EXERCISES CHAPTER 6

1. Given are the vectors

$$\mathbf{a} = \begin{pmatrix} 2\\1\\-1 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 1\\-4\\-2 \end{pmatrix} \quad \text{and} \quad \mathbf{c} = \begin{pmatrix} 2\\2\\6 \end{pmatrix}.$$

(a) Find vectors $\mathbf{a} + \mathbf{b} - \mathbf{c}$, $\mathbf{a} + 3\mathbf{b}$, $\mathbf{b} - 4\mathbf{a} + 2\mathbf{c}$, $\mathbf{a} + 3(\mathbf{b} - 2\mathbf{c})$.

- (b) For which of the vectors \mathbf{a}, \mathbf{b} and \mathbf{c} do the relations $> \text{ or } \ge \text{ hold}$?
- (c) Find the scalar products $\mathbf{a}^T \cdot \mathbf{b}$, $\mathbf{a}^T \cdot \mathbf{c}$, $\mathbf{b}^T \cdot \mathbf{c}$. Which of the vectors \mathbf{a} , \mathbf{b} and \mathbf{c} are orthogonal? What is the angle between the vectors \mathbf{b} and \mathbf{c} ?
- (d) Compute vectors $(\mathbf{a}^T \cdot \mathbf{b}) \cdot \mathbf{c}$ and $\mathbf{a} \cdot (\mathbf{b}^T \cdot \mathbf{c})$.
- (e) Compare number $|\mathbf{b} + \mathbf{c}|$ with number $|\mathbf{b}| + |\mathbf{c}|$ and number $|\mathbf{b}^T \cdot \mathbf{c}|$ with number $|\mathbf{b}| \cdot |\mathbf{c}|$.
- 2. Find α and β so that vectors

$$\mathbf{a} = \begin{pmatrix} 2\\ -1\\ \alpha \end{pmatrix} \quad \text{and} \quad \mathbf{b} = \begin{pmatrix} \beta\\ 4\\ -2 \end{pmatrix}$$

are orthogonal.

- 3. (a) What is the distance between the following points: (1, 2, 3) and (4, -1, 2) in the 3-dimensional Euclidean space \mathbb{R}^3 ?
 - (b) Illustrate the following sets of points in \mathbb{R}^2 : $\mathbf{a} \ge \mathbf{b}$ and $|\mathbf{a}| \ge |\mathbf{b}|$.
- 4. Given are the vectors

$$\mathbf{a^1} = \begin{pmatrix} 1\\ 0 \end{pmatrix}$$
 and $\mathbf{a^2} = \begin{pmatrix} -1\\ 1 \end{pmatrix}$.

Find out which of the vectors

$$\begin{pmatrix} -2\\1 \end{pmatrix}, \begin{pmatrix} 2\\3 \end{pmatrix}$$
 and $\begin{pmatrix} 0\\0.5 \end{pmatrix}$

are linear combinations of \mathbf{a}^1 and \mathbf{a}^2 . Is one of the above vectors a convex combination of vectors \mathbf{a}^1 and \mathbf{a}^2 ? Graph all these vectors.

5. Given are the vectors

$$\mathbf{a^1} = \begin{pmatrix} 4\\2 \end{pmatrix}, \quad \mathbf{a^2} = \begin{pmatrix} 1\\4 \end{pmatrix}, \quad \mathbf{a^3} = \begin{pmatrix} 3\\0 \end{pmatrix} \quad \text{and} \quad \mathbf{a^4} = \begin{pmatrix} 3\\2 \end{pmatrix}.$$

Show that vector \mathbf{a}^4 can be expressed as a convex linear combination of vectors \mathbf{a}^1 , \mathbf{a}^2 and \mathbf{a}^3 . Find the convex combinations of vectors \mathbf{a}^1 , \mathbf{a}^2 and \mathbf{a}^3 graphically.

6. Are the vectors

$$\mathbf{a^1} = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \quad \mathbf{a^2} = \begin{pmatrix} 1\\-2\\1 \end{pmatrix} \quad \text{and} \quad \mathbf{a^3} = \begin{pmatrix} 5\\4\\-2 \end{pmatrix}$$

linearly independent?

7. Do the two vectors

$$\mathbf{a^1} = \begin{pmatrix} 2\\ -1 \end{pmatrix}$$
 and $\mathbf{a^2} = \begin{pmatrix} -4\\ 2 \end{pmatrix}$

span the 2-dimensional space? Do they constitute a basis? Graph the vectors and illustrate their linear combinations.

8. Do the vectors

$$\begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix} \text{ and } \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}$$

constitute a basis in \mathbb{R}^4 ?

9. Let vectors

$$\mathbf{a^1} = \begin{pmatrix} 1\\0\\3 \end{pmatrix}, \quad \mathbf{a^2} = \begin{pmatrix} 0\\1\\0 \end{pmatrix} \quad \text{and} \quad \mathbf{a^3} = \begin{pmatrix} 1\\0\\-1 \end{pmatrix}$$

constitute a basis in \mathbb{R}^3 .

(a) Express vector

$$\mathbf{a} = \begin{pmatrix} 3\\ 3\\ -3 \end{pmatrix}$$

as a linear combination of the three vectors \mathbf{a}^1 , \mathbf{a}^2 and \mathbf{a}^3 above.

- (b) Find all other bases for the 3-dimensional space which include vector \mathbf{a} and vectors from the set $\{\mathbf{a}^1, \mathbf{a}^2, \mathbf{a}^3\}$.
- (c) Express vector

$$\mathbf{b} = 2\mathbf{a^1} + 2\mathbf{a^2} + 3\mathbf{a^3} = \begin{pmatrix} 5\\ 2\\ 3 \end{pmatrix}$$

by the basis vectors $\mathbf{a}^1, \mathbf{a}^2$ and \mathbf{a} .