EXERCISES CHAPTER 5

1. Use the substitution rule for finding the following indefinite integrals:

(a)
$$\int e^{\sin x} \cos x \, dx;$$

(b) $\int \frac{\ln x}{x} \, dx;$
(c) $\int \frac{5}{1-4x} \, dx;$
(d) $\int \frac{dx}{e^{3-2x}};$
(e) $\int \frac{x \, dx}{\sqrt{x^2+1}};$
(f) $\int \frac{x^3 \, dx}{\sqrt{1+x^2}};$
(g) $\int \frac{e^{2x} - 2e^x}{e^{2x} + 1} \, dx;$
(h) $\int \frac{dx}{\sqrt{2-9x^2}};$
(i) $\int \frac{\cos^3 x}{\sin^2 x} \, dx;$
(j) $\int \frac{dx}{1-\cos x};$
(k) $\int \frac{dx}{2\sin x + \sin 2x}.$

2. Use integration by parts to find the following indefinite integrals:

(a)
$$\int x^2 e^x dx;$$
 (b) $\int e^x \cos x dx;$ (c) $\int \frac{x}{\cos^2 x} dx;$
(d) $\int \cos^2 x dx;$ (e) $\int x^2 \ln x dx;$ (f) $\int \ln(x^2 + 1) dx.$

3. Evaluate the following definite integrals:

(a)
$$\int_{-1}^{2} x^{2} dx;$$
 (b) $\int_{0}^{4} \frac{dx}{1 + \sqrt{x}};$ (c) $\int_{0}^{\frac{\pi}{2}} \sin^{3} x dx;$
(d) $\int_{0}^{4} \frac{x dx}{\sqrt{1 + 2x}};$ (e) $\int_{0}^{t} \frac{dx}{2x - 1}, \quad t < \frac{1}{2};$ (f) $\int_{0}^{\frac{\pi}{2}} \sin x \cos^{2} x dx;$
(g) $\int_{-1}^{0} \frac{dx}{x^{2} + 2x + 2}.$

- 4. A firm intends to precalculate the development of cost, sales and profit of a new product for the first five years after launching it. The calculations are based on the following assumptions:
 - t denotes the time (in years) from the introduction of the product beginning with t = 0;
 - $C(t) = 1,000 \cdot \left[4 (2e^t)/(e^t + 1)\right]$ is the cost as a function of $t \in \mathbb{R}, t \ge 0$;
 - $S(t) = 10,000 \cdot t^2 \cdot e^{-t}$ are the sales as a function of $t \in \mathbb{R}, t \ge 0$.
 - (a) Calculate total cost, total sales and total profit for a period of four years.
 - (b) Find average sales per year and average cost per year for this period.
 - (c) Find the total profit as a function of the time t.

5. (a) Find

$$\int_{0}^{2\pi} \sin x \, dx$$

and compute the area enclosed by function $f : \mathbb{R} \to \mathbb{R}$ with $f(x) = \sin x$ and the x-axis.

(b) Compute the area enclosed by the two functions $f_1 : \mathbb{R} \to \mathbb{R}$ and $f_2 : \mathbb{R} \to \mathbb{R}$ given by

$$f_1(x) = x^3 - 4x$$
 and $f_2(x) = 3x + 6$.

6. The throughput q = q(t) (output per time unit) of a continuously working production plant is given by a function depending on time t:

$$q(t) = q_0 \cdot \left[1 - \left(\frac{t}{10}\right)^2\right].$$

The throughput decreases for t = 0 up to t = 10 from q_0 to 0. One overhaul during the time interval [0, T] with T < 10 effects that the throughput goes up to q_0 . After that it decreases like before.

- (a) Graph the function q with regard to the overhaul.
- (b) Let $t_0 = 4$ be the time of overhaul. Find the total output for the time interval [0, T] with T > 4.
- (c) Determine the time t_0 of overhaul which maximizes the total output in the interval [0, T].
- 7. Determine the following definite integral numerically:

$$\int_{0}^{1} \frac{dx}{1+x^2}.$$

- (a) Use approximation by trapeziums with n = 10.
- (b) Use Kepler's formula.
- (c) Use Simpson's formula with n = 10.

Compare the results of (a), (b) and (c) with the exact value.

8. Evaluate the following improper integrals:

(a)
$$\int_{-\infty}^{0} e^{x} dx;$$
 (b) $\int_{1}^{\infty} \frac{dx}{x^{2} + 2x + 1};$ (c) $\int_{0}^{\infty} \lambda e^{-\lambda x} dx;$
(d) $\int_{0}^{\infty} \lambda x^{2} e^{-\lambda x} dx;$ (e) $\int_{0}^{4} \frac{dx}{\sqrt{x}};$ (f) $\int_{0}^{6} \frac{2x - 1}{(x + 1)(x - 2)} dx.$

9. Let function f with

$$f(t) = 20t + 200$$

(in EUR) describe the annual rate of an income flow at time t continuously received over the years from time t = 0 to time t = 6. Interest is compounded continuously at a rate of 4 per cent p.a. Evaluate the present value at time zero.

10. Given are a demand function D and a supply function S depending on price p as follows:

$$D(p) = 12 - 2p$$
 and $S(p) = \frac{8}{7}p - \frac{4}{7}$.

Find the equilibrium price p^* and evaluate customer surplus CS and producer surplus PS. Illustrate the result graphically.