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1 Introduction:

Traditionally, the lion’s share of scheduling research
has been devoted to the study of problems with regu-
lar criteria. A criterion is called regular, if the objec-
tive function to be minimized is non-decreasing with
respect to the completion times of the jobs. Never-
theless, with the raise of just-in-time production meth-
ods, single and parallel machine scheduling problems
in which a job i is penalized both for being early or
late in comparison with the given due date d; have re-
ceived tremendous attention. These criteria are called
non-regular. The objective is to minimize either the
sum or the maximum of the job penalties.

One of the earliest papers on this topic was pub-
lished by Sidney [9], who provided an efficient algo-
rithm to minimize the maximum earliness or tardiness
penalty on a single machine, in which jobs have a re-
stricted variety of due dates. An improvement of this
algorithm was given by Lakshminarayan et al. [7].

Another direction of research was opened by the
work of Kanet [6]. He considered the problem of min-
imizing the sum of the unweighted earliness and tar-
diness penalties, in which all jobs have a common due
date. Furthermore, it was assumed that this due date
is unrestrictive, which means that the optimal objec-
tive function value does not decrease if one drops the
condition of non-negative starting times. Under this
assumption, Kanet gave a polynomial time algorithm
for determining an optimal solution.

Unfortunately, there are only a few papers dealing
with non-regular criteria for problems with multi-stage
processing systems. In this paper, we present an ex-
act algorithm for the two-machine flow shop problem
with a common arbitrary due date for all jobs. The
objective is to minimize an arbitrary function formed

by the weighted sum of earliness and tardiness penal-
ties. Additionally, we discuss some heuristics for this
problem.

The paper is organized as follows. In Section 2,
we give the formulation and some basic properties of
the problem. Afterwards, we discuss some details of
the exact algorithm in Section 3. Finally, we briefly
comment on the developed heuristics.

2 Problem Formulation and
Properties of Optimal Sched-
ules

Let N = {1,...,n} be the set of jobs which have to
be processed on two machines M; and M>. On both
machines, only one job may be processed at a time.
Hence, the flow shop condition means that every job
has to be processed completely first on M; and then
on M,. We assume that preemption of an operation is
not allowed. The values p; ; representing the process-
ing time of job 7 on machine M; are given and integer.
For problems with a regular criterion, integer problem
data are sufficient to guarantee that the starting times
of an optimal schedule are integer. This remains to be
true for the non-regular case if the due date is suffi-
ciently restrictive. For an unrestrictive due date, there
are optimal integer starting times if there exists an op-
timal schedule having one job completing precisely at
the due date, see [6).

Since we are interested in a general treatment of the
problem, we have to cope with arbitrary due dates. We
restrict ourselves to integer starting times of the jobs
for simplicity. Nevertheless, the precision of the al-
gorithm we present is selectable (see the part on the
bisection search later).

The objective is to minimize the sum of (if not
noted differently job-specific) functions depending on
the absolute deviations of the completion time C; of
job i from the given common due date d, ie. F =
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S fi(Ci). 1t is assumed that
e fi(z) is non-increasing for ¢ < d
e fi(z) is non-decreasing for ¢ > d.

Special cases are the weighted sum of the devia-
tions of the completion times from the due date, i.e.
F =37, w|C; — d|, and the total weighted squared
deviation, i.e. F = 3 i, wi(C; — d)?. These penalty
functions are the same for all jobs if all w; are equal.

Using the 3-field classification introduced by Gra-
ham et al. [2], the problem under consideration may be
denoted by F2|d; = d| 3 fi(Ci).

Since we do not allow preemption, a schedule S may
be given by the starting times s;; of all operations
(4,7), i.e. S = (sij), or alternatively by the matrix
C = (ci j) of completion times, where ¢;; = s;; + pi ;-

It is well-known (see Conway et al.[1]) that for flow
shop problems with up to m = 3 machines and a reg-
ular criterion there always exists an optimal permuta-
tion schedule. For a given sequence 7 = (m,...,mp)
of a set of jobs N, the related best schedule S can be
calculated by the following procedure:

R1: Set sx, 1 ::“0 and $x, 2 = Pr, 1-

R2: Fori=2,...,nset sy, 1 = Cr,_,1 and
Sr, 2 = max{Cr,_, 2,Cm; 1}-

Next, we give some properties which can be used to
restrict the set of candidates for optimal schedules for
the problem F2{d; = d|3_ fi(Ci).

Property 1 There ezists an optimal permutation
schedule for the problem.

Notice that Property 1 also holds for problem F3|d; =
|3 fi(Ci).

Property 2 There exists an optimal schedule starting
the first job at time 0 and having no idle times on M;.

Property 3 There erxists an optimal schedule, in
which the jobs on M, which are started before or at
d have no idle times in-between.

3 Description of the Exact Algo-
rithm

In this section, we describe some main components of
our enumerative algorithm. Assume a given partition
EUT of N, where E contains the jobs which are com-
pleted before or at the due date and T is the set of
jobs being completed after the due date. Notice that
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in general not every partition is feasible, since the opti-
mal makespan value Cinax(E) for processing the jobs
of set E must fulfill the inequality Cihax(E) < d. The
sequences of the jobs in E and T are denoted by ¢(F)
and 7(T'), respectively. Using Properties 1~-3, we are
able to calculate a best schedule for a fixed pair of se-
quences €(FE) and 7(T'), if additionally the starting time
§ = S, 2 o0 M3 of the first tardy job = (T) is given.

If, more generally, only the partition EUT and the
first tardy job 1 (T') are given, the starting time s may
be chosen out of an interval [Ig, d] with

Is=max{d—pr 2+ 1:21’3’1 + pn 1, Cmax(E)
JjEE
(1)

The first term guarantees that job 7 1s not completed
before d (because 7; has to be tardy), the second is
due to Property 2. Cipax(£) may be determined in
O(nlogn) time by Johnson’s algorithm [5]. (Indeed,
this effort is needed only once for the determination
of the Johnson sequence for the whole job set N — a
makespan optimal sequence for a subset can be derived
in O(n) time.)

By 7*(T, 11, s) we denote a (not necessarily unique)
optimal sequence of the jobs completed after the due
date d for a given starting time s of the first tardy job
71 on M;. We emphasize that the optimal sequence ¢*
of the jobs of the set E depends only on the starting
time of the first job of T' on M,, since this gives the
maximal allowed makespan of sequence €*, too — it is
not influenced by the choice of a sequence for T, except
for the condition of non-negative starting times, which
requires

|E|
s—pPri1— Y P10

j=1

)

according to equation (1). Hence, we denote this se-
quence by €*(E, s), s being the starting time of the first
job of T', skipping the job 71 itself in this notation. The
calculation of these sequences and the related schedule
is described in detail in Subsections 3.2 and- 3.3.

We get the following contributions of the sequences
¢*(E,s) and 7* (T, 71, 5) to the total penalty F(r*) =
F(e*) + F(r*):

|E| 1B}
F(e (E,s)) =) _f; (s -> pg 2) (3)
j=1 k=j

1T}

F(r*(T,m,9)) = ) filer;2) (4)
Jj=1
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e fi(z) is non-increasing for z < d
e fi(z) is non-decreasing for z > d.

Special cases are the weighted sum of the devia-
tions of the completion times from the due date, i.e.
F = ¥7_, w|C; — d|, and the total weighted squared
deviation, i.e. F = i, wi(Ci — d)?. These penalty
functions are the same for all jobs if all w; are equal.

Using the 3-field classification introduced by Gra-
ham et al. [2], the problem under consideration may be
denoted by F2|d; =d|}_ f:(C).

Since we do not allow preemption, a schedule S may
be given by the starting times s;; of all operations
(t,4), i.e. S = (si;), or alternatively by the matrix
C = (c; ) of completion times, where ¢;; = s;; + p; ;.

It is well-known (see Conway et al.[1]) that for flow
shop problems with up to m = 3 machines and a reg-
ular criterion there always exists an optimal permuta-
tion schedule. For a given sequence m = (my,...,7,)
of a set of jobs N, the related best schedule S can be
calculated by the following procedure:

R1: Set 54,1 =0 and Swy 2 = Pmy 1.

R2: Fori=2,...,n3et sz, 1 = Cx,_,1 and
Sx;2 = mMax{Cr,_, 2,Cn; 1}-

Next, we give some properties which can be used to
restrict the set of candidates for optimal schedules for

the problem F2id; = d|3_ fi(C}).

Property 1 There erists an optimal permutation
schedule for the problem.

Notice that Property 1 also holds for problem F3|d; =
d13 £ (Cy).

Property 2 There exists an optimal schedule starting
the first job at time 0 and having no idle times on M;.

Property 3 There ezxists an optimal schedule, in
which the jobs on Ms which are started before or at
d have no idle times in-between.

3 Description of the Exact Algo-
rithm

In this section, we describe some main components of
our enumerative algorithm. Assume a given partition
EUT of N, where E contains the jobs which are com-
pleted before or at the due date and T is the set of
jobs being completed after the due date. Notice that

15th ISPE/IEE International Conference on CAD/CAM, Robotics, and Factories of the Future, Aguas de Lindéia, SP, Brazil, 18-20 August, 1999

in general not every partition is feasible, since the opti-
mal makespan value Cipax(E) for processing the jobs
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this effort is needed only once for the determination
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|E|

s'Pr;l‘Zpe;lZO
j=1

(2)

according to equation (1). Hence, we denote this se-
quence by €*(E, s), s being the starting time of the first
Job of T, skipping the job 7 itself in this notation. The
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We get the following contributions of the sequences
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|E| 1E|
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F( (T, s) = Y filen2) @
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Notice that formally on the left side of the Equa-
tions (3) and (4) the arguments of ¢* and 7* should
be given explicitly as arguments of F, too. In order
to keep the formulae simple, the introduced shorthand
notations in (3) and (4) will be used throughout the
remainder of the paper.

3.1 Enumeration Procedure

As outlined in the preceding section, the algorithm we
suggest has to enumerate all partitions N = EUT. We
call the enumeration of the possible sets E the main
tree (illustrated in Figure 1).

We perform a depth-first search algorithm in the
main tree. In every node we consider successively ev-
ery jobin T as the first job of sequence 7(T'), obtaining
different nodes (£, 71(T)). This is illustrated in Figure
2, where the left node is denoted by ({2,3},1). Accord-
ing to Equation (1), we calculate the left boundary Ig
of the possible starting times s = s, (T) 2-

Obviously, F(e*(FE, s)) is a non-increasing function
(dfu(s)} and F(r*(T,71,s)) is a non-decreasing func-
tion (ifu(s)) with respect to the starting time s (see
Equations (3) and (4)). But if a function F' decomposes
into a non-increasing function dfu and non-decreasing
function ifu, one may easily find its minimum value
for integer arguments of a given interval by a bisection
search. We call this procedure MINSEARCH. :

The procedure is illustrated in Figure 3 for the first
two steps. We start with the calculation of a lower
bound for the best objective function value with re-
spect to the whole interval I1 = [Is, d] (of the possible
starting times s, 2):

Lle = LBll(lfll) -+ LB[l (dfu)
= ifu(ls) + dfu(d)
We then calculate a lower bound for the optimal ob-

Jective function value with a starting time s; 3 in the
intervals I2 = [Ig, !5#] and I3 = [!s.zti’d],

LBjy = LBps (ifu) + Lsz(dfu)
= ifu(ls) + dfu (IS ;- d)

LBrs = LBys(ifu) + LBrs(dfu)

= ifu (15; d) + dfu (d)

The determination of each function value of ifu and
dfu, respectively, requires the application of a branch
and bound algorithm. Some details of this procedure
are described in Subsections 3.2 and 3.3. From now on,
we assume that the penalty function is job-independent
(i.e. for all i: f; = f).
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3.2 Calculation of Sequence (T, ry,s)

The sequence 7*(T, 11, s) is calculated by a branch and
bound procedure similar to problem F2||3" f(C;) with
a regular criterion. First, we determine the starting
times for the first job to be sequenced:

Sr31 = prat ij 1 (5)
JEE
Srp2 = ma'x{cﬂ 2,Cny 1} (6)

The Equation (5) is due to Property 2. We enumer-
ate all possible sequences, where the appended jobs
are scheduled according to R2. Consider a node 7% =
(m1,--.,7%) in which k jobs were already sequenced.
Denote with v1,...,7—k and 8;,...,8;—x (¢t = |T]) the
sequences of the remaining jobs of T" which are not yet
sequenced ordered by non-decreasing processing times
on M; and M,, respectively. Applying the SPT rule,
we get a lower bound for the total penalty of the re-
maining jobs by the following equations:

k t—k j
fler; 2) + Z‘ﬁ (Cn 1+ ZP’" 1+ psy 2)
=1

j=1 =1
(7)

LBl =
J

t—k

k
LB2 = Zf(cf,- 2) + Z f ( max{cr, 2,¢r, 1 + Py, 1}

j=1 j=1
J
+>_pa 2) 8)
=1
with

s0={ 1y 234 ©)

We use ¢ in order to respect the starting time s. Fi-
nally, we obtain

LBT = max{LB1, LB2} (10)

Notice that the bounds given above are a generaliza-
tion of the bounds given by Ignall and Schrage [4] for
the regular problem. Most other approaches, e.g. the
Lagrangian relaxation method given by van de Velde
[10], do not apply in the more general case we are deal-
ing with. :

3.3 Calculation of the Sequence €*(E,s)

For the determination of ¢*(E, s), we sequence the jobs
of E sucessively, beginning with the latest job pro-
cessed, by a branch and bound algorithm again. The
starting times for the branch and bound algorithm are
the completion times of the last early job on both ma-
chines and given by s — p;;; and s on M; and M,,
respectively. The procedure has some modifications
compared with the above for the determination of 7*.
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E = {1} E = {2} E = {n}

(e=11,2}) (E=1{1,3}) (E={1,n}) (E=1{2,3}) (E=124) (E={2,n))

Figure 1: Main tree

(E={23})

T1=1 T1=4 T1I=n

Calculate Ig

Perform
MINSEARCH

in [Is,d]

Figure 2: Subtree

F=ifu(s)+dfu(s)

F ifu,dfu )
* . LBis(ifu)
IBr (@) °
L311I}3(&fu) -]
_'.:—..l LBy, 12(ifu) . . | : L 1
Is L?—;—“— d
S

Figure 3: Illustration of the calculation of lower bounds (double indices mean that the values are equal for the
two indices).
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3.4 Computational Results

Dominance criteria may be found in paper [3]. The al-
gorithm was coded in C+4+ and run on different types
of problems. The processing times were integers ran-
domly chosen from the interval [1, pmaz], where we se-
lected pmar € {5,20,50}, and the common due date
was chosen as

d € {0,0.1T, 0.25T, 0.5T, 0.75T, 1T},

where T is the higher machine load of both ma-
chines. We tested linear and quadratic earliness tar-
diness penalties. The program was in most cases able
to solve problems up to 20 jobs satisfactorily on a Sun
Ultra Sparc 10 workstation.

We observed that an increase of the due date from
d = 0 (in this case we have a regular optimization cri-
terion) up to d = 0.57 hardly increased the computa-
tional times. The most difficult problems appeared for
d = 0.75T. Although the algorithm applies a bisection
search procedure (MINSEARCH) in the interval of pos-
sible starting times (see Equation 1), where the length
of the interval increases with the job processing times,
we have observed that the problems with a higher value
of pmar do not require higher computation times than
the problems with pp.z = 5.

4 Heuristics

Three types of heuristics were developed and com-
pared. The first one was a beam search algorithm de-
rived from the exact algorithm described above.

Secondly, we developed a heuristic which replaced
the determination of the optimal sequences ¢* and 7*
for a given partition N = TUE of the set of jobs and
given starting time s;,, by different local search heuris-
tics. The partition itself and the starting time s,,, were
also realized by random decisions.

For reasons of comparison, we implemented a
heuristic which was not as sophisticated as the sec-
ond one. Here, permutations of the whole job set N
were considered at each iteration. For a certain per-
mutation, the jobs on M, were pushed away from 0
in several steps of random length. Some details and
computational results of the algorithms are given in

[8).
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