develop a branch and bound algorithm for
determining an optimal mixed graph coloring (i.e. such a coloring of the
mixed graph that the number of colors used is minimal), based on the
conflict resolution strategy and adding some arcs in the mixed graph. We
describe the main components of this algorithm: branching strategy, lower
and upper bounds on the chromatic number, etc. Computational results
for randomly generated mixed graphs of order n < 150 are given.
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PROBLEM FORMULATION AND PREVIOUS RESULTS

One of the main restrictions for the application of contemporary scheduling theory is
that it concentrates on the minimization of a function of the job completion times and
does not take into account the cost of using a processing system. Recently in Kriiger
et al. (1998) and Sotskov (1996), the minimization of a function of both the number of
machines used and the job completion times has been considered. The latter problem
induces a mixed graph coloring for testing the feasibility of the assignment of jobs to
machines and for calculating the value of the objective function. Other scheduling
problems which require a mixed graph coloring are e.g. unit time scheduling problems
subject to both precedence and disjunctive constraints or some types of lecture and
exam scheduling (see e.g. Hansen et al. (1997), Sotskov and Tanaev (1976) and
Sotskov et al. (1998)).

Let G = (V, A, E) be a finite mixed pseudograph with the set of vertices V =
{vi,v9,...,un}, the set of arcs A and the set of edges £. It is possible that G may
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contain loops (both orientend and non-oriented), but we assume that no multiple arcs
and multiple edges occur.

Definition 1 Function ¢ is called a coloring of the mized pseudograph G = (V, A, E),
if it defines for each vertez v; € V' a color (natural number) ¢(v;) € N such that from
inclusion (v;, v;) € A ineguality ¢(vi) < ¢(u;) folloiws and inclusion [v,,v,] € E implies
$(vp) # P(vy)-

If A =0, then function ¢ : V — N represents the usual coloring of graph (V,8, E)
(note that for a pseudograph (V,0, E) which contains a loop [v;,v;] € E, there does
not exist a coloring ¢). Whereas vertex coloring problems of a graph (V,0, E) were
intensively investigated in the literature, such problems for a mixed graph have not
found large attention so far. In Sotskov and Tanaev (1976) and Sotskov et al. (1998),
the chromatic polynomial of a mixed graph was investigated and the following c¢riteria
for the existence of a coloring were found.

Theorem 1 There eists a coloring ¢ for the mized graph G = (V, A, E) if and only
if pseudograph (V, 0, £) does not have loops and the directed pseudograph (V, A, ®) does
not contain any rircuit with adjacent vertices in the pseudograph (V, 0, E).

In the following we will call a pseudograph simply a graph. The determination of the
chromatic number of a graph G (i.e. the determination of the smallest number of
colors in a coloring @) is discussed in Hansen et al. (1997) and Sotskov et al. (1998).
In Hansen et al. (1997), the coloring of a mixed graph has been considered for which
the following condition is satisfied.

Condition 1: If (v;,v;) € A, then [v;,v;] € E.

" In Hansen et al. (1997), an algorithm of complexity O(n?) was given for determining

a vertex coloring with minimal number of colors for a mixed tree. In Hansen et al.

(1997), Klimova and Sotskov (1983) and Sotskov et al. (1998), algorithms for coloring .
the vertices of a mixed graph with a smallest number of colors were given and evaluated

as to their efficiency.

CONFLICT EDGES

The smallest number of colors in a feasible coloring of the mixed graph G = (V, A, E)
is called chromatic number and denoted by v(G). A coloring ¢ : V — {1,2,...,7(G)}
is called optimal. If £ = @, then function ¢(v;) = 1,v; € V, is obviously an optimal
coloring of digraph G = (V, A,®) and consequently, we obtain v(V, A4,0) = 1. If the
following condition 2 is satisfied, the corresponding graph can be optimally colored in
polynomial time. :

Condition 2: If [vi,v;] € E, then (v;,v;) € A or (vj,v;) € A.

Indeed, if condition 2 is satisfied, then we assign weight 0 to each arc (v;,v;) € A if
[vi,v;] € E, and weight 1 if {v;,v;] € E. By the critical path method we determine
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the earliest times ri(G) for all vertices v; € V in O(|A]) time with respect to the
mixed graph G. It is easy to see that function ¢(v;) = r;(G*) + 1,%; € V, defines an
optimal coloring of the mixed graph G provided that condition 2 is satisfied. Thus,
:he value v(G) — 1 is equal to the length I(G) of a critical (i.e. maximal) path in G:
¥(G) = UG) + 1 = max{ry(G)|v: € V} + 1.

Assume now that condition 2 is not satisfied for the mixed graph G. We denote by
GA = (V, A, E\ E*) the mixed graph obtained from G by deleting a subset E4 C E of
all edges [u;, v;] for which the vertices v; and v; are not connected in digraph (V, 4, 9).
We will denote the edges of set E4 as free edges. Then we get the following lower
bound for value 7(G):

A G 2 UG4) +1 (1)

since function ¢(v;) = ry(G4) + 1,1; € V, is a coloring of the mixed graph G4 (in
the following, we will denote this coloring as early coloring) which is the subgraph of
mixed graph G. According to Definition 1, one can easily see that inequality (1) turns
into equality if for each edge [v;,v;] € E4 the equality

ri(G*) = r;(G4) (2)

does not hold. An edge [v;,v;] € E for which equality (2) holds will be called conflict
edge for the early coloring. In addition to an early coloring we can determine ‘in an
opposite way’ by the critical path method s late coloring: @(v;) = p:i(G4) + 1,v; € V,
where p;(G4) is the latest time for vertex v; € V with respect to the mixed graph G4.
Analogously, edge [v;,v;] € E4 is a conflict edge for a late coloring if

p:(G*) = p;(G%) (3)

The edge [v;,v;] € E* is called a strong conflict edge, if it is a conflict edge and both
vertices v; and v; belong to a critical path of the mixed graph G#. Obviously, for a
strong conflict edge equalities

ri(G4) = r;(G*) = pi(G*) = p;(G*) (4)

must hold. Then one can easily prove the following claim.

Theorem 2 Fory(G) = I(G#) + 1, it is necessary that in the mized graph G there do
not exist stong conflict edges, and it is sufficient that for an early or a late coloring
there do not exist conflict edges.

lt follows from Theorem 2 that, if a strong conflict edge exists, then Y(G) > v(G4).
On the other hand, if there is no conflict edge for an early (resp. late) coloring, then
the early (resp. late) coloring of the mixed graph G* is also a coloring of the mixed
graph G, i.e. equality 4(G) = v(G*) holds.

In order to obtain an upper bound for 4(G), we add in the mixed graph G for each
iree edge [u;, v;] one of the arcs (v;,v;) or (v;,1:). If the resulting mixed graph GZ =
3
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(V, AU AE, E) does not contain circuits, then we will denote this mixed graph as
estension of the mixed graph G. If GF is an extension of the mixed graph G, then
inequality

1(G) < UGE) +1 (5)

holds and therefore equality ¥(G) = min{y(GF),7(GE),...,7(G{)} holds, where
{GE,GE,...,GE}, A < 281 is the set of all extensions of the mixed graph G.

THE BRANCH AND BOUND ALGORITHM

The suggested branch and bound algorithm denoted as Algorithm B&B determines an
optimal coloring of an arbitrary mixed graph G by using the lower and upper bounds
(1) and (5) for the chromatic number v(G) and a branching procedure (the set of
colorings to be considered successively is partitioned into two subsets) with the aim
of solving conflicts (2), (3) or (4). As a result of the application of Algorithm B&B
we obtain a search tree L, where each vertex is a mixed graph (V;AU 4, E),0 <
|A'} < |EA|. The root of the search tree is the mixed graph (V, A, F), and in each
vertex (V, AU A', F) which is not a sink, there are two immediate successors: vertex
(V,AU A" U {(v,v;)}, E) and vertex V, AU A’ U {(v;,v:)}, F), which are determined
by the selection of a conflict edge [u;,v;] € B4 '

We apply a heuristic greedy algorithm (see Algorithm A&AE from Sotskov et al.
(1998) with the complexity O(n?)) of coloring the vertices of set V' successively in the
order (v, v®@, ..., v™) by the smallest possible color: first vertex v* € V' is colored
with color 1, then vertex v(® is colored either with color 1 or color 2 depending on
whether edge [v®,v/®] belongs to set F or not and so on, i.e. vertex v{¥,2 < k < n, is
colored with the smallest possible color in dependence on the already colored vertices
vV v® ., %1, To guarantee that such a procedure leads to a coloring ¢ of the
mixed graph G, it is sufficient that the linear order v, v, ..., v{* does not contradict
to the partial order given on set V by the set of arcs AU A, i.e. from inclusion
(v®,v0)) € AU A’ inequality 7 < j follows. We assume that the numbering of the
vertices vy, vy, . - ., Uy, does not contradict to the partial order given on the set of arcs A.
Therefore, for the mixed graph (V, AU{(v;, v;)}, E), the initial order vy, vy, . . ., v, does
not contradict to the partial order given on the set of arcs A U {(vi,v;)}. Thus, in a
preprocessing step of Algorithm B&B, & list of immediate predecessors and immediate
successors is built for each vertex v; € V. For each edge [v,,v,] € E, for which a
path from vertex v, to vertex v, exists, we add arc (v,,v,) which allows to exclude
obvious non-conflict edges from the considerations. When choosing a conflict edge for
branching next we prefer a strong conflict edge, then an edge which is a conflict edge
both in the early and the late coloring (notice that these arcs are not necessarily strong
conflict edges), then an edge which is only in the early coloring a conflict edge, and
finally an edge which is only in the late coloring a conflict edge. It is easy to see that,
if edge [vi, v;] is a conflict edge in the circuit-free mixed graph G' = (VAU A/, E), ie.
if one of the equalities (2) or (3) or equalities (4) is satisfied, then none of the digraphs
(V,AU A" U {(vi,v;)},0) and (V,AU A" U {(v;,w)},0) contains a circuit. Thus, in

4
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Algarithm B&B the use of a procedure for checking whether a circuit occurs in the
generated mixed graph is not necessary. '

A substantial reduction of the search tree can be obtained due to introducing an
additional arc (v, v®) (or an arc (v, v?) into the current graph G’ = (V, AUA, E)
if inequality '

1

ri(G) + UG) - p;(G) +1 < UGE) (6)
(resp. inequality | .
ri(G) + UG) - p(G) + 1 2 U(GE))- (7)

is satisfied. Here GE. denotes the extension of the mixed graph G which defines the best
coloring of the mixed graph G being built when the mixed graph G’ is considered. In-
deed, let e.g. inequality (6) be satisfied, then the mixed graph (V, AUA'U{v® v} E)
contains a path with a weight not smaller than I(GE). Therefore for a coloring of a
mixed graph generated from G in the search tree at least {(GE.) + 1 colors is required.
However, there is already a coloring of mixed graph G with exactly [(GE.) + 1 colors.

If for the mixed graph G’ both inequalities (6) and (7) are satisfied, then it is not nec-
essary to construct a subtree of the search tree from the root G’ since this construction
cannot improve the record coloring already constructed. In other words, if (6) and (7)
are both satisfied, one can stop with branching in the search tree L from vertex G’
when applying Algorithm B&B, i.e. such vertex G’ is a terminal vertex in the final
search tree L.

We can also stop with branching vertex G’ if one of the following cases is satisfied:
There is no conflict edge in an early coloring, there is no conflict edge in a late coloring,
or inequality

0G) 2 UGE.) (8)

is satisfied.

COMPUTATIONAL RESULTS

Algorithm B&B has been implemented in FORTRAN and run on a PC 486 (120 MHz)
for (pseudo)randomly generated mixed graphs. Analogously to Hansen et al. (1997)
and Sotskov et al. (1998), we generated a mixed graph G with |A| arcs (and |E)|
edges) by choosing randomly generated numbers 7 (resp. numbers 7)) from the set
{18 .. .. k}. where k = (’z‘),r, = {w, %)™ = Wt % = (G-t v,) end for
each arc 7; = (u.,v,) inequality r < s is satisfled. As a result, we obtain a mixed
graph G of order n with the set of arcs A = {m,7,...,n4} and the set of edges
E = {mq),m2),...,nE}. Taking into account the limitation of internal memory of the
computer, two versions of Algorithm B&B have been implemented: a basic version,
where the whole search tree L is treated by the internal memory, and an auxiliary
version, where only the path from root G up to the currently considered vertex G’ is
in the internal memory (the whole search tree which is necessary for the reconstruction
of all arcs and edges in the search tree is in the external memory on a hard disk). In the
basic version, the external memory on the 5hard disk is not used. Therefore, if during
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Table 1: Mixed graphs of order 70

edge density _

0.1 0.2 0.1
arc | {L| | 7| CPU | arc IL}| v| CPU}arc| |L|| v| CPU
de. de. de.
0.11496| 7116.66 | 0.1 | 12736 | 18| 1083.50 || 0.1 _ - -
g2 TIP 104 £27T9 02 2119 M'Ig) 35330 | W2 | OF06., 171 198024
31 18112 ¢ 0.4 428 9% 15 5.43 1| 0.3 12298 | 20| 158.94
04 17114 053 04 37 1 19 21711 04| 149 (24| 10.04
0.5 9|16 02841035 13 1.20 0.57 {| 0.5 88425 p = |

—

0.6 4115 0.16 || 0.6 T 1% 0.34 §§ 0.6 34 |26 1.47
§7) Sryid oF9gey] - 64123 0.27 || 0.7 4128 0.26
0.8 2117 0.09 || 0.8 %123 0.14 | 0.8 3|31 0.20
0.9 1118 0.06 | 0.9 2124 0.10 | 0.9 2130 0.14

the use of the basic version the internal memory is not sufficient, then' the auxiliary
version is applied which uses the hard disk for storing the search tree. Unfortunately,
the auxiliary version uses a rule for selecting the mixed graph for branching not so
effective than the basic version does.

For each vertex G’ = (V, AU A', E), both versions of the program calculate a heuristic
coloring for the mixed graph G’ in O(n?) time, and an early and late coloring for the
mixed graph (V,AU A, E \ EAY4). In the basic version, the number- of remaining
conflict edges for early and late colorings is calculated. In both versions, the program
realized a depth-first search with choosing the sink with the smallest lower bound (1),
i.e. beginning with the root vertex G = (V, A, E) of the search tree, it goes down in
the search tree and constructs a new best coloring or inequality (8) will be reached.
Then the basic version of the program selects the sink vertex with smallest bound (1).
If several such vertices in the current search tree exist, then among them the vertex
with the smallest number of conflict edges for an early or late coloring is chosen. The
depth-first search is continued from the chosen mixed graph. In the auxiliary version
of the program, the last sink vertex with the smallest bound (1) is chosen. Since it is
in this case sufficient to know the path from the root vertex G to the considered mixed
graph, this variant saves internal memory (at the same time, this variant considers
substantially more vertices of the search tree in comparison with the basic variant).

The results of the experiments are given in Tables 1 - 3, where each entry represents
the results of a series of 10 instances with the same density of arcs and the same density
of edges. Column 1 gives the arc density, column 2 gives the average cardinality |L|
of the vertex set in the search tree, column 3 gives the average value of the chromatic
number ¥(G), and column 4 gives the average CPU time. If column 4 does not contain
some upper index in parantheses, then the average CPU time (in seconds) for the basic
version of the program is given, otherwise it gives the average CPU time of the basic

6
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Table 2: Mixed graphs of order 100

{___ ' edge density

0.1 0.2
arc LI | v CPU || arc L} | v CpU |
de. de.

0.1[12476 ] 101 2628.430 0.1 ]. - -
0.21 1235113 202.98 1| 0.2 | 11831 | 18 | 3369.61

0.3 951 16 15.28 | 0.3 | 3021 | 23| 584.97
04 13119 1.22 || 04| 1076 | 27| 231.80
0.5 7 1 81 1.14 ) 0.5 40 | 30 5.25
0.6 el 22 0.88 || 0.6 13| 32 1.48
8.7 4124 0.47 || 0.7 8135 1.08
0.8 2145 031 | 08 4134 0.53
09 1126 0.19 || 0.9 1135 0.28

and the auxiliary versions of the program, where the uppér index in parantheses gives
the number of instances, where the (less efficient) auxiliary version of the program has
been used. :

Both versions of the program require as input data. the list of vertices V, the list of arcs
A and the list of edges E of the mixed graph G, where the arcs and edges have to be
in lexicographical order of their pairs of vertices (the required time for this ordering
never exceeded 1 second for all instances and is not considered in column 4). The
notations in Tables 2 and 3 are identical to those in Table 1. The symbol “*’ stands for
series of mixed graphs, where the input data required more than 64 KB which cannot
be handled by the used computer version. The symbol ‘-’ stands for series of mixed
graphs, where the solution tree L contained more than 30,000 vertices for the basic
program version.

CONCLUSION

From Tables 1 - 3 it can be seen that Algorithm B&B is considerably more effective
than Algorithm A&AE&E presented in Sotskov et al. (1998). The new algorithm is
clearly superior in the case of large values (G). Algorithm B&B is also superior to
the branch and bound algorithm given in Hansen et al. (1997) independently of the
fact that the latter algorithm is only applicable to mixed graphs for which condition 1
is satisfied. We notice that the rather bad results of Algorithm B&B for mixed graphs
G, in which the arc density is smaller than the edge density, comes from the fact that
in bounds (1) and (5) for the chromatic number the existence of free edges in the set
E# in the mixed graph G is not taken into consideration.

It is obvious that for mixed graphs G with a larger cardinality of the set of free edges
than the cardinality of arcs, it is necessary to use in addition to bounds (1) and (5)

i
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Table 3: Mixed graphs of orders 120 and 130
=120 = 130
edge density edge density
0.1 0.2 0.1 .

arc AREE] CPU Y arel (5 [ v CPU | aic LI v] CPU
de. j de. | de. _

0.1]28330 | 13 ] 5009.9%® [ 0.1 -1 = =¥ 81 A =~ |
0.2 700 | 16 24927 |l 0.2 137111 22 | 2661.51 1| 0.2 | 10745 | 20 | 9639.2(3
.3 290 | 20 100.59 §| 0.3 | 1961 128 | 683.56 || 0.3 | 1532 |25 1139.49
0.4 41128 72711 0.4 1562 | 31| 439.60 | 0.4 | 314 | 28 | 205.231
0.5 83128 477105 2201} 35| 42.63% § 0.5 50 +38 26.73
0.6 1 B ET Lahi DD 254 38 50 1 0. RS 3.43
BT 4129 - 0.95 4 0.7 8139 - 1991 0.7 P %
0.8 R4 BT 0.57 || 0.8 § 143 1231 08 o -
0.9 | 1R 0.38 1| 0.9 2143 0.56 | 0.9 pr . =)

a corresponding bound for the chromatic number of subgraph (V,0, E). Additional
investigations are necessary in this connection in order to select from the known bounds
for the chromatic number of graph (V, 4, E) that bound which corresponds in a largest
degree to a vertex coloring of the mixed graph (V, A, E).
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