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1 Introduction

Traditional research to solve multi-stage scheduling
problems has focused on single criterion. However,
based on a survey of industrial scheduling practices,
Panwalkar et al. [18] reported that managers develop
schedules based on multicriteria. Therefore, the rese-
arch for single criterion scheduling problems may not
be applicable to multicriteria problems. Because of
this, multicriteria scheduling problems are reteiving
much attention recently [16].

Multicriteria scheduling problems can be modeled
in three different ways. First, when the criteria are
equally important, we can generate all the efficient
solutions for the problem. Then by using multiattri-
bute decision methods, tradeoffs are made between
these solutions. Second, when the criteria are weigh-
ted differently, we can define an objective function
as the sum of weighted functions and transform the
problem into a single criterion scheduling problem.
Finally, when there is a hierarchy of priority levels
for the criteria, we can first solve the problem for the
first priority criterion, ignoring the other criteria and
then solve the same problem for the second priority
criterion under the constraint that the optimal so-
lution of the first priority criterion does not change.
Termed scheduling with secondary criteria, this pro-
cedure is continued until we solve the problem with
last priority criterion as the objective and the optimal
solutions of the other criteria as the constraints.

For a scheduling problem with two criteria of in-
terest, if the first two approaches are required, we call
the problem a bicriteria scheduling problem. If the
second approach is required, we term the problem
a secondary criterion problem. Using the standard
three field notation [15], a bicriteria scheduling pro-

blem for finding all efficient solutions can be represen-
ted as a|B|F(C1,C2), where a denotes the machine
environment, 3 corresponds to the deviations from
standard scheduling assumptions, and F(C1,C2) in-
dicates that efficient solutions relative to criteria C'1
and C2 are being sought. If the bicriteria schedu-
ling problem involves the sum of weighted values
of two objective functions, the problem is denoted
as a|B|Fy(C1, C2), where F,,(C1, C2) represents the
weighted sum of two criteria C1 and C2. Similar-
ly, a secondary criterion problem can be denoted as
a|B|Fr(C2/C1), where C1 and C2 denote the prima-
ry criterion and secondary criterion, respectively, and
the notation F},(C2/C1) represents the hierarchical
optimization of criterion C2 given that criterion C'1
is at its optimal value.

The literature on multiple and bicriteria problems
for single machine problems is summarized by Di-
leepan and Sen [5], or Fry et al. [7). Nagar et
al. [16] provide a detailed survey of the multiple
and bicriteria scheduling research involving multi-
ple machines. Chen and Vempati [3] developed a
backward branch-and-bound algorithm for problem
F2||Fp(3. Ci/Cmax)- A forward branch and bound
algorithm for problem F2||F, (3" C;/Cmax) is develo-
ped by Rajendran {19]. However, both Rajendran’s,
and Chen and Vempati's algorithms cannot efficient-
ly solve problems involving 20 or more jobs. Ra-
jendran [19] developed two heuristics for problem
F2||Fr(3 C;/Cmax) problem and tested their effec-
tiveness in solving problems involving 25 or less jobs.
Other constructive algorithms for this problem have
been given in [12], where problems with up to 80 jobs
have been considered. A genetic algorithm for this
problem has been given in {17]. This algorithm has
been tested on problems also with up to 80 jobs.

The problems under consideration can be de-
scribed as follows. n jobs have to be processed
on two machines M; and M,. For each job j,
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a processing time a; on M; and a processing ti-
me b; on M, are given. Preemptions of opera-
tions are not allowed. In this paper, we deve-
lop and compare different constructive and ite-
rative heuristics to solve approximately the pro-
blems F2||Fx(3 Ci/Cmax), F2||Fr (3 wiCi/Crmaz)
and F2||Fi(3° w;Ti/Cmaz) and the corresponding
counterparts of the 2-machine open shop problem.
Thus, the secondary criteria are the total flow time,
the total weighted flow time, and the weighted total
tardiness. Whereas for the flow shop problem all jobs
have to be processed first on M; and then on My, in
the open shop case the machine order can be chosen

arbitrarily.
While problem . F2|[Cnax can be solved in
O(nlogn) computational time [14], the pro-

blem F2||5°C; is NP-hard in the strong sense
{8]. From these results, it follows that problem
F2||Fa(3_ Ci/Cmax) and also the other two problems
considered are NP-hard in the strong sense [2]. Simi-
larly, the 2-machine open shop problem with make-
span minimization is polynomially solvable whereas
the.other traditional criteria already lead to NP-hard
problems.

The rest of the paper is organized as follows. Sec-
tion 2 describes the neighbourhoods that we apply in
the local search algorithms, and we describe the diffe-
rent algorithms for the flow shop problem. Some com-
putational results of our experiments are summarized
in Section 3. In Section 4 we give some heuristics for
2-machine open shop problems with secondary crite-
rion.

2 Constructive and iterative
algorithms for flow shop

In this section we discuss some constructive and ite-
rative heuristics suggested in [11] and [12]. Since a
random solution may not satisfy the minimum make-
span constraint, some heuristic algorithms that ensu-
re a schedule with optimal makespan have been de-
veloped. Johnson’s algorithm can be interpreted as
a ‘bad’ solution since no optimization is performed
with respect to the secondary criterion. A job inser-
tion algorithm INS can be given as follows, where J#
denotes Johnson’s sequence for the jobs not contai-
ned in sequence o, C stands for Cr,or and F for the
secondary criterion.

1. Let J = (u(1),...,u(n)) be Johnson’s schedu-
le of all n jobs. Let a = (a(l),...,a(n)) =
J = (p(1),...,pu(n)), Cla) = C(J)and F(a) =
F(J). Set w= {0} and r = 0. Leti = 1,
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and 0 = p(1). Further, let ¢ = 0p0;_p for
0 < p < i. Enter step 2.

2. For each of the (n — i) jobs ¢ o, genera-
te (n —4) * (i + 1) partial sequences repre-
sented by opkoi_p, where k ¢ o and 0 <
p < i. For each of the generated partial se-
quence, if C(apka,-_,,Jm) = C(J), set

w = {w,0pko;_p} and r = r 4+ 1. Enter step

3. Let w = {wy,ws,...,wr}. For each q < r, if
F(wgJz7) < F(a), set Fa) = F(wJz7) and
a = (quz,;). Let Flw,) = minlgjs,.{F(wj)}.
Set 0 = w,, r =0, and w = {@}. Enter step 4.

4. Ifi <, set i =1i+1 and return to step 2; other-
wise accept the schedule a with C2 = F(a) and
makespan C(a) as the solution of the problem.

Algorithm INS time requirement is O(n*). Some
modified algorithms (denoted as controlled insertion
algorithms) are also given in [12].

Some other constructive procedure which always
sequence a chosen job on the last position such that
the completion to a makespan optimal sequence is al-
ways possible are given in [12]. However, it turns out
that the insertion algorithm has obtained the best
results among these constructive algorithms.

For the quality of a local search algorithm, the
choice of a suitable neighbourhood is of significant
importance. First we give some neighbourhoods for
a permutation problem, where the set of feasible so-
lutions is given by the the set of permutions of n jobs.
The neighbourhoods are described by the set N(p) of
neighbours of a sequence p.

Shift(SH): In a permutation p = (p(1),p(2),. ..,p(n)),
select an arbitrary element p(z), and shift it to a
smaller position j, j < i, or to a larger position
k, k > i. Thus, we have |[N(p)] = (n — 1)2. In
some applications this neighbourhood is used
in a specialized version, where only right or
left shifts of an arbitrary job are allowed for
the generation of a neighbour. The shift neigh-
bourhood is sometimes also referred to as insert
neighbourhood.

Pairwise interchange (PI): In permutation p, select
two arbitrary jobs p(i) and p(j) (i # j) and
interchange them. The set N(p) contains (3)
elements. Sometimes this neighbourhood is re-
ferred to as swap neighbourhood.
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Adjacent pairwise interchange (API): This is a spe-
cial case of both the shift and the pairwise inter-
change neighbourhood. In permutation p, two
adjacent jobs p(¢) and p(i+1) (1 < i < n~1) are
interchanged to generate a neighbour p’. Thus,
we have |[N(p)] =n — 1.

k-Pairwise interchange (k-PI): This is a generaliza-
tion of the pairwise interchange neighbourhood.
A neighbour is generated from p by performing
at most k consecutive pairwise interchanges.

(k1,ke)-Adjacent pairwise interchange neighbour-
hood (k1, ke — API): In this neighbourhood, a
neighbour is generated from p by performing &
successive adjacent pairwise interchanges, whe-
Ire kl _<_ k S kz.

A neighbourhood structure may be represented
by a directed, an undirected or a mixed graph. The
set of vertices is the set of feasible solutions M,
and there is an arc from p € M to each neigh-
bour p’ € N(p). In the case of p' € N(p) and
p € N(p'), we replace both arcs by an undirected ed-
ge. We denote the graphs describing the above neigh-
bourhoods as G(SH),G(PI),G(API),G(k—PI) and
G(ky, k2 — API), respectively. Obviously, all these
graphs are undirected, i.e. these neighbourhoods are
symmetric. Note that the graphs representing the
right and left shift neighbourhoods are directed.

For the problem under consideration, only a sub-
set of the permutations of n jobs is feasible. In this
case, the set of neighbours N (p) of a feasible sequence
in the shift neighbourhood is the set of feasible se-
quences that can be obtained by a shift of a job. The
next theorem gives an important property for the A PI
neighbourhood since it guarantees that a local search
algorithm may reach a global optimum from an arbi-
trary starting solution.

Theorem 1 Let M be the set of feasible sequences
Jor a problem F2//Fy(C2/Cunez). Then the graph
G(API) defined on M is strongly connected.

To have a fair comparison of the individual local
search algorithms, we used as a stopping criterion the
number of generated solutions. All experiments have
been performed with a bad initial solution (by app-
lying Johnson’s algorithm) and with a good starting
solution (by applying algorithm INS). We included
the different neighbourhoods mentioned above into
a computational study. As far as metaheuristics are
concerned, we included and tested the following ty-
pes:
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Simulated annealing: We applied a geometric
cooling scheme and investigated the choice of
a suitable initial temperature and the choice of
a suitable number of iterations with a constant
temperature. Moreover, we investigated whe-
ther the inclusion of dominance criteria given
in [12] improved the results.

Threshold accepting: It is a deterministic vari-
ant of simulated annealing and has been ori-
ginally proposed in [6]. For decreasing thres-
hold schemes, we experimented with the initial
threshold value and the number of generated
solution with a constant threshold. In addition
to such schemes, we also experimented with va-
riable threshold schemes which allow both the
increase and the decrease of the current thres-
hold in dependence on the course of computa-
tions.

Tabu search: Tabu search was proposed in its pre-
sent form by Glover [9]. We investigated the
performance of tabu search in dependence on
the tabu list size and the number of genera-
ted neighbours in one iteration. For describing
neighbours that are tabu we tested both a posi-
tion and an order attribute. Additionally com-
ponents of long term memory are also used, e.g.
search intensification.

Multi-level heuristics: Multi-level heuristics are
local search procedures which apply different
neighbourhoods. Typically, when generating a
neighbour, a neighbourhood with ‘large’ chan-
ges is used (high-level neighbourhood). Then
another neighbourhood with ‘small’ changes
(low-level neighbourhood) is applied within
which local optimization is performed. Some
variants of such algorithms are given in [1, 4].
We apply them in the following form. In one
iteration we usually generate a number of high-
level neighbours, restricted by a parameter h.
Then we accept a high-level neighbour satisfy-
ing a certain acceptance condition, or we choose
that high-level neighbour with the best objec-
tive function value if no neighbour satisfies the
acceptance condition. From the chosen high-
level neighbour we perform an iterative impro-
vement procedure within the low-level neigh-
bourhood. As low-level neighbourhood we have
chosen the API neighbourhood and additonal-
ly we include a dominance criterion into the
search.
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Genetic algorithms: We have included a genetic
algorithm from the literature into our compa-
rison which was originally proposed for C2 =
Y- Ci. We included a vector evaluated approach
(see [17]. We adjusted the parameters (popula-
tion size and number of generations) such that
the number of solutions produced are the same
as for the other types of algorithms described
in this section.

3 Some results for flow shop

In this section, we summarize the findings of our em-
pirical evaluation of various heuristics as follows:

In contrast to several scheduling problems with
minimizing the makespan, for the F2||F,(C2/Cmax)
problem where C2 is any of the three objective func-
tions considered, the use of the pairwise interchange
neighbourhood leads to better results than the shift
neighbourhood.

For threshold accepting, variable threshold sche-
me outperformed decreasing threshold schemes. For
simulated annealing, a cooling scheme should be used
which initially ‘allows an increase in the objective
function value by a certain percentage over the star-
ting value with a fixed probability (instead of a fi-
xed value of the increase). However, it could also be
advantageous to apply variable ‘cooling’ schemes in
simulated annealing,. .

For tabu search, the position attribute together
with a small size of the tabu list (and thus a less
restrictive tabu list) performed best. Random inve-
stigation of the pairwise interchange neighbourhood
when the neighbourhood size is equal to the num-
ber of jobs worked best. Complete investigation of
all nontabu neigbours in the adjacent pairwise inter-
change neighbourhood worked poorly. The inclusion
of the intensification strategy did not improve the re-
sults which is probably due to the big neighbourhood
size and the rather small number of iterations in the
initial parameter tests (100n generated solutions).

For the multi-level algorithms, choice of the high-
level neighbourhood significantly influences the quali-
ty of results. For the problem under consideration,
the use of a (nonadjacent) pairwise interchange or
the use of at most two pairwise interchanges worked
best. The application of several consecutive adja-
cent pairwise interchanges for generating a high-level
neighbours did not yield competitive results. In the
low-level neighbourhood, a local optimum need not
necessarily be determined. It was important to in-
clude some structural properties in the investigation
of the adjacent pairwise interchange neighbourhood
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(in our tests we included a dominance criterion to ex-
clude nonpromising neighbours immediately). A ra-
tio of 3:1 between generated high-level and low-level
neighbours in one iteration is recommendable.

From the comparative study of the different ty-
pe of algorithms, we found that for problems with
C2 = 3" C; and C2 = Y w;C;, the multi-level algo-
rithms generally produced the best results. In this
case, the use of high-level neighbourhoods PI \ API
and 2 — PI can be recommended, where the 2 — PI
neighbourhood is even preferable when considering
how often the best value has been obtained.

For the problems with C2 = 3 w;T;, we found
that simulated annealing obtained the best results.
Due to considerably larger differences between the
initial and final objective function values, even ite-
rative improvements algorithms worked better than
expected, especially for problems with a large number
of jobs. Refined algorithms such as multi-level pro-
bably lose too much time at the early stages while
investigating several high-level neighbours in paral-
lel and performing only small moves in the low-level
neighbourhood. However, this observation confirms
the need for the development of better constructive
algorithms to start with better solutions.

The genetic algorithm converges rather slowly,
and without a good initial population, the results are
usually even worse than with algorithm INS. Due to
this, a larger number of generated solutions is requi-
red to produce competitive results.

While the problems with the three different hier-
archical criteria were similar as far as the set of fea-
sible solutions and the neighbourhood relations are
concerned, the comparative performance of heuristics
is different for various problems. This was mainly due
to the range of the differences in the objective func-
tion values of the starting and final solutions which
influenced the choice of the suitable procedure. For
problems with large differences in these values (i.e.
C2 =5 w;T;) and a large number of jobs, threshold
accepting and sometimes even iterative improvement
could lead to better intermediate results than simula-
ted annealing (which performed well for this problem
type) since in the initial phase unnecessary increases
in the objective function values are avoided. "

4 Constructive and iterative
algorithms for open shop

We remind that an optimal schedule for problem
02||Crnaz has the following makespan value:

Cmaz = max{Tl,Tz, a, + b,-},
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where T} = 37, a;, T2 = 37, b; and 7 is the job with
the largest sum of both processing times.

First, if Crnaz = ar + b, then an optimal schedule
for C2 € {)° Ci, 3" w;C;i} can be easily determined.
We have to compare two schedules, namely the first
one is obtained by scheduling job r first on M;, and
the remaining jobs on this machine are ordered accor-
ding to the WSPT rule on this machine. The second
one is the schedule when job r is first sequenced on
M3, and then the remaining jobs are ordered accor-
ding to the WSPT rule on M, (notice that the first
operations of all jobs except r can be sequenced in
arbitrary order when processing job r on the other
machine). The schedule with the better C2 value is
obviously an optimal schedule.

Thus, in the following we consider only problems
with Crez = max{T},T2}. Without loss of generality
assume in the following Cyo, = T3. '

A ‘bad’ initial solution can be obtained by using
the algorithm of Gonzalez and Sahni [10] which does
not perform any optimization with respect to the se-
condary criterion. Similarly as for the flow shop pro-
blem, we can state an insertion algorithm as follows.
Based on a chosen job list (i(1),i(2),...,i(n)), we ge-
nerate a schedule with the following structure: p! =
(k,p*) and p* = (p*,k,p"*), where p* = (p'*,p"*).
Only job k is processed first on M;, the other jobs
are processed first on M,. This insertion algorithm
generates a makespan optimal schedule as follows.

The insertion procedure chooses the first possible
job in the job list which can be taken as the first job
in p'. For a candidate job k, this can be checked
by determining Johnson’s sequence p” for the jobs in
N\ {k}. If for schedule p* = (k,p’) and p? = p’ the
makespan value does not exceed Cpqo, = T4, the first
job in p! has been determined.

Then we determine the first job in p* and per-
form afterwards the insertion procedure within the
partial sequence p*. Assume that a partial schedu-
le pl = (k,j(1),...,5(1) and p* = (§(1),...,5(1))
has already been obtained (notice that the feasibility
of a partial sequence can be easily checked as des-
cribed in algorithm INS in Section 2 by appending
the Johnson sequence of the unscheduled jobs at the
end of both machines). Then we choose again the
first unscheduled job [ in the job list and insert it at
all positions within the current partial sequence .
Among all partial schedules which can be extended to
a makespan optimal sequence, we choose the partial
schedule with the best objective function value with
respect to criterion C2. More precisely, we consider
the objective function value contributions of the jobs
k,1 and of those contained in p*, where job k is put
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first at the last position in p? and then shifted to the
left as much as possible without, violating the mini-
mal makespan in order to reduece its contribution to
the objective function value.

We also tested restricted variants, where only the
last h positions of the current partial sequence p* are
considered as a candidate for inserting the chosen job.
Note also that there does not necessarily exist an op-
timal schedule having the structure of the generated
schedule.

Assume now that a feasible schedule for the open
job problem is given by the job sequences p! and p?
describing the job orders on the machines M; and M,
and partitioning the set of jobs into two sets J; and J,
where J; contains the jobs that are first processed on
machine M;. A neighbourhood NV; for the 2-machine
open shop problem can be described as follows:

1) Select two adjacent jobs in one of the sequences
P (j € {1,2}) and interchange them without chan-
ging sets J; and J,.

2) Select two jobs which are adjacent in both se-
quences p' and p? (if any), and interchange them wi-
thout changing sets J; and Js.

The following neighbour generations are only conside-
red when the current starting solution has the struc-
ture p' = (p!,p'),p?> = (p'!,p!), where p! is the
Johnson sequence of the jobs of set J; and p is the
Johnson sequence of the jobs of set J:

3) Select a job in one of the sets J; and insert it into
the other set Jj, i.e. remove it from the correspon-
ding sequence p’ or p’/, and insert it at an arbitrary
position in the other sequence.

4) Select two jobs in different jets J; and J, and in-
terchange them, i.e. remove the chosen jobs from the
sequences p’ and p’/ and insert them at an arbitrary
position in the other sequence.

5) Interchange both sets J; and J,, and consider the
reverse job sequences on both machines, where the
last job becomes the first one, the second to last job
becomes the second job, and so on.

Whereas a neighbour generation according to 1)
or 2) performs one or two adjacent pairwise interchan-
ges but does not change the machine order of any job,
a neighbour generation according to 3) changes the
machine order of one job, and a generation according
to 4) changes the machine order of exactly two jobs.
Then we obtain the following result:

Theorem 2 Let M be the set of feasible schedules for
a problem O2//F(C2/Cpnaz). Then the neighbour-
hood graph G(N,) defined on M is strongly connected.

In [13], there have been tested several neighbour-
hoods where the set of neighbours contains in each




case the set given above. Thus, all considered neigh-
bourhoods are represented by a strongly connected
graph. The different neighbourhoods have been in-
cluded into local search heuristics combined with dif-
ferent metaheuristics. Detailed results with the con-
structive and iterative algorithms for all three crite-
ria C2 € {3°Ci, Y wiCi, Y wiT;} have been given in
[13].
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