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Abstract. Cyber-physical systems in Industry 4.0 are comprised of a computational 

core, a communication core, and a physical system. The computational core has strict timing 

restrictions and represents a Real-time system. In this paper, the modeling of the 

computational core is discussed. 
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The fourth industrial revolution, known as Industry 4.0 (I40), refers to a set of 

technologies aimed to create the concept of smart factories. A Cyber-physical system (CPS) is 

considered to be a core technology for I40. CPSs are smart networked systems with 

embedded sensors, processors and actuators, which are designed to sense and interact with the 

physical world (including the human users). They support real-time and guarantee 

performance in safety-critical applications. One of the main features of a CPS is that it has 

strict timing restrictions, which must be satisfied, since otherwise, the results may be 

catastrophic. A system, which requires a complete assignment of the resources and provides 

functioning in a timely manner, is referred to as a Real-time system (RTS). I40 environment 

involves modeling software for the computational core of a CPS, which is in fact an RTS. The 

design of such systems permits an opportune response and the execution of a task within 

predefined time constraints. From a functional viewpoint, an RTS is a computer system, 

which is dedicated to monitoring of a process or to control the tasks. 

The RTSs implemented in traditional hardware are employed in a wide range of 

applications. They are embedded into devices of common use, which are known nowadays as 

the Internet of Things (IoT), as well as into communication devices, such as mobile phones 

and computers. These systems have been a subject of great interest due to the trend towards 

the automation of quotidian use systems and applications. Examples are self-driving cars, 

autonomous airplanes, sensors and robots to care the elderly, to mention a few. 

An RTS is conformed of a set of applications that request access to processors and 

resources and is commonly comprised of tasks, or threads, where each task is subjected to a 

series of temporary restrictions. The number of processors limits the maximum number of 

tasks that can be executed simultaneously on a computer. In a monoprocessor system, only 

one task can be executed at a time; any other task has to wait until the processor is free and 

can be re-scheduled. Therefore, it is necessary to define which task has to be next at each time 

instant on each processor. The scheduling algorithms for this assignment are also called 

planning policies. 

In the planning context, a task in an RTS represents a set of related jobs that provide 

some functions of a system. Every job in a task is released periodically, sporadically, or 

aperiodically. In the periodic task model, the arrival of the jobs of a task is strictly periodic, 
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separated by a fixed interval of time, called period. Among the RTS models, the most popular 

is the periodic task model. 

The majority of the restrictions imposed to an RTS are expressed by the task release 

times, execution times, and most importantly, by the deadlines. In an RTS, the maximum 

possible time necessary to obtain a response must be less than or equal to the task deadline. 

The value that the task contributes to the system depends on the fulfillment of the deadline, 

starting at the activation moment. The deadlines can be classified into: soft deadlines and hard 

deadlines. Accordingly to the task‘s deadlines, an RTS can be: 1) soft RTS: missing a task 

deadline produces a performance degradation, but the tasks may continue the execution; 2) 

hard RTS: missing a task deadline is not acceptable due to possible catastrophic 

consequences. 

An RTS is executed under a Real-time operating system (RTOS), and a specific 

Application Programming Interface (API). An RTOS is integrated into several modules that 

together allow the applications to interact with the hardware, is in the same manner as a 

general-purpose operating system. An RTS must be designed in such a manner that the 

accomplishment of the timing restrictions of the tasks that comprise the system are assured by 

the selection and the use of an RTOS and real-time scheduling algorithms. The correct choice 

of an RTOS is a fundamental aspect in the design of an RTS. 

One of the most popular general purpose operating systems is Linux, which is 

employed by the academic community and companies for the development and execution of 

applications in diverse fields, such as control, computation, health, military and space, to 

name a few. However, Linux scheduling policies offer some level of timing guarantees for the 

soft RTSs, but they are not sufficient for systems with hard real-time constraints. To use 

Linux as a base for an RTOS, some modification to its kernel must be made. 

Generally, there exist two approaches to allow Linux to provide a hard real-time 

support: 1) at the hypervisor level and 2) at the OS scheduler level. The first approach allows 

the coexistence of both, an RTOS and a generic OS, where the first one has a higher priority 

comparing with a non-RTOS. In contrast, in the OS scheduler level, the real-time capabilities 

are provided using multiple scheduling classes, where each class has several scheduling 

policies, being a real-time scheduling class of the highest priority. This approach is employed 

by several projects, both as commercial and as open source ones. One of them is the RT-

Preempt, which includes free open source patches. 

Almost all existing RTOSs provide two priority-based scheduling policies: First-In 

First-Out (FIFO) and Round Robin (RR). Liu and Layland [1] introduced the RM and EDF 

policies for scheduling periodic tasks in hard RTSs. The RM algorithm assigns priorities 

inversely proportional to the task periods; it is an optimal static priority assignment policy. It 

can be mapped through the FIFO policy. The EDF policy assigns the highest priority to the 

job with the earliest deadline; it is an optimal dynamic priority assignment policy. The EDF 

algorithm is not available in most of the existing hard RTOSs. However, EDF gets a better 

utilization of the available processor capacity, which allows the execution of more tasks in the 

same processor. 

An RTOS provides three important functions to attend the tasks: 1) scheduling, 2) 

dispatching, and 3) intercommunication and synchronization. To model and implement an 

RTS, the Portable Operating System Interface (POSIX) is commonly used. It offers many 

advantages, such as portability and standardization of the application development. It is aimed 

for software compatibility between UNIX-like OSs, such as Linux, defining an API. 

The modeling of software for hard RTS (i. e., for I40) requires that the designer 

defines the parameters of the system task: deadlines, periods, worst-execution times, among 

others. Also, a scheduling policy must be selected, and a feasibility tests must be applied, in 

order to verify that every temporal restriction is satisfied. Application of a feasibility test is 

crucial to know whether the schedule provided by the selected policy is feasible. A schedule 
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is feasible if it respects the deadline of all jobs. An optimal scheduling policy always 

generates a feasible schedule for a hard RTS. This problem is commonly known as the 

feasibility test. Baruah et al. [2] proved that the feasibility test in uniprocessor RTSs is a co-

NP-complete problem in the strong sense for non-trivial computational models. 

Liu and Layland [1] demonstrated that RM is an optimal policy for the static priority 

assignment. The authors showed that the RM policy is able to schedule any periodic task set τ 

with implicit deadlines (periods are equal to the deadlines) if the total utilization of the 

processor satisfies 0.69312ln U , where U  is given as follows:   
n

i ii T/CU 1 . Here 

iC  is the execution time of task i  in the worst-case (WCET); iT  is the size of the activation 

period. 

A necessary and sufficient (exact) test for the RM policy was proposed by Lehoczky et 

al. [3]. It considers the processor utilization by the periodic task set as a function of time at a 

critical instant. Liu and Layland [1] introduced an exact test of the EDF feasibility for any 

periodic task set and proved the optimality of the EDF dynamic algorithm for uniprocessor 

architectures. A periodic task set is schedulable under the EDF policy if and only if 1U . 

A prototype of a controlled system was designed to illustrate a CPS system. This 

system was composed of three threads. It considers a periodic task (thread) that controls the 

appearance of any external object within a predefined range, and two independent tasks that 

perform calculations in the background. Such a system can be interpreted as a mobile robot, 

which checks periodically whether an object makes obstacles in his trajectory. If an object is 

detected, it turns an LED on immediately. Conversely, when the object is no longer detected, 

the LED is turned off. These actions are equivalent to the re-adjusting of the robot‘s 

trajectory, within a specific timing window, to avoid a collision. The exact schedulability test 

of Lehoczky et al. [3] was used to verify the schedulability of the task set using the RM 

scheduling policy. The test showed that one of the three threads was not capable to reach the 

execution time before the corresponding deadline even in the first activation. However, the 

value of the total processor utilization implicated that the task set can be still correctly 

scheduled using the EDF policy. 

The next test was performed under the EDF policy. It showed that: 1) all the task‘s 

jobs were fulfilled by the respective deadlines; 2) the non-real-time tasks, which were 

grouped in Idle, were processed only when the real-time tasks did not require to be executed; 

3) the schedule is similar in two investigated hyperperiods. 

Some metrics obtained for the first hyperperiod displayed that: 1) The required time to 

switch between two tasks (context switch) with EDF is larger than with RM; 2) Each time a 

task needs to be activated, EDF uses more time than RM; 3) There is a double number of 

preemption points using the RM policy. Nevertheless, despite the FIFO policy requires less 

time to accomplish context switches, the times of the EDF algorithm are minimized during 

the execution because it does not produce such a quantity of preemptions. 

As future work, we plan to implement the RTS using an embedded system as the 

hardware platform. 
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