
1

LiSA - A Library of Scheduling Algorithms

Handbook for Version 3.0

Michael Andresen, Heidemarie Bräsel, Frank Engelhardt,
Frank Werner

Fakultät für Mathematik
Otto-von-Guericke Universität Magdeburg

Abstract

LiSA - A Library of Scheduling Algorithms is a software package for solving deterministic
scheduling problems, in particular shop problems described by α | β | γ, where α character-
izes the machine environment, β gives additional constraints for the jobs and γ describes the
objective function. The development of LiSA was supported by the projects Latin Rectangles
in Scheduling Theory (1997-1999) and LiSA - A Library of Scheduling Algorithms (1999-
2001) by the Ministry of Education and the Arts of the state Saxony-Anhalt. Results of
diploma theses and Ph.D. theses in our research team as well as practical courses of students
were used for the development of the software package.

The handbook contains all necessary information to work with LiSA: License conditions,
technical requirements, mathematical basic knowledge about the models used in LiSA, de-
scription of algorithms and used file formats, an example for working with LiSA, instructions
for incorporating own algorithms and for the automated call of algorithms.

The handbook is also available as html file at the homepage of LiSA. Additionally, the
explanations of the algorithms and the LiSA components are incorporated into the software
as help files.

Homepage: http://lisa.math.uni-magdeburg.de

2

Chapter 1

General Information

1.1 What is LiSA? - Introduction and Overview

LiSA - A Library of Scheduling Algorithms is a software package for solving deterministic
shop scheduling problems. In a shop scheduling problem, a set of jobs has to be processed
on a set of machines with additional constraints such that a specific objective function be-
comes optimal. All parameters are known and fixed. In the literature, such problems are
usually described by a triplet α | β | γ, where α denotes the machine environment, β gives
additional constraints for the jobs and γ describes the objective function. A feasible solution
of a shop problem is denoted as a sequence, and the corresponding starting (or completion)
times constitute a schedule. Sequences and schedules are described by matrices and in LiSA
also by acyclic digraphs and Gantt charts, respectively. Since most shop problems are hard
to solve, LiSA contains a number of constructive and iterative heuristics.

If a user wishes to solve a scheduling problem by means of LiSA, one has to fix the problem
type in the α | β | γ notation and the number of jobs and machines using the graphical user
interface. The processing times and the remaining input parameters can be entered manually
or generated randomly. It is also possible to read these data from an XML file. When data
input is completed, all algorithms that solve the problem either exactly or approximately can
be invoked. After the application of an algorithm, the schedule will be visualized in a Gantt
chart which can be job and machine oriented, respectively. If a first solution is available, the
iterative algorithms are released for use. Since most algorithms offer a set of parameters,
the user has a number of strategies for solving his or her problems at hand. The solution
can be stored in an XML file.

LiSA contains some extras, e.g. the check of the complexity status (with a reference) of a
problem. Here, the database on the complexity of scheduling problems, developed by the
colleagues from the University of Osnabrück, is used. In addition, manipulations of Gantt
charts are possible such that the user can influence the construction of a schedule.

LiSA has a modular structure in which every algorithm can also be used externally. So it
is possible to call an algorithm by a command line or to incorporate it into an automated
call of algorithms. When using such an automated call of algorithms, after fixing a problem
type and the parameters, one can solve a specific number of instances using all algorithms
available for this type of problems. For all of these instances, LiSA stores a list of solutions

3

4 CHAPTER 1. GENERAL INFORMATION

generated by the algorithms which can be inspected via the graphical user interface. By
means of the generated log file, one can filter the results into a file compatible with Excel so
that a quick evaluation is possible. In addition, it is possible to construct hybrid algorithms
using this concept.

By the modular structure it is easily possible for the user to incorporate own algorithms into
LiSA. In addition to the C++ source code, one needs an XML file which makes algorithm
available to the graphical user interface, so that LiSA can automatically check if it can be
used for solving a given problem. A help file for the new algorithm makes it possible for
other users to understand its parameter set and invoke it correctly.

This handbook has the following structure:

In addition to this introduction, Chapter 1 contains an overview of the LiSA team, the sys-
tem requirements for the use of LiSA and the license conditions.

The notations used in LiSA, the classification of the problems, the used block matrices model
with the basic algorithms and an overview of the algorithms contained in LiSA are given in
Chapter 2. Here, we also describe the file format used in LiSA.

The following three chapters describe the input of the problem (Chapter 3), the algorithms
used in LiSA (Chapter 4), partitioned into universally usable exact algorithms, universally
usable constructive and iterative heuristics, special algorithms and, finally, the output of the
results (Chapter 5).

Chapter 6 contains some extras starting with the description of additional internal program
modules, e.g. the determination of the complexity status of a problem, the manipulation of
a schedule or reducibility algorithms.
Moreover, the incorporation of own algorithms and the automated call of algorithms are
described.

Chapter 8 contains some illustrative examples for using LiSA.

The handbook finishes with an XML reference, the GNU license conditions and a literature
overview given in an appendix.

1.2 System Requirements and License

LiSA is licensed under GPL (GNU General Public License), the conditions for this license
can be found in the appendix.

LiSA was primarily developed for Unix systems. For the compilation, there are a standard
C++ compiler and Tcl/Tk 8.0 or higher required, we recommend gcc 3.2 (or higher) and
Tcl/Tk 8.4.
Version 2.3 was completely developed under SuSE Linux 8.1. The further development to
Version 3 uses SuSE Linux 9.2 and Tcl/Tk 8.4. Successful tests of Version 3.0 have been

1.3. THE LISA TEAM 5

made with the following systems:

- SuSE 9.2 with the use of gcc 3.4.4 und Tcl/Tk 8.4;
- SuSE 9.3 with the use of gcc 3.3.5 und Tcl/Tk 8.4;
- SuSE 10.3 with the use of gcc 3.3.5 und Tcl/Tk 8.4;
- Solaris 9.0 with the use of gcc 3.4.4 und Tcl/Tk 8.4;
- Fedora 4.0 with the use of gcc 4.0.2 und Tcl/Tk 8.4;
- Debian 5.0 with the use of gcc 4.4.1 und Tcl/Tk 8.5;

Previous LiSA versions have been successfully compiled on the following systems:

- SunOS 5.6/5.7 (sparcSTATION and ULTRAsparc);
- IRIX 6.4;
- HP-UX 09.05/10.10/10.20;
- AIX 4.2;
- SuSE 6.1, 8.0, 8.1;
- RedHat 5.1.
- Solaris 8.

Under Windows, LiSA can be compiled by means of the Cygwin platform, which offers a
complete Unix-comparable environment. In particular for Windows systems, we also offer
an automatic installer which installs LiSA on Windows 2000, Windows XP, Windows Vista
or Windows 7 without the necessity to use further software.

Hints for compiling LiSA on several platforms can be found in the file INSTALL, which is
contained in the source package.

1.3 The LiSA Team

Research groups at universities are usually not homogeneously formed over a long period.
The following overview contains the names of most scientists and students who were involved
in the development of LiSA as well as their major working areas:

Heidemarie Bräsel: Initiator of the project, leader of the LiSA team and supervisor of
diploma and Ph.D. sudents (1997-2009)
Thomas Tautenhahn: Responsible for the efficiency of the data structures and algorithms,
supervisor of students in the area of programming (1997-2000), habilitation thesis 2002
Per Willenius: Responsible for the user interface of LiSA, the corresponding algorithms and
for the coordination of all program modules, supervisor of students in the area of program-
ming (1997-2001), Ph.D. thesis 2000
Martin Harborth: Responsible for the complexity module in the main program of LiSA,
supervisor of students in the area of programming (1997-1999), Ph.d. thesis 1999
Lars Dornheim: Responsible for the compatibility of LiSA under various computer configu-
rations and operating systems (1998-1999)

In the first time period, the following students were involved:
Ines Wasmund: Visualization of schedules by Gantt charts
Andreas Winkler: Several neighborhood search procedures

6 CHAPTER 1. GENERAL INFORMATION

Marc Mörig: Matching algorithms for open shop problems, reducibility algorithms
Christian Schulz: Shifting bottleneck heuristic for the job shop problem
Manuela Vogel: A heuristic for the flow shop problem.

For a short period, the following students were also involved in the project:
Holger Hennes, Birgit Grohe, Christian Tietjen, Carsten Malchau und Tanka Nath Dhamala
(Sandwich fellow, Ph.D. thesis 2002). In a practical computer course 2001, Thomas Klemm,
Andre Herms, Jan Tusch, Ivo Rössling, Marco Kleber and Claudia Isensee incorporated new
algorithms into LiSA.

In 2002, Lars Dornheim, Sandra Kutz, Marc Mörig und Ivo Rössling prepared LiSA for a
cooperative development. The modularity of the software has been substantially improved.
Several errors have been removed so that the software is now more stable. A specific LiSA
server has been installed for the communication between the developers and the users of
LiSA, and a version management system as well as a bug tracking system have been incor-
porated. The concept of incorporating own algorithms has been improved and simplified.
A new homepage has been created. LiSA Version 2.3 was ready. For the work on LiSA,
the students received the special award of the jury at the student conference of the DMV
meeting in Halle/S. (2002).

The major work on LiSA Version 3 was done by Marc Mörig, Jan Tusch, Mathias Plauschin
and Frank Engelhardt. The main progress in LiSA Version 3 can be described as follows:
- The file format has been changed by Jan Tusch to .xml, he also implemented the genetic
algorithms;
- The call of algorithms has been automated by Marc Mörig, later also by Mathias Plauschin
and by Frank Engelhardt. They also developed further the filtering of the results into a file
compatible with Excel, implemented for the first time by Andre Herms in Perl;
- For the Windows versions, there is an automatic installer created by Mathias Plauschin,
improved by Frank Engelhardt. For the use of the installer, there is no further software
required.
For the last four years, Frank Werner also collaborated with the LiSA team, mainly for
publications based on the use of algorithms in LiSA. He was responsible for the English
version of this handbook.

Chapter 2

Basic Knowledge

2.1 Definitions and Notations

In a shop scheduling problem, a set of jobs has to be processed on a set of machines in a
predefined machine environment under various additional constraints in such a way that an
objective function becomes optimal. The problem is called deterministic, if all parameters
are known and fixed. A number of optimization problems where one looks for an optimal
sequence of activities under constrained resources can be modeled as a scheduling problem.
The following Table 2.1 contains the basic definitions used in LiSA:

Notations

n, m Number of jobs and number of machines
{A1, . . . , An} Set of jobs to be processed
I = {1, ..., n} Set of indices of the jobs
{M1, . . . ,Mm} Set of machines which process the jobs
J = {1, ...,m} Set of indices of the machines
pij ≥ 0 Processing time of job Ai on machine Mj

PT = [pij] Matrix of the processing times
(ij) Operation, i.e. the processing of job Ai on Mj

SIJ Set of operations (ij)
ui, vj Number of operations of Ai and on Mj, respectively
cij Completion time of operation (ij)
Ci Completion time of job Ai

C = [cij] Matrix of the completion times
ri, di Release date and due date of job Ai, respectively
wi weight of job Ai

Li = Ci − di Lateness of job Ai

Ti = max{0, Ci − di}; Tardiness of job Ai

Ui =

{
0, if Ci ≤ di
1, otherwise

∑
Ui counts the number of late jobs

Table 2.1: Basic notations for deterministic scheduling problems

For a scheduling problem with more than one machine, we introduce the following sequences:
The machine order of a job Ai is the sequence of machines which the job has to be processed:

7

8 CHAPTER 2. BASIC KNOWLEDGE

M i
j1
→M i

j2
→ . . .→M i

jui
, where j1, . . . , jui

is a permutation of the numbers 1, . . . , ui.

The job order on machine Mj is the sequence of the jobs processed on this machine Aj
i1
→

Aj
i2
→ . . .→ Aj

ivj
, where i1, . . . , ivj is a permutation of the numbers 1, . . . , vj. If not causing

confusion, we drop the superscripts.

2.2 Classification of Deterministic Scheduling Problems

LiSA uses the α | β | γ classification for deterministic scheduling problems by Graham et
al. [15], where

• α describes the machine environment,

• β gives job characteristics and further constraints and

• γ describes the objective function.

LiSA uses this classification not only for describing a problem but also for determining the
complexity status of the problem considered. Tables 2.2, 2.3 and 2.4 gives an overview on the
possible parameters of a problem α | β | γ without guaranteeing completeness. In contrast
to the literature, where a repeated processing of a job in a job shop problem is possible,
LiSA uses the assumption for all shop problems that any job is processed at most once on
any machine (classical case).
The β field may contain no, one or several parameters from {β1, . . . , β5}. Here, many other
constraints are also possible, e.g.
- no-wait : Waiting times between two successive operations of the same job are not allowed.
- no-idle : Idle times between two successive jobs on the same machine are not allowed.
- pij ∈ {1, 2}: There are only processing times from {1, 2} allowed.

Any criterion F (C1, . . . , Cn) from Table 2.4 is regular, i.e. if C∗i ≥ Ci ∀ i ∈ I, then
F (C∗1 , . . . , C

∗
n) ≥ F (C1, . . . , Cn).

A non-regular criterion is e.g. die minimization of the penalty costs which occur if a job is
completed too early or too late.

There are many other constraints on the processing of the jobs, e.g. a flexible flow-shop
problem (FFS) is a combination of a flow-shop and a parallel machine problem. If machine
routes are only partly given, it is a mixed shop problem. Moreover, there exist scheduling
problems with resource constraints, batching problems and many others.

2.2. CLASSIFICATION OF DETERMINISTIC SCHEDULING PROBLEMS 9

Machine environment α = α1α2

α1 ∈ {1, P,Q,R} Any job consists of exactly one operation which can be
processed on an arbitrary machine.

α1 = 1 There is only one machine, thus: pi1 = pi.

α1 = P Any job has to be processed on exactly one of m identical
parallel machines, i.e. we have pij = pi.

α1 = Q Each of the m parallel machines has the same given speed
sj, i.e. we have pij = pi/sj.

α1 = R: The speeds sij for the processing of operation (ij) depend
both on Ai and on machine Mj, i.e. we have pij = pi/sij.

α1 ∈ {O,F, J} Any job has to be processed on any machine exactly once or
at most once (classical case).

α1 = O open-shop problem: The machine and job orders can be
arbitrarily chosen.

α1 = J job-shop problem: The machine order is fixed and the job
order can be arbitrarily chosen.

α1 = F flow-shop problem: The machine order is fixed
and identical for any job, w.l.o.g.: M1 →M2 → . . .→Mm.
The job order can be arbitrarily chosen.

α2 ∈ {◦, c} Characteristics of the number of machines

α2 = c The number of machines m is constant, m = c.

α2 = ◦ The number of machines is variable, i.e. it is part of the input.

Table 2.2: Parameter of the machine environment α

10 CHAPTER 2. BASIC KNOWLEDGE

Characteristics of jobs and additional constraints {β1, . . . , β5}
β1 ∈ {◦, pmtn} Preemption of operations

β1 = ◦ Preemption is not allowed.

β1 = pmtn Preemption is allowed, i.e. the processing of a job
on a machine can be interrupted and resumed later.

β2 ∈ {◦, prec, outtree, The precedence constraint Ai → Ak means
intree, tree, chain} that job Ai must be completed before job Ak starts.

β2 = ◦ There are no precedence constraints.

β2 = chain The precedence constraints have a path structure.

β2 = outtree Any job has at most one predecessor.

β2 = intree Any job has at most one successor.

β2 = tree The precedence constraints have a tree structure.

β2 = prec The precedence constraints are given by an acyclic
digraph.

β3 ∈ {◦, ri ≥ 0} Release dates of the jobs

β3 = ◦ Any job is available at time 0: ri = 0 ∀ i ∈ I.

β3 = ri ≥ 0 For any job, a release date ri ≥ 0 is given.

β4 ∈ {◦, di} Due dates of the jobs

β4 = ◦ There are no due dates.

β4 = di Any job must be completed before its due date di ≥ 0.

β5 ∈ {◦, pij = 1} Specific processing times

β5 = ◦ pij ≥ 0 ∀ (i, j) ∈ I × J , pij: natural numbers.

β5 = pij = 1
for α1 ∈ {1, O, F, J} pij = 1 holds for all operations (ij) ∈ SIJ .

Table 2.3: Some additional constraints in β

2.3. MODELS FOR SHOP PROBLEMS 11

Objective function γ ∈ {fmax,
∑
fi}

fmax ∈ {Cmax, Lmax} Objective function: fmax → min!

Cmax = max
i∈I
{Ci} → min! Minimize the makespan.

Lmax = max
i∈I
{Li} → min! Minimize maximum lateness.

∑
fi ∈ {

∑
Ci,

∑
Ti,
∑
Ui,∑

wiCi,
∑
wiTi,

∑
wiUi} Objective Function:

∑
fi → min!

∑
Ci → min! Minimize the sum of the completion times of

all jobs.∑
Ti → min! Minimize total tardiness of all jobs.∑
Ui → min! Minimize the number of late jobs.∑
wiCi → min! Minimize the weighted sum of the completion

times of all jobs.∑
wiTi → min! Minimize weighted total tardiness.∑
wiUi → min! Minimize the weighted sum of late jobs.

Table 2.4: Regular criteria

2.3 Models for Shop Problems

In order to understand the input and output of LiSA, we briefly explain the models used in
LiSA. LiSA has mainly been developed for shop problems, i.e., for flow-, job- and open-shop
problems. However, it also contains a number of algorithms for single machine problems. It
is assumed that at each time, any job is processed on at most one machine and any machine
processes at most one job.

2.3.1 Sequences and Schedules

In order to introduce the notations of a sequence and a schedule, we define the following
graphs, where the set of vertices is given by the set of operations SIJ :

• The graph of machine orders G(MO) contains all arcs which correspond to the direct
precedence constraints of the jobs.

• The graph of job orders G(JO) contains all arcs which correspond to the direct prece-
dence constraints between jobs on the machines.

• The graph G(MO, JO) = (SIJ,A) contains all arcs from G(MO) and G(JO), i.e.,

((ij), (kl)) ∈ A⇐⇒


(i = k ∧ after the processing of job Ai on
Mj, this job is processed on Ml) ∨

(j = l ∧ after machine Mj has processed job Ai,
this machine processes job Ak.)

12 CHAPTER 2. BASIC KNOWLEDGE

A combination of machine and job orders is called feasible, if the corresponding graph
G(MO, JO) is acyclic. In this case, the graph is called a sequence graph.

Example 1 Three jobs have to be processed on four machines. The matrix of the processing
times PT and the job and machine orders are given by

PT =

 2 1 0 1
2 3 4 3
1 5 1 2

 , therefore SIJ = I × J\{(13)}.

A1 : M1 →M2 →M4 M1 : A1 → A2 → A3

A2 : M2 →M4 →M1 →M3 M2 : A2 → A3 → A1

A3 : M4 →M1 →M2 →M3 M3 : A3 → A2

M4 : A3 → A1 → A2

The following figure gives the graphs G(MO), G(JO) and G(MO, JO):

11 12 14

21 22 23 24

31 32 33 34

11 12 14

21 22 23 24

31 32 33 34

G(MO)

11 12 14

21 22 23 24

31 32 33 34

G(JO)

G(MO,JO)

Figure 2.1: G(MO), G(JO) and G(MO, JO)

This combination of machine and job orders is not feasible since digraph G(MO, JO) con-
tains the cycle

(1, 2)→ (1, 4)→ (2, 4)→ (2, 1)→ (3, 1)→ (3, 2)→ (1, 2).

This would mean that every operation on the cycle is a predecessor and a successor of itself,
which is certainly a contradiction.
If we choose the natural sequence of the jobs and machines, respectively, digraph G(MO, JO)

2.3. MODELS FOR SHOP PROBLEMS 13

cannot contain cycles since all horizontal arcs are directed from left to right and all vertical
arcs are directed from the top to the bottom. In this case, digraph G(MO, JO) is a sequence
graph.

Now we assign to each vertex (ij) of the sequence graph G(MO, JO) the processing time
pij as a weight. Then the ‘timetable’ of processing the operations is denoted as a schedule.
Usually, schedules are described by the starting or completion times of all operations, and
they can be visualized by Gantt charts, which can be machine oriented oder job oriented.
There exist the following classes of schedules:

A schedule is called semi-active, if no operation can be completed earlier without changing
the corresponding sequence.

A schedule is called active, if no operation can be completed earlier without delaying some
other operation.

A schedule is called non-delay, if no machine is idle as long as there is a job which can be
processed on this machine.

Any non-delay schedule is active, and any active schedule is semi-active. The opposite is in
general not true.

Example 2 In addition to the matrix of the processing times given in Example 1, let the
following acyclic digraph G(MO, JO) be given. In a first step, the corresponding semi-active
schedule can be visualized in a job oriented Gantt chart. Now, all operations are processed
which are sources (vertices without predecessor) in the sequence graph. Then all sources
together with the outgoing arcs from them are dropped and in the next step, all operations
are sequenced which are now sources, etc. In addition, this schedule is active, but in the
open-shop case not necessarily non-delay since operation (11) could start at time 2.

11 12 14

21 22 23 24

31 32 33 34

Figure 2.2: Sequence graph G(MO, JO) and schedule (job oriented Gantt chart)

2.3.2 The Block-Matrices Model for Shop Problems

For a shop problem, the machine and job orders, the sequences and schedules can be de-
scribed by matrices. Any matrix contains an information on operation (i, j) in row i and
column j. This is either a structural or a time-wise property of operation (ij). For this
reason, we introduce the rank rg(v) of a vertex v in an acyclic digraph. When the number

14 CHAPTER 2. BASIC KNOWLEDGE

of vertices on a path w is denoted as the length of this path, then rank rg(v) denotes the
number of vertices on a longest path ending in vertex v. When the vertices (ij) of the
sequence graph G(MO, JO) are weighted by the processing time pij, the makespan of the
corresponding semi-active schedule is determined as the weight of a critical path (path with
maximal weight) in the sequence graph.

Thus, for describing the graphs we have the following matrices:

• G(MO) is described by MO = [moij], where moij is the rank of operation (ij) in
G(MO) (matrix of the machine orders).

• G(JO) is described by JO = [joij], where joij is the rank of operation (ij) in G(JO)
(matrix of the job orders).

• G(MO, JO) is described by LR = [lrij], where lrij is the rank of operation (ij) in the
sequence graph G(MO, JO) (sequence).

In any row i of matrix MO, there is a permutation of the numbers 1, . . . , ui, where ui is the
number of operations of job Ai. In any column j of matrix JO, there is a permutation of
the numbers 1, . . . , vj, where vj is the number of operations which have to be processed on
machine Mj. A sequence LR combines the properties of MO and JO. Due to the definition
of the rank, any sequence satisfies the sequence property: For any number z = lrij > 1, there
exists in row i or in column j or in both the number z − 1. It can be noted that sequences
on complete sets of operations SIJ = I × J are special latin rectangles. A latin rectangle
LR[n,m, r] is is a matrix with n rows, m columns and entries from a set {1, . . . , r}, where
any number from this set occurs in any row and any column at most once. If a latin rectangle
satisfies the sequence property, then it is the rank matrix of a sequence graph G(MO, JO).
If the set of operations is incomplete, then we obtain so-called partial latin rectangles as
rank matrices.

To describe a semi-active schedule which corresponds one-to-one to a sequence with given
matrix of the processing times, we introduce the following matrices:

• Matrix C = [cij], where cij is the completion time of operation (ij).

• Matrix H = [hij], where hij is the minimal time required for processing all predecessors
of operation (ij) (head of (ij): earliest possible starting time of operation (ij)).

• Matrix T = [tij], where tij is the minimal time required for processing all successors of
operation (ij) (tail of (ij)).

• Matrix W = H + PT + T = C + T = [wij], where wij is the maximum weight of a
path which contains operation (ij).

Then we obtain the makespan

Cmax = max
(ij)∈SIJ

cij = max
(ij)∈SIJ

wij.

All operations (ij) with wij = Cmax belong to at least one critical path. By means of matrix
W , one can construct all critical paths by breadth first search. Figure 2.3 summarizes the
block-matrices model.

2.3. MODELS FOR SHOP PROBLEMS 15

PT = [pij]

processing times

LR = [lrij]

sequence

︸ ︷︷ ︸
=⇒
⇐=

if G(MO,JO)

acyclic


MO = [moij]
machine orders

JO = [joij]
job orders

⇓
schedule: C = [cij]

maximum weight of a path

which contains operation (ij):

W = [wij] = H + PT + T

Figure 2.3: Block-Matrices Model

2.3.3 Disjunctive Graph Model and Block-Matrices Model

Shop problems are often modelled in the literature by the disjunctive graph model, see e.g.
Brucker, [8]. The set of vertices of the disjunctive graph are the operations which are
successively numbered and weighted by the processing times. Two vertices are joined by
an edge if they cannot be simultaneously processed, i.e. they belong to the same job or to
the same machine. There are arcs from a fictitious source to any vertex. From any vertex,
there are arcs to a fictitious sink. Precedence constrains for the operations in the job-shop
and flow-shop case are modelled by an orientation of the corresponding edge. We look for
an orientation of all edges that are still not oriented such that the resulting graph does not
contain any cycle and the weight of a critical path becomes minimal (in case of minimizing
the makespan).

The model used in LiSA can be derived from the latter model as follows:
- Delete the source and the sink and the incident arcs from the disjunctive graph.
- Determine an acyclic orientation of the disjunctive graph.
If we drop all arcs that are transitive with respect to the machine and job orders from the
acyclic orientation of the disjunctive graph, we obtain the sequence graph G(MO, JO) used
in LiSA. Moreover, a sequence is a combination of all ranks of an acyclic orientation of a
disjunctive graph.

2.3.4 Basic Algorithms for the Block-Matrices Model

There are some basic algorithms belonging to the block-matrices model, which have a lin-
ear complexity due to the special structure of the sequence graph. They exclusively use
the matrices of the model which describe in one-to-one correspondence the graph-theoretic
properties considered.

Algorithm 1 determines the sequence LR by means of the given matrices MO and JO, if
graph G(MO, JO) does not contain cycles. The set MQ contains all operations, which are

16 CHAPTER 2. BASIC KNOWLEDGE

both a source in G(MO) as well as in G(JO).

Algorithm 1: Determination of LR by means of a combination
(MO,JO), if G(MO,JO) does not contain any cycle

Input: n,m, SIJ , MO and JO on the set of operations SIJ ;
Output: LR on the set of operations SIJ , if G(MO, JO) is acyclic;
BEGIN k := 0;

REPEAT
k := k + 1; Determine set MQ = {(ij) ∈ SIJ | moij = joij = 1};
IF MQ = ∅ THEN (MO, JO) is infeasible and STOP;
FORALL(ij) ∈MQ DO

BEGIN
lrij = k; Mark in MO row i and in JO column j;

END;
SIJ := SIJ \MQ;
FORALL (ij) ∈ SIJ in a marked row in MO DO moij := moij − 1;
FORALL (ij) ∈ SIJ in a marked column in JO DO joij := joij − 1;

UNTIL SIJ = ∅;
END.

Algorithm 2 determines MO and JO by means of LR. Here ai and bj are the smallest
natural numbers which are available for the rank of operation (ij). The maximal element in
LR is denoted by r.

Algorithm 2: Determination of MO and JO by means of LR

Input: n,m, r, I, J, SIJ , LR on the set of operations SIJ ;
Output: MO and JO on the set of operations SIJ ;
BEGIN Set ∀ i ∈ I: ai = 1 and ∀ j ∈ J : bj = 1;

FOR k := 1 TO r DO
FORALL (ij) ∈ SIJ with lrij = k DO

BEGIN
Set moij = ai and ai = ai + 1;
Set joij = bi and bj = bj + 1;

END;
END.

Algorithm 3 generates a semi-active schedule, i.e., the matrix C = [cij] of the completion
times of all operations, by means of the matrix of the processing times PT and the sequence
LR. Here ri and rj denote the earliest possible starting time of job Ai and on machine Mj,
respectively.

2.3. MODELS FOR SHOP PROBLEMS 17

Algorithm 3: Determination of C, provided that PT and LR are given

Input: n,m, r, I, J, SIJ , PT and LR on the set of operations SIJ ;
Output: C on the set of operations SIJ .
BEGIN

Set ∀ i ∈ I: ri = 0 and ∀ j ∈ J : rj = 0;
FOR k := 1 TO r DO

FORALL (ij) ∈ SIJ with lrij = k DO
BEGIN

cij := max{ri, rj}+ pij;
ri := cij; rj := cij;

END;
END.

Algorithm 4 determines the matrices H = [hij] and T = [tij]. hij is the head of operation
(ij), i.e., the smallest time which is necessary for the processing of all preceding operations
of (ij) in the sequence graph G(MO, JO). tij denotes the tail of operation (ij), i.e., the
smallest time which is necessary for the processing of all succeeding operations of (ij) in
the sequence graph G(MO, JO). Here ri, rj are again the earliest starting times of job Ai

and on machine Mj, respectively. si, sj denote the earliest starting times of jobs Ai and on
machine Mj, respectively, in a backward calculation.

Algorithm 4: Calculation of H and T

Input: n,m, r, I, J, SIJ , PT and LR on the set of operations SIJ ;
Output: H and T on the set of operations SIJ .
BEGIN

Set ∀ i ∈ I: ri = 0 and ∀ j ∈ J : rj = 0;
Set ∀ i ∈ I: si = 0 and ∀ j ∈ J : sj = 0;
FOR k := 1 TO r DO

BEGIN
FORALL (ij) ∈ SIJ with lrij = k DO

BEGIN
hij := max{ri, rj}; ri := hij + pij; rj := hij + pij;
END;

FORALL (ij) ∈ SIJ with lrij = r − k + 1 DO
BEGIN

tij := max{si, sj}; si := tij + pij; sj := tij + pij;
END;

END;
END.

Matrix W = H+PT+T contains the weight of a critical path wij from a source via operation
(ij) to a sink of a sequence graph G(MO, JO). Thus, all operations with a maximal weight
wij belong to at least one critical path. Due to the properties of a latin rectangle, we
can order all operations in O(nm) time according to non-decreasing ranks. Thus, we can
determine the heads and tails as well as all wij in linear time.

18 CHAPTER 2. BASIC KNOWLEDGE

This chapter finishes with an example on the block-matrices model.

Example 3 Consider the matrix PT of the processing times from Example 1. The due dates
of the jobs are given by d1 = 6, d2 = 12, d3 = 8. The following combination of machine and
job orders is feasible since the graph G(MO, JO) is a sequence graph, i.e., G(MO, JO) does
not contain any cycle.

A1 : M4 →M2 →M1

A2 : M2 →M1 →M4 →M3

A3 : M3 →M1 →M4 →M2

M1 : A3 → A2 → A1

M2 : A2 → A1 → A3

M3 : A3 → A2

M4 : A1 → A3 → A2

Figure 2.4: Machine and job orders and the sequence graph G(MO, JO)

Algorithm 1 determines the sequence LR, and Algorithm 3 determines the schedule C:

PT =

 2 1 0 1
2 3 4 3
1 5 1 2

 LR =

 4 2 − 1
3 1 5 4
2 4 1 3


︸ ︷︷ ︸

⇐⇒



MO =

 3 2 − 1
2 1 4 3
2 4 1 3



JO =

 3 2 − 1
2 1 2 3
1 3 1 2


C =

 7 4 − 1
5 3 12 8
2 9 1 4


Matrices H and T are determined by Algorithm 4, which gives matrix W = H + PT + T :

W =

 5 3 − 0
3 0 8 5
1 4 0 2

+

 2 1 − 1
2 3 4 3
1 5 1 2

+

 0 5 − 9
7 9 0 4
9 0 10 7

 =

 7 9 − 10
12 12 12 12
11 9 11 11


Schedule C yields Cmax = 12 and C1 = 7, C2 = 12, C3 = 9 such that

∑
Ci = 28, Lmax = 1,∑

Ti = 2 and
∑
Ui = 1 follows. This schedule is optimal in the open-shop case for the

objective functions Cmax and Lmax, but there are better schedules for
∑
Ci,

∑
Ti and

∑
Ui.

In a job-shop and a flow-shop problem, respectively, with given matrix MO, all sequences
LR are feasible which contain the given machine order.

2.4. OVERVIEW OF ALGORITHMS 19

2.4 Overview of Algorithms

In this chapter we present first an overview of the algorithms available in LiSA. Detailed
explanations can be found in Chapter 4.

2.4.1 Universal Algorithms

- Exact Algorithms
A general branch and bound algorithm, which is based on insertion techniques given in
Bräsel [5] and Bräsel u.a. [7], can be used for most open-, flow- and job-shop problems
with regular criteria. The user can set lower and upper bounds, where an upper bound can
be determined by one of the available heuristics. This approach can be used only for small
values n,m since the algorithm has a large running time due to its universality. The use of
good lower bounds can substantially reduce the running times.

- Constructive Heuristics
Simple dispatching rules are available for a large number of problems, also in case of addi-
tional constraints such as given release date of the jobs. A new operation is inserted step by
step according to a chosen strategy.

Rule Choice of the next operation

RAND randomly
FCFS first come, first served
EDD earliest due date first
LQUE smallest difference between due date and (processing time + tail) first
SPT shortest processing time first
WSPT weighted shortest processing time first
ECT (reachable) earliest completion time first
WI largest weight first
LPT largest processing time first

Table 2.5: Dispatching rules

In LiSA Version 3.0, one can find so-called beam-search procedures for many problems.
These are restricted branch-and-bound procedures, i.e., the branch-and-bound tree is only
partially generated. The algorithm is polynomial since a solution is determined by depth first
search and in any step, only a limited number of vertices (beam width) is branched. These
procedures can be partitioned into beam-insert and beam-append procedures depending on
whether the next operation is inserted or appended.

- Iterative Algorithms
In LiSA, several neighborhood search procedures are available. Each vertex of a neighbor-
hood graph corresponds to a sequence and is weighted by the objective function value of
the problem considered. The set of edges is different for the particular neighborhoods. To

20 CHAPTER 2. BASIC KNOWLEDGE

start a procedure, an initial solution is required which can be found by a simple constructive
heuristic. Then the iterative search on the neighborhood graph starts in order to find a
better solution.

Method Description

Iterative Improvement transition to a better solution
- after enumerating all neighbors or
- if the first better neighbor has been found.

Simulated Annealing allows the transition to a worse solution with a certain prob-
ability, which is step by step decreased.

Threshold Accepting allows the transition to a worse solution by means of a thres-
hold which decreases.

Tabu Search generates a tabu list in order to avoid a return to a solution
already considered.

Table 2.6: Neighborhood search strategies

In Table 2.6, the individual implemented search methods are explained. To get more infor-
mation, the reader is referred to the books by Brucker [8], Blazewicz u.a. [3] or Pinedo
[21]. In LiSA, a number of neighborhoods are available, e.g. the API (adjacent pairwise in-
terchange) neighborhood, where two adjacent operations with respect to a machine or job
order are interchanged. In Chapter 4.3, an overview on all neighborhoods available in LiSA
can be found.
In LiSA Version 3.0, there are also implemented genetic algorithms. Starting from an initial
population (set of starting solutions), a new generation is generated, where specific genetic
operators (mutation and crossover) are applied. The fitness measure of a solution (individual)
is described by its objective function value. As in the nature, better adapted individuals
survive during the course of the evolution.

2.4.2 Specific Algorithms

Some algorithms in LiSA are devoted to specific problem classes.
Table 2.7 contains exact algorithms and heuristics. Most of these algorithms can be found
in any monograph on scheduling theory. The exact algorithms for makespan minimization
in the job-shop and open-shop case developed by the team of Brucker are available in the
internet and are incorporated with permission into LiSA.

In LiSA Version 3.0, there are no algorithms for
- problems with precedence constraints,
- basic algorithms and visualization of problems with allowed preemptions of operations,
- parallel machine problems.

2.4. OVERVIEW OF ALGORITHMS 21

Problem type Exact procedures

1|| Lmax Branch and bound

F2‖ Cmax Johnson rule
J2‖ Cmax Jackson rule
O2‖ Cmax Algorithm by Gonzalez/Sahni

J‖ Cmax Original branch-and-bound algorithm by Brucker

O‖ Cmax Original branch-and-bound algorithm by Brucker

O |pmtn | Cmax Gonzales/ Sahni (without visualization)

O2‖ Cmax LAPT rule, Job with longest alternating processing time
first

Problem type Heuristics

1‖ Lmax ERD rule, job with earliest release date first

F ‖ Cmax Beam-Insert with beam width 1 on the
set of permutation-flow-shop sequences

J ‖ Cmax Shifting bottleneck heuristic [1]

O ‖ Cmax Matching heuristics [7]
O ‖

∑
Ci

Table 2.7: Algorithms for specific problems

22 CHAPTER 2. BASIC KNOWLEDGE

2.5 The File Format in LiSA

For processing scheduling problems, LiSA uses files that contain XML data. In those files
– in the following called documents – problem types in the α | β | γ notation, problem
instances and schedules are stored. In addition, there are other documents which describe
algorithms or contain program parameters for LiSA.
While working with the LiSA user interface, there is no knowledge needed about these docu-
ments. There, they only appear in the menu entries File/Save As and File/Open, where
they are used to store scheduling problems for later use. However, detailed knowledge about
the structure of these documents is crucial when invoking LiSA’s algorithms from the com-
mand line (→ 7.1) and for the automated call of algorithms with auto alg (→ 7.3).

According to its functionality, a document type has to be assigned to an XML document.
All in all there are five document types:

• problem contains a problem type in the α | β | γ notation,

• instance contains a problem type and an according problem instance,

• schedule contains in addition one or several schedules,

• algorithm contains a description of an algorithm,

• controls contains program parameters for LiSA.

All XML documents used in LiSA start with the following lines:

<?xml version="1.0" encoding="ISO-8859-1">

<!DOCTYPE instance PUBLIC "" "LiSA.dtd">

The first line is a typical XML file header which has to appear in every document. It describes
the XML version and the character encoding (latin-1 in this case). The second line names
the document type (instance). Additionally, a file named Lisa.dtd is given. It contains a
structural description for the document type (a so-called document type definition, DTD).
It helps the XML interpreter checking if the document structure is valid. This file is located
in both subdirectories bin and data in the LiSA directory.

2.5.1 The Document Type problem

An XML file of the document type problem only consists of a problem description in the
common α | β | γ notation. In the following, there is a simple example file with the problem
type F | ri, intree | Cmax given.

<?xml version="1.0" encoding="ISO-8859-1">

<!DOCTYPE problem PUBLIC "" "LiSA.dtd">

<problem xmlns:LiSA="http://lisa.math.uni-magdeburg.de">

<alpha env="F" />

<beta release_times="yes" prec="intree" />

<gamma objective="Sum_Ci" />

</problem>

A complete reference of all possible options that can be put in here is given in appendix A.

2.5. THE FILE FORMAT IN LISA 23

2.5.2 The Document Type instance

The document type instance contains a problem instance, i.e., besides the problem type
also parameters like problem size, processing times and due dates. These parameters are
summarized in a <values> element that follows right after the already introduced <problem>

element. Giving the problem size, processing times and operation set is mandatory, all other
parameters are optional.

Another example, with the problem type O ||
∑
Ti, problem size n=5, m=10 and given

processing times:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE instance PUBLIC "" "LiSA.dtd">

<instance xmlns:LiSA="http://lisa.math.uni-magdeburg.de">

<problem>

<alpha env="O"/>

<beta/>

<gamma objective="Sum_Ti"/>

</problem>

<values m="10" n="5">

<processing_times model="lisa_native">

{

{ 28 32 93 71 42 18 24 10 1 0 }

{ 65 15 68 88 39 0 15 84 39 59 }

{ 15 98 56 59 56 95 0 49 15 25 }

{ 65 80 63 32 62 96 13 20 13 46 }

{ 15 39 43 94 21 25 41 48 3 90 }

}

</processing_times>

<operation_set model="lisa_native">

{

{ 1 1 1 1 1 1 1 1 1 0 }

{ 1 1 1 1 1 0 1 1 1 1 }

{ 1 1 1 1 1 1 0 1 1 1 }

{ 1 1 1 1 1 1 1 1 1 1 }

{ 1 1 1 1 1 1 1 1 1 1 }

}

</operation_set>

<due_dates>

{ 95 94 39 27 69 }

</due_dates>

</values>

</instance>

In Appendix A, there are descriptions of all further parameters that belong to a problem
instance.

This document type can be passed to the algorithms as input file, that means, a manual
call of an algorithm (→ 7.1) can have a document of this type as a parameter. The
algorithm will compute one or more solutions for the given instance.

24 CHAPTER 2. BASIC KNOWLEDGE

In addition to the parameters that describe a problem instance, an instance document
may also contain parameters that belong to the algorithm to invoke. These parameters only
control the behaviour of the algorithm and do not belong to the problem instance. They
are aggregated in a <controls> element that directly follows the <values> element in the
document. The content of this element is individual for each algorithm. Further information
is located in the section Algorithm Modules (→ 7.1). A reference of the parameters for
each algorithm can be found in Chapter 4.
Problem instances can be easily generated with the LiSA GUI. After defining a problem
type with File/New and editing of the parameters via Edit/Parameters , the data can
be saved as an instance document using File/Save As .

2.5.3 The Document Type solution

A solution document is structured much like an instance document, with the difference
that it contains also one or more solutions (sequences). Supplementary data, like completion
times or machine and job orders, can also be given. All those data will be stored in a
<schedule> element.

An example with one solution, which consists of the sequence (<plan>) and the matrix of
completion times:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE solution PUBLIC "" "LiSA.dtd"> <solution xmlns:LiSA="http://lisa.math.uni-magdeburg.de">

<problem>

<alpha env="O"/>

<beta/>

<gamma objective="Sum_Ui"/>

</problem>

<values m="5" n="3">

<processing_times model="lisa_native">

{

{ 38 25 9 48 23 }

{ 59 25 65 88 82 }

{ 9 48 57 10 5 }

}

</processing_times>

<operation_set>

{

{ 1 1 1 1 1 }

{ 1 1 1 1 1 }

{ 1 1 1 1 1 }

}

</operation_set>

<due_dates>

{ 107 175 71 }

</due_dates>

</values>

<schedule m="5" n="3" semiactive="yes">

<plan model="lisa_native">

2.5. THE FILE FORMAT IN LISA 25

{

{ 4 3 1 5 2 }

{ 5 4 2 7 6 }

{ 2 5 6 3 1 }

}

</plan>

<completion_times model="lisa_native">

{

{ 95 57 9 143 32 }

{ 158 99 74 328 240 }

{ 14 147 204 24 5 }

}

</completion_times>

</schedule>

</solution>

solution documents are created as the output of algorithms. As well as documents of
type instance, they can also be used as input files for algorithms. In this case, however,
all already contained solutions are discarded. Also, the document has to contain algorithm
parameters in a <controls> element for that purpose. This element has to be placed between
the <values> and <schedule> elements.

2.5.4 The Document Type algorithm

This document type is used to include new algorithms into LiSA. In fact, all algorithms are
integrated into the GUI using such description files. At program startup, LiSA will look
for algorithm documents in the directories data/alg desc/language/english or data/

alg desc/language/german, respectively, depending on the chosen language and includes
the described algorithms into the menu Algorithms.
In order that an algorithm is able to be invoked correctly on a problem instance, several
pieces of information have to be specified here. This is the problem type that an algorithm
can solve, and parameters that must be passed, among other information.
We leave out an example of such a document because it may never be used during regu-
lar work with LiSA. However, an example document is located in the LiSA subdirectory
src/algorithm/sample (as long as the LiSA source code package is installed). Further
reading about algorithm documents can be found in the sections Algorithm Modules
(→ 7.1) and Inclusion of External Algorithms (→ 7.2).

2.5.5 The Document Type controls

In a controls-type document, program options for LiSA are stored. There is one document
for every user, which is located in ~/.lisa/default.xml. The structure of this and all
changeable options are described in the appendix A. The most important options can however
be changed in LiSA via the menu entry Options/General Options, so that editing this
document manually is seldom required.

26 CHAPTER 2. BASIC KNOWLEDGE

Chapter 3

Input

An instance of a problem that shall be solved with LiSA consists of the problem type (→
3.1), the number of jobs n, the number of machines m and the parameters (→ 3.2) that
are necessarily related to the problem type, n and m. The input can be done by hand or by
opening an input file. In addition, LiSA offers a random generator that generates uniformly
distributed data from a given interval. To start the generator, two random integer values,
the time seed and the machine seed, have to be given. They can be either given by hand or
they are automatically set to the current system time. Entering them manually allows the
recreation of an already generated problem.

3.1 Problem Type

In order to treat a problem type with LiSA, first the problem type has to be set in the
α | β | γ notation according to Graham et al. After that, the machine and the job numbers
have to be entered. A problem type therefore is feasible, if at least the machine environment
and the objective function are specified. If, additionally, machine and job numbers are given,
later the parameter window can be used to input and edit problem specific data.

Invocation
After choosing File/New from the menu to enter a new problem type, or Edit/Problem
Type to edit an already existing one, the problem type window opens.

Settings
The problem input follows the usual conventions from scheduling textbooks, see also Chapter
Definitions and Notations 2.1, hence we do not give a description of all possible options
for the machine environment, additional constraints or the objective function.

• machine environment

• additional constraints

• objective function

• (number of) machines

• (number of) jobs

27

28 CHAPTER 3. INPUT

Irregular objective functions
There are some additional objective functions that can be used:
IRREG1 = Σ | Ci − di |
IRREG2 = wlateLmax + wearly max(di − Ci)

+ + ΣwiTi + Σwearly(di − Ci)
+

One has to take into account, that for additional weights, which are used by these objective
functions, an external problem generator has to be used.

Hints
LiSA always tries to use the last input. If an inconsistent input is made, LiSA will modify
former inputs if necessary. For instance, if one chooses multi-machine jobs in a single-machine
problem, the problem type will be altered to P .
Since the classification is modified continuously, it can be that certain choices are not im-
plemented yet. LiSA already allows more than ten thousand different problem types to be
entered.
Not for every problem type there is a solution method implemented. Appropriate al-
gorithms can be selected from the menus Algorithms/Exact Algorithms and Algo-
rithms/Heuristic Algorithms, as soon as the problem parameters have been specified.

3.2 Parameters

When LiSA knows the problem type and the number of jobs and machines, all parameters
can be entered.

Invocation
After selecting the menu entry Edit/Parameters, the window Parameters opens for the
parameter input, which is built up differently according to the problem type, n and m. The
following choices come up for a problem J | ri | ΣwiTi:

Settings

View: The release dates ri, the due dates di and the weights wi will be shown for all these
choices:

• Set of Operations: The number in row i and column j of this matrix is 1, if
operation (ij) exists, 0 otherwise.

• Machine Order: The number in row i and column j of this matrix is k, if the
machine Mj is at position k in the machine order of job Ji.

• Processing Times: The number in row i and column j in this matrix is the
processing time of operation (ij).

Generate: To enter the data by hand, first one has to select the view that contains this
data. There, a field can be edited by simply clicking on it. The cursor then jumps
to the next field, and so on. After that, according to the problem type, it follows the
input of

• ... the processing times

• ... the set of operations

3.3. INPUT FILE 29

• ... the machine order

• ... the weights

• ... the due dates

• ... the release dates

By choosing Generate, the window Generate is opened for randomly generating uni-
formly distributed numbers. The following parameters can be chosen:

• Minimum is the smallest number of the random number interval.

• Maximum is the largest number of the random number interval.

• Time seed is a random number for the generation of the numerical data.

• Machine seed is a random number for the generation of the order of operations
on a machine.

With the parameters time seed and machine seed, the generation of a problem instance
is guaranteed to be repeatable. Further information about this random generator can
be found in Taillard [24].

Adopt Machine Order: The machine order will only be adopted, if every row i is a
permutation of the numbers 1 to the number of operations for job Ji.

ATTENTION!
With the menu entry Edit/Parameters, one can also edit the problem instance of the
chosen problem type. LiSA always tries to use the last input. If an inconsistent input is
made, LiSA will modify former inputs if necessary, so that in the case of a repeated usage
of the editing function errors can occur.

3.3 Input File

LiSA has the ability to fetch the problem type and all data of a problem instance from an
input file in XML format. Moreover, every file, that was saved with LiSA, can be opened
again. In the latter case, a schedule may be loaded, the Gantt chart of which will be shown
by default.
Further information about the file format: The File Format in LiSA→ 2.5
LiSA is able to operate on a list of sequences in an XML file that comes from an auto alg

invocation (see Automated Call of Algorithms → 7.3). After opening the file, the list
can be viewed via Edit/List of Sequences. In the opening window List of Sequences,
all sequences in the list are shown in a table in reverse order of their creation in the auto alg

file. At the same time, objective function values and some other, self explaining information
will be displayed. The list can be sorted by the objective function value or by one of the
other shown properties.

By clicking on a field (which is not equal to zero), all information from a sequence will be
displayed on the screen that is described in the chapter Output (→ 5).

ATTENTION!
Further processing of a sequence in the list will discard all other sequences.

30 CHAPTER 3. INPUT

Chapter 4

Algorithms in LiSA

4.1 Universal Exact Algorithm

For solving universal scheduling problems, basically one branch & bound algorithm is avail-
able in LiSA.

A branch & bound algorithm differs from a complete enumeration by the fact that it cuts
parts of the solution tree. To guarantee that optimal solutions are not excluded, any vertex is
evaluated by a lower bound which is valid for the whole branch (i.e., for all solutions belonging
to successors of this vertex). If this evaluation is worse than the objective function value of
the best known solution, the whole branch can be ignored.

In addition to a general Branch & Bound Algorithm (→ 4.1.1), which can be applied to
any problem type and any objective function, there are also specific open-shop and job-shop
branch & bound algorithms by Brucker (→ 4.4.1) available.

4.1.1 Universal Branch & Bound Algorithm

This branch & bound algorithm determines an exact solution for all open-shop, flow-shop,
job-shop, or single machine problems with a regular criterion. If an alternative exact proce-
dure is available for the chosen problem type, this should be chosen since the running time
for the universal branch & bound algorithm can be possibly rather large.

Using appropriate restrictions (see Settings), this algorithm can also be used for determining
a good approximate solution.

Invocation
After the input of the problem type and the required parameters, this procedure can
be reached in the menu item Exact Algorithms/Branch & Bound in the menu Algo-
rithms.

Settings

Number of solutions: Here an upper bound for the number of output sequences can be
settled. The standard setting is 1. The algorithm is able to determine all optimal
sequences. In this case, one must set a number which is at least as large as the number
of optimal solutions.

31

32 CHAPTER 4. ALGORITHMS IN LISA

Lower bound: Here one can set a known lower bound. LiSA considers any sequence, whose
objective function does not exceed this value, as optimal. If a value is entered which is
larger than the optimal function value, this may lead to the output of sequences which
are not optimal. In this way, one can also set a level of the objective function value
which is accepted as an approximation.

Upper bound: Here one can set a known upper bound for the objective function value of
an optimal solution. Such a bound can be obtained e.g. by the objective function value
of a known approximate solution. Then LiSA disregards all partial sequences with a
larger objective function value.

Insertion order: By selecting an insertion order it is fixed in which sequence the opera-
tions will be appended to the partial sequences.

• LPT (longest processing time): The operations are appended in dependence on
the processing times, starting with the largest processing time.

• RANDOM: The operations are appended in a random order.

Bounding: Here it is fixed which procedure is used by LiSA to calculate lower bounds for
the objective function value.

• NORMAL: The objective function value of the partial sequence is used as a
lower bound.

• EXTENDED: (This extended method is not implemented yet.)

Treatment of the problem
This branch & bound algorithm is a universal solver and therefore rather time consuming.
If possible, one should use a problem-specific procedure. If the running time becomes too
large, the procedure can be stopped at any time. This stopping procedure can also last a
few minutes. Then the output gives an approximate solution.
If one looks for several optimal solutions, it is recommended to determine first the optimal
function value with the setting 1 for the number of solutions and then further optimal
solutions in a second run with known bounds.

Invocation in the Autoalg input file
The general branch & bound algorithm is called in an input file for the Autoalg-function
(→ 7.3) as follows:

<CONTROLPARAMETERS>

string AUTOALG_EXECUTABLE bb

string INS_ORDER RANDOM

long NB_SOLUTIONS 1000000

double UPPER_BOUND 10000000

double LOWER_BOUND -10000000

</CONTROLPARAMETERS>

4.2. UNIVERSAL CONSTRUCTIVE PROCEDURES 33

The sequence in which the parameters are passed is irrelevant. In case of optional parameters,
the default-value is given.
As an executable file, bb must be invoked for the branch & bound procedure. Then the
insertion order, the number of solutions as well as an upper and a lower bound can
be optionally set.

4.2 Universal Constructive Procedures

Heuristic procedures are used for determining quickly an approximate solution. In contrast
to exact procedures (→ 4.1), they deliver a solution in a substantially smaller running
time. However, the quality of these solutions can be far away from an optimal solution.
LiSA contains in addition to simple constructive heuristics (dispatching rules) (→
4.2.1), matching heuristics (→ 4.2.2) also beam search procedures for appending (→
4.2.3) and inserting (→ 4.2.4) operations, respectively.

4.2.1 Dispatching Rules

Dispatching Rules are very fast heuristics, where step by step new operations are appended.
The operation which is appended next is determined by a chosen strategy.
Some problem classes can be even optimally solved by means of such simple procedures.

Invocation
After the input of problem type and the required parameters, one chooses Heuristic
Algorithms/Dispatching Rules in the menu Algorithms. In dependence on the prob-
lem type, particular dispatching rules can also be listed under Exact Algorithms. In this
case, usually no settings can be made.

Settings

Generate schedule:

• SEMI-ACTIVE: A schedule is called semi-active if no operation can be started
earlier without changing the sequence, i.e., a semi-active schedule has no unforced
idle times.

• ACTIVE: A schedule is called active if it is semi-active and no idle time ex-
ists such that a later operation on the corresponding machine can be completely
processed within this idle time.

• NON-DELAY: A schedule is called non-delay, if at any time where a machine
Mj and a job Ai are available, the processing of operation (ij) is started. A
non-delay schedule is also active.

Priority: The following definition of priorities are available. The operations to be inserted
are ordered according to the chosen strategy and then step by step are appended
according to this sequence.

• RAND (random): The operations are randomly sequenced.

34 CHAPTER 4. ALGORITHMS IN LISA

• FCFS (first come - first served): The operation is sequenced next which entered
the queue first.

• EDD (earliest due date): The operations are ordered according to non-decreasing
due dates.

• LQUE: The operation is processed next which has the smallest difference ‘due
date − (processing time + tail)’. In the case of an open shop, instead of the tail
the sum of the processing times of all operations of the corresponding job not
sequenced yet is taken. As a tie breaking rule, an operation is chosen such that
on the corresponding machine the sum of the processing times of the operations
not yet sequenced is maximal.

• SPT (shortest processing time): The operations are sequenced according to their
processing times, starting with the shortest one.

• WSPT (weighted shortest processing time): The operation with the smallest
quotient of the processing time and the weight is sequenced next.

• ECT (earliest completion time): The operation with the earliest completion time
is sequenced next.

• WI: Jobs are weighted, and the operations are sequenced according to the weights
of the jobs, starting with the largest weight.

• LPT (longest processing time): The operations are sequenced according to their
processing times, starting with the largest time.

Invocation in the Autoalg input file
In the input file for the Autoalg-function (→ 7.3), dispatching rules are activated as
follows:

<CONTROLPARAMETERS>

string AUTOALG_EXECUTABLE dispatch

string SCHEDULE ACTIVE

string RULE SPT

</CONTROLPARAMETERS>

The sequence in which the parameters are passed is irrelevant. In case of optional parameters,
the default-value is given.
As an executable file, dispatch must be invoked for all dispatching rules. Optionally, it can
be settled which type of a sequence should be generated and which dispatching rule
should be used.

4.2.2 Matching Heuristics

These heuristics generate a sequence for open-shop problems. Here the given problem is
reduced to assignment problems which will be solved optimally by searching a maximal
matching. This leads to a sequence, where operations with similar processing times are
processed in parallel if possible.

Invocation

4.2. UNIVERSAL CONSTRUCTIVE PROCEDURES 35

After the input of problem type and the required parameters, one chooses Heuristic
Algorithms/Matching Heuristics in the menu Algorithms.

Settings

Kind of algorithm: By this option, one determines how to treat the weights of the oper-
ations that are fixed by the setting Kind of matching.

• BOTTLENECK: The operations are ordered by their weights. Then the largest
weight p is determined such that M = {p (i, j) | p (i, j) ≥ p} contains a perfect
matching. The corresponding operations from this matching are appended to
the sequence and the weights are deleted. This procedure is repeated until all
operations have been appended to the sequence.

• WEIGHTED: A maximally weighted matching is determined. The correspond-
ing operations are appended to the sequence and the weights are deleted (they are
set on the smallest feasible value). This procedure is repeated until all operations
are appended to the sequence. (This is the standard setting.)

Kind of matching: By this option, one fixes how the weights of the particular operations
are calculated.

• HEADS: The first set to be appended is calculated by the MIN parameter. If
an initial set of operations has been appended, the heads are determined for all
remaining operations. They are added to the processing times and the results are
subtracted from the largest value. This gives the weights for the next matching.
In this way, the algorithm minimizes the current makespan value in each step.

• MIN: The weight of an operation is calculated as the difference between the
processing time of an operation and the largest feasible value. In this way, the
average processing time of all operations in one appending step is minimized.

• MAX: The weight of an operation directly results from the processing time. In
this way, the average processing time of all operations in one appending step is
maximized. (This is the standard setting.)

Invocation in the Autoalg input file
In the input file for the Autoalg-function (→ 7.3), matching heuristics are activated as
follows:

<CONTROLPARAMETERS>

string AUTOALG_EXECUTABLE match

string MINMAX MAX

string TYPEOF WEIGHTED

</CONTROLPARAMETERS>

The sequence in which the parameters are passed is irrelevant. In case of optional parameters,
here the default-value is given.
As an executable file, match must be invoked for the matching heuristics. Optionally, the
kind of matching and the kind of algorithm can be settled.

36 CHAPTER 4. ALGORITHMS IN LISA

4.2.3 Beam Search Procedures with Appending Technique

Beam Search procedures are a heuristic variant of the Branch & Bound Procedure (→
4.1.1). In contrast to them, the number of partial solutions to be investigated is restricted
in any vertex of the solution tree. This leads to an incomplete search in the set of feasible
solutions which possibly excludes all optimal solutions. However, such procedures are sub-
stantially faster than a complete branch & bound algorithm. The quality of the solution
depends both on the chosen problem type and on the chosen settings.
In case of an appending procedure, for any partial sequence different positions are con-
sidered at which new operations with increasing rank can be appended. Using one of the
particular strategies, an operation is searched which fits on this position. In addition to the
appending procedure, an insertion procedure (→ 4.2.4) is also implemented in LiSA.

Invocation
After the input of the problem type and the required parameters, one chooses Heuristic
Algorithms/Beam Search (attach) in the menu Algorithms.

Settings

Beam width: Here one fixes how many of the partial sequences generated in each step
should be considered further.

Selection method: Here one fixes how the chosen number of partial sequences considered
further (beam width) should be selected. The partial sequences are evaluated by
their objective function values.

• INSERT1: From the set of all child-sequences in one step, select the best ones.

• INSERT2: For any parent-sequence, exactly one (best) child-sequence is chosen,
independently whether this is globally promising or not.

Selection criterion: This option is only available in case of Cmax problems. It gives an
alternative evaluation method for partial sequences.

• CLAST: A partial sequence is evaluated by the cost of a longest path through
the operation which has been inserted last.

• LB(Sum Ci): A partial sequence is evaluated by the Sum Ci objective function
value.

• OBJECTIVE: The objective function value is used for evaluating a partial se-
quence. This is the standard method.

Tie Breaking: If the selection of an operation to be appended is not uniquely determined,
this option fixes by which rule an operation is chosen among the candidate operations.

• FCFS (first come - first served): The next sequenced operation is the one which
entered the queue first.

4.2. UNIVERSAL CONSTRUCTIVE PROCEDURES 37

• LPT (longest processing time): The next sequenced operation is the one which
has the largest processing time.

• SPT (shortest processing time): The next sequenced operation is the one which
has the shortest processing time.

• RANDOM: The operation is randomly chosen.

Invocation in the Autoalg input file
In the input file for the Autoalg-function (→ 7.3), beam search appending procedures are
activated as follows:

<CONTROLPARAMETERS>

string AUTOALG_EXECUTABLE beam

string MODE ATTACH

string ATTACH_WHAT Machines+Jobs

string BREAK_TIES FCFS

string INS_METHOD INSERT1

string CRITERION OBJECTIVE

long K_BRANCHES 5

</CONTROLPARAMETERS>

The sequence in which the parameters are passed is irrelevant. In case of optional parameters,
here the default-value is given.
As an executable file, beam must be invoked for all beam search procedures. The information
on the beam search mode is mandatory. Optionally, the parameters for the appending cri-
terion (ATTACH WHAT with options machines, jobs, machines+jobs), the tie breaking,
the selection method, the selection criterion, and the beam width can be set.

4.2.4 Beam Search Procedures with Insertion Technique

Beam Search procedures are a heuristic variant of the Branch & Bound Procedure (→
4.1.1). In contrast to them, the number of investigated partial solutions is limited in any
vertex of the solution tree. This leads to an incomplete search in the set of feasible solutions
which can possibly exclude all optimal solutions. However, such procedures are substantially
faster than a branch & bound algorithm. The quality of the solution depends both on the
chosen problem type and on the chosen parameters.
In case of an insertion procedure, the sequence in which the operations are added to a
partial sequence is settled in advance. For any partial sequence and any new operation,
several feasible positions are considered at which the new operation with one of the possible
ranks can be inserted. In addition to the insertion procedure, an appending procedure (→
4.2.3) is also implemented in LiSA.

Invocation
After the input of the problem type and the required parameters, one chooses Heuristic
Algorithms/Beam Search (insert) in the menu Algorithms.

Settings

38 CHAPTER 4. ALGORITHMS IN LISA

Beam width: Here one fixes how many of the partial sequences generated in any step are
considered further.

Insertion order: Here the sequence is fixed in which the operations are added to the par-
tial sequences.

• MACHINEWISE: The operations are sequenced column-wise.

• DIAGONAL: This strategy is based on the consideration of the diagonal in a
square of the size M = min (m,n).

• QUEEN SWEEP: This strategy is based on the consideration of independent
sets as solutions of a M queens problem on aM×M chess board (M = min (m,n)).

• RANDOM: The operations are inserted in random order.

• LPT (longest processing time): The operations are ordered according to decreas-
ing processing times.

• ECT (earliest completion time): The operation to be inserted next is chosen
in such a way that the completion time for the new partial schedule becomes
minimal. In contrast to all other strategies for selecting an insertion order, this
selection is not globally made. In any step, for each partial sequence considered,
the operation is determined which is inserted next.

• SPT (shortest processing time): The operations are ordered according to increas-
ing processing times.

Selection method: Here one fixes how the chosen number of partial sequences investigated
further (beam width) is selected. The partial sequences are evaluated by their ob-
jective function values.

• INSERT1: From the set of all child-sequences in one step, select the best ones.

• INSERT2: For any parent-sequence, exactly one (best) child-sequence is chosen,
independently whether this is globally promising or not.

Selection criterion: This option is only available for Cmax problems. It gives an alterna-
tive evaluation method for partial sequences.

• OBJECTIVE: The objective function value is used for evaluating a partial se-
quence. This is the standard method.

• CLAST: A partial sequence is evaluated by the cost of a longest path through
the operation which has been inserted last.

Invocation in the Autoalg input file
In the input file for the Autoalg-function (→ 7.3), beam search insertion procedures are
activated as follows:

4.3. UNIVERSAL ITERATIVE IMPROVEMENT PROCEDURES 39

<CONTROLPARAMETERS>

string AUTOALG_EXECUTABLE beam

string MODE INSERT

string INS_ORDER LPT

string INS_METHOD INSERT1

string CRITERION OBJECTIVE

long k_BRANCHES 5

</CONTROLPARAMETERS>

The sequence in which the parameters are passed is irrelevant. In case of optional parameters,
here the default-value is given.
As an executable file, beam must be invoked for all beam search procedures. The information
on the beam search mode is mandatory as it is for the insertion order. Optionally, the
parameters for the selection method, the selection criterion, and the beam width can
be set.

4.3 Universal Iterative Improvement Procedures

Iterative improvement procedures try to improve step by step a given starting solution which
has been found e.g. by a fast heuristic. To this end, several neighborhoods between feasible
solutions are considered, which can be searched by different strategies. Such procedures
are often used when looking for excellent approximation solutions in a medium-size running
time.
In addition to the simple iterative search (→ 4.3.1) and the tabu search (→ 4.3.2), in
LiSA there are also implemented extended neighborhood search procedures such as sim-
ulated annealing (→ 4.3.3) or threshold accepting (→ 4.3.4). In addition, there are
available further metaheuristic algorithms such as genetic algorithms (→ 4.3.5) and ant
colony procedures (→ 4.3.6).
The quality of the solution depends on the used procedures, the quality of the starting
solution and the number of generated solutions.

Neighborhoods
In all neighborhood search procedures, the different neighborhoods play a particular role. A
neighborhood graph describes which sequences can be generated from a given sequence in
one step. The choice of the neighborhood may have a large influence on the quality of the
procedure. In LiSA, the following neighborhoods are considered but not every neighborhood
is available for any problem type:

• k API (k-adjacent pairwise interchange): k + 1 adjacent operations are randomly
re-sequenced.

• SHIFT: An operation is shifted in the sequence.

• PI (pairwise interchange): Two arbitrary operations are interchanged.

• TRANS (transpose): A sub-sequence of operations on a machine is reversed.

• CR API (critical API): A Cmax critical operation is interchanged with a directly
adjacent operation.

40 CHAPTER 4. ALGORITHMS IN LISA

• SC API (semi-critical API): A Cmax critical operation or with a specific probability
also another operation is interchanged with a directly adjacent operation.

• BL API (block API): A Cmax critical block-end-operation is interchanged with a di-
rectly adjacent operation.

• CR SHIFT (critical SHIFT): A Cmax critical operation is shifted in the sequence.

• BL SHIFT (block SHIFT): A Cmax critical block-end-operation is shifted in the se-
quence.

• CR TRANS (critical TRANS) : The sequence of jobs between two critical operations
on a machine is reversed.

• SC TRANS (semi-critical TRANS) : The sequence on a machine is not always re-
versed between two critical operations but with a small probability also between non-
critical operations.

• 3 CR: A Cmax critical operation is interchanged with a directly adjacent operation.
In addition, both the predecessor and the successor are interchanged with other oper-
ations.

• k REINSERTION: k arbitrary operations are removed from the sequence and then
re-inserted.

• CR TRANS MIX: In 75% of all cases, a neighbor sequence is generated in the
CR TRANS neighborhood, otherwise in the CR API neighborhood.

• CR SHIFT MIX: In 75% of all cases, a neighbor is generated in the CR SHIFT
neighborhood, otherwise in the CR API neighborhood.

4.3.1 Iterative search

In an iterative search procedure, the neighborhood is searched in any step and the first
improving solution is accepted. This always ends in a local optimum the quality of which
can, however, be rather bad.

Invocation
After the input of the problem type and the required parameters, one chooses Heuristic
Algorithms/Iterative Improvement in the menu Algorithms.

Settings

Created solutions: This fixes the maximal number of solutions to be generated.

Abort when stuck for (stopping criterion): Here a stopping criterion in form of a max-
imal number of iterations without an improvement of the best solution found so far
can be fixed. If this value is larger than the number of solutions, it does not apply.

k for k API or k REINSERTION: Here a parameter k is settled, if the neighborhood
k API or k REINSERTION has been chosen.

4.3. UNIVERSAL ITERATIVE IMPROVEMENT PROCEDURES 41

Abort when reaching objective (stopping criterion): Here one can settle an upper
bound for the acceptance of an objective function value. The neighborhood search is
finished if the settled objective function value has been reached.

Neighborhood: Here the choice of the neighborhood is fixed, i.e., in which ways neighbors
are generated from a given sequence.

• k API

• SHIFT

• PI

• CR API

• BL AP

• CR SHIFT

• BL SHIFT

• 3 CR

• k REINSERTION.

Invocation in the Autoalg input file

In the input file for the Autoalg-function (→ 7.3), iterative search is activated as follows:

<CONTROLPARAMETERS>

string AUTOALG_EXECUTABLE nb_iter

string METHOD IterativeImprovement

string TYPE RAND

string NGBH k_API

long k 1

long STEPS 5000

long NUMB_STUCKS 214748000

double ABORT_BOUND -214748000

</CONTROLPARAMETERS>

The sequence in which the parameters are passed is irrelevant. In case of optional parameters,
here the default-value is given.

As an executable file, nb iter must be invoked for all neighborhood search procedures. For
iterative search, method IterativeImprovement must be activated. The settlements on the
selection of the neighborhood are mandatory (possibly in addition with the corresponding
parameter for k). Then, optionally, the following parameters can be set: the number of
generated sequences, the number of stagnations after which the procedure is stopped,
and possibly a stopping bound.

42 CHAPTER 4. ALGORITHMS IN LISA

4.3.2 Tabu Search

Tabu search is a simple extension of iterative search. In order to avoid a quick stagnation
in a bad local optimum, in any step the neighbor with the best objective function value is
accepted. In order to avoid that after the acceptance of a worse solution one goes back to
the old solution, recently visited solutions are stored in a tabu list, and they are forbidden
to be re-considered in the search. In order to limit the computational time required for the
comparisons of any solution with those in the list, the length of the tabu list is restricted.

Invocation
After the input of the problem type and the required parameters, one chooses Heuristic
Algorithms/Tabu Search in the menu Algorithms.

Settings

Created solutions: Here the maximal number of generated solutions is fixed.

Tabu list length: This parameter fixes how many previous solutions are kept in the mem-
ory of the procedure which cannot be chosen again in the current step.

Number of neighbors: Here it is settled how many neighbors should be generated in each
iteration.

k for k API or k REINSERTION: Here the parameter k is settled, if the neighbor-
hood k API or k REINSERTION has been chosen.

Abort when reaching objective (stopping criterion): Here one can settle an upper
bound for the acceptance of an objective function value. The neighborhood search is
finished if the settled objective function value has been reached.

Neighborhood: Here the choice of the neighborhood is fixed, i.e., in which way neighbors
are generated from a given sequence.

• k API

• SHIFT

• PI

• CR API

• BL API

• CR SHIFT

• BL SHIFT

• 3 CR

• k REINSERTION.

Invocation in the Autoalg input file
In the input file for the Autoalg-function (→ 7.3), tabu search is activated as follows:

4.3. UNIVERSAL ITERATIVE IMPROVEMENT PROCEDURES 43

<CONTROLPARAMETERS>

string AUTOALG_EXECUTABLE nb_iter

string METHOD TabuSearch

string TYPE RAND

string NGBH k_API

long k 1

long STEPS 1

long TABULENGTH 1

long NUMB_NGHB 50

double ABORT_BOUND -214748000

</CONTROLPARAMETERS>

The sequence in which the parameters are passed is irrelevant. In case of optional parameters,
here the default-value is given.
As an executable file, nb iter must be invoked for all neighborhood search procedures. For
tabu search, method TabuSearch must be activated. The settlements on the selection of
the neighborhood are mandatory (possibly in addition with the corresponding parameter
for k). Then, optionally, the following parameters can be set: the number of generated
sequences, the length of tabu list, the number of generated neighbors, and possibly
a stopping bound.

4.3.3 Simulated Annealing

Simulated annealing is an extended variant of iterative search. Here in any step, the im-
provement can also be negative with a specific decreasing probability. This should avoid to
stagnate quickly in a bad local optimum. The probability for accepting a worse solution de-
pends on the ‘temperature’ which is decreased during the search process. The whole cooling
process may consist of several cooling periods or cycles, where the temperature is re-set to
the initial value at the beginning of each period.

Invocation
After the input of the problem type and the required parameters, one chooses Heuristic
Algorithms/Simulated Annealing in the menu Algorithms.

Settings

Epoch length: Here the length of the so-called epoch can be settled. During an epoch
the temperature is constant. At the beginning of the next epoch, the temperature is
reduced.

Number of neighbors: Here the number of neighbors is fixed which are generated in each
iteration.

Iteration steps: Here the maximal number of iterations is settled.

Abort when stuck for (stopping criterion): Here a stopping criterion in form of a max-
imal number of iterations without an improvement of the best solution found so far
can be fixed. If this value is larger than the number of solutions, it does not apply.

44 CHAPTER 4. ALGORITHMS IN LISA

k for k API or k REINSERTION: Here parameter k can be fixed, if the neighbor-
hood k API or k REINSERTION has been chosen.

Start temperature: This parameter fixes the initial temperature for the cooling process.
If during the cooling process the final temperature is reached, the temperature is re-set
to the initial value and a new period starts.

End temperature: This parameter fixes the final temperature for a cooling period. In
dependence on the cooling parameter, the epoch length and the number of so-
lutions, this temperature can be reached significantly before the number of generated
solutions has been generated or after that. Thus, in the first case, there are several
cooling periods while in the second case, there is only one incomplete cooling period.

Cooling parameter: This parameter controls the speed of the cooling process. Depending
on the chosen cooling scheme, it determines how the temperature is calculated from
the current temperature for the next epoch.

Abort when reaching objective (Stopping criterion): Here one can settle an upper
bound for the acceptance of an objective function value. The neighborhood search is
finished if the settled objective function value has been reached.

Cooling scheme: The cooling process of the temperature from one epoch to the next one
can be controlled by several decreasing functions. For each scheme, the cooling pa-
rameter p (0 < p < 1) can be explicitly settled.

• LINEAR: The new temperature is determined from the old one as follows:
T new = T old − pL · T start.

• GEOMETRIC: The new temperature is determined from the old one as follows:
T new = pG · T old.

• LUNDYANDMEES: The new temperature is determined from the old one as
follows: (according to Lundy-Mees): T new = T old/(1 + pLM · T old).

Neighborhood: Here the definition of the neighborhood is fixed, i.e., in which way new
sequences are generated from the given sequence.

• k API

• SHIFT

• PI

• CR API

• BL AP

• CR SHIFT

• BL SHIFT

• 3 CR

• k REINSERTION.

4.3. UNIVERSAL ITERATIVE IMPROVEMENT PROCEDURES 45

Invocation in the Autoalg input file
In the input file for the Autoalg-function (→ 7.3), Simulated annealing is activated as
follows:

<CONTROLPARAMETERS>

string AUTOALG_EXECUTABLE nb_iter

string METHOD SimulatedAnnealingNew

string NGBH k_API

long k 1

long EPOCH 100

long NUMB_NGHB 1

long STEPS 1

long NUMB_STUCKS 214748000

double TSTART 20

double TEND 0.9

double COOLPARAM 0.0005

double ABORT_BOUND -214748000

string COOLSCHEME LUNDYANDMEES

string TYPE ENUM

</CONTROLPARAMETERS>

The sequence in which the parameters are passed is irrelevant. In case of optional parameters,
here the default-value is given.
As an executable file, nb iter must be invoked for all neighborhood search procedures. For
simulated annealing, method SimulatedAnnealingNew must be activated. The information
on the choice of the neighborhood is mandatory (possibly also with the corresponding
parameter for k). Then, optionally, the parameters for the number of epochs, the num-
ber of iterations, and the number of stagnations when the procedure is stopped, the
start temperature, the end temperature, the cooling parameter, possibly a stopping
bound, the cooling scheme and the way of the generation of the neighbors (randomly
or enumerative) (variable TYPE with options ENUM and RAND).

4.3.4 Threshold Accepting

Threshold Accepting is also an extended version of iterative search. In contrast to local
search, in any step also small deteriorations are accepted. The threshold for accepting worse
solutions is decreased during the search and tends to zero. In LiSA, a linear reduction of the
threshold is implemented.

Invocation
After the input of the problem type and the required parameters, one chooses Heuristic
Algorithms/Threshold Accepting in the menu Algorithms.

Settings

Created solutions: Here the maximal number of generated solutions is fixed

46 CHAPTER 4. ALGORITHMS IN LISA

Abort when stuck for (stopping criterion): Here a stopping criterion in form of a max-
imal number of iterations without an improvement of the best solution can be fixed.
If this value is larger than the number of solutions, it is not applied.

Initial threshold: This parameter gives the maximal allowed deterioration in per mille.

Maximal number of stagnations: In order to avoid trapping into a local optimum in
case of a low threshold, the threshold is re-set to the initial value after the given
number of iterations without an improvement of the currently best solution.

k for k API or k REINSERTION: Here the parameter k is fixed, if the neighborhood
k API or k REINSERTION has been chosen.

Abort when reaching objective (stopping criterion): Here one can settle an upper
bound for the acceptance of an objective function value. The neighborhood search is
finished if the settled objective function value has been reached.

Neighborhood: Here the definition of the neighborhood is settled, i.e., in which way neigh-
bors are generated from the current solution.

• k API

• SHIFT

• PI

• CR API

• BL API

• CR SHIFT

• BL SHIFT

• 3 CR

• k REINSERTION.

Invocation in the Autoalg input file
In the input file for the Autoalg-function (→ 7.3), Threshold accepting is activated as
follows:

<CONTROLPARAMETERS>

string AUTOALG_EXECUTABLE nb_iter

string METHOD ThresholdAccepting

string TYPE RAND

string NGBH k_API

long k 1

long STEPS 1

long NUMB_STUCKS 214748000

long PROB 1

double ABORT_BOUND -214748000

long MAX_STUCK 30

</CONTROLPARAMETERS>

4.3. UNIVERSAL ITERATIVE IMPROVEMENT PROCEDURES 47

The sequence in which the parameters are passed is irrelevant. In case of optional parameters,
here the default-value is given.
As an executable file, nb iter must be invoked for all neighborhood search procedures. For
Threshold accepting, method ThresholdAccepting must be activated. The information on
the choice of the neighborhood is mandatory (possibly also with the corresponding pa-
rameter for k). Then, optionally, the parameters for the number of generated solutions,
the number of stagnations after which the procedure stops, the initial threshold and
possibly a stopping bound.

4.3.5 Genetic Algorithms

Genetic algorithms are metaheuristics which generate from a population of starting solutions
new solutions by means of random changes. They imitate the biological concepts of muta-
tion and recombination of two individuals. In case of a mutation, the rank of a randomly
chosen individual from the current population is changed. This modified sequence is then
manipulated such that a new solution for the underlying scheduling problem is obtained.
In case of a crossover, a randomly chosen set of ranks of two randomly chosen individuals
are interchanged. Then both resulting sequences are transformed into feasible sequences for
the problem under consideration. In this way, new individuals are generated. These new
individuals are included into the next generation if, according to a fitness function, they are
not less fit than their corresponding predecessors.
The initial population is formed by randomly generated sequences (individuals). Using the
Autoalg-function (→ 7.3), it is possible to include also already rather good solutions
determined by chosen constructive heuristics into the initial population.

Invocation
After the input of the problem type and the required parameters, one chooses Heuristic
Algorithms/Genetic Algorithms in the menu Algorithms.

Settings

Population size: Here one fixes how many solutions (individuals) should belong to a pop-
ulation.

Number of generations: This parameter settles the number of iterations of this proce-
dure.

Random seed: This parameter serves as input for the random generation of the initial
population. In addition, the random decisions in any step are influenced. If the
procedure is executed without local search steps, it can be exactly repeated with the
same parameter.

Local improvement steps: An individual generated by mutation or crossover can often
be easily improved by a simple local search (→ 4.3.1). Here it is settled how many
iterations of local search are applied to any new solution.

Mutation probability: This parameter gives the probability with which an individual is
modified by a mutation in the current iteration.

48 CHAPTER 4. ALGORITHMS IN LISA

Crossover probability: This parameter gives the probability with which two individuals
are modified by a crossover in the current iteration.

Population initialization: Here it is settled which type of sequences are randomly gener-
ated for the initial population.

• RANDOM ORDER: Sequences are generated the schedules of which can be
active or non-delay.

• ACTIVE DISPATCH: Sequences are generated the schedules of which are ex-
clusively active ones.

• NON DELAY DISPATCH: Sequences with non-delay schedules are exclu-
sively generated.

Local improvement: Here the neighborhood is fixed in which new solutions should be im-
proved. In case of the setting (disabled), no local search is performed.

• API

• SHIFT

• PI

• CR API

• BL API

• CR SHIFT

• BL SHIFT

• 3 CR

• (disabled).

Invocation in the Autoalg input file
In the input file for the Autoalg-function (→ 7.3), genetic algorithms are activated as
follows:

<CONTROLPARAMETERS>

string AUTOALG_EXECUTABLE ga

long POP_SIZE 20

long NUM_GEN 100

string INIT RANDOM_ORDER

string FITNESS OBJECTIVE

double M_PROB 0.25

double C_PROB 0.35

long SEED 1234567890

long IMPR_STEPS 10

string L_IMPR (disabled)

</CONTROLPARAMETERS>

4.3. UNIVERSAL ITERATIVE IMPROVEMENT PROCEDURES 49

The sequence in which the parameters are passed is irrelevant. In case of optional parameters,
here the default-value is given.
As an executable file, ga must be invoked for all genetic algorithms. Then the information
about the population size, the number of generations, the method for the population
initialization (INIT), the mutation probability (M PROB) and the crossover proba-
bility (C PROB) is mandatory. Then, optionally, the parameters for the random seed,
the number of local improvement steps, and the choice of the neighborhood of local
improvement can be settled.
In addition, one can influence the choice of the fitness function (FITNESS) by the invo-
cation of a genetic algorithm using the Autoalg input file. This function determines which
individuals are included into the next generation. Here one can select two options: by OB-
JECTIVE, one chooses the corresponding objective function value as the fitness function.
Alternatively, one can also choose SUM Ci2.

4.3.6 Beam Ant Colony Procedures

Ant colony optimization is a metaheuristic for optimization problems which are difficult to
solve. Based on a probabilistic construction mechanism, a solution is constructed by tree
search. Using beam search procedures on this tree, a hybrid algorithm is obtained. The
available algorithm follows the ideas by Blum [4].

Invocation
After the input of the problem type and the required parameters, one chooses Heuristic
Algorithms/Beam Ant Colony in the menu Algorithms.

Settings

Number of beam extensions: Here the number of operations to be inserted in one ex-
tension step is settled. This value is only taken into account, if the parameter Deter-
mination of beam extensions is set to FIXED.

Number of runs: Number of single runs. Since the ants are successively started, this
corresponds to the number of ants in the whole population.

Convergence factor for re-start: This value gives a lower bound for the convergence
factor from which a new calculation of the pheromone values is done.

Evaporation rate: This parameter characterizes the influence which a new best sequence
has on the calculation of the pheromone values. This value should be between 0 and
1.

Influence of earliest completion time: This holds only for the Strategy of selection
of extensions = SORTED.

Influence of pheromone values: This holds only for the Strategy of selection of ex-
tensions = SORTED.

Influence of randomness: This holds only for the Strategy of selection of extensions
= SORTED objective function value.

50 CHAPTER 4. ALGORITHMS IN LISA

Determination of beam extensions:

• MED: Number of free operations / 2.

• LDS: At the beginning as MED, in the second half fixed as 2.

• FIXED: Fixed number.

Strategy of selection of extensions:

• ORIGINAL: This corresponds to the method described in the literature.

• SORTED: Here the particular operations are weighted and sorted according to
these values.

Pre-selection of extensions:

• NONE:

• ACTIVE: Only active schedules are considered.

Invocation in the Autoalg input file
In the input file for the Autoalg-function (→ 7.3), Beam Ant Colony procedures are
activated as follows:

<CONTROLPARAMETERS>

string AUTOALG_EXECUTABLE beam_aco

long BEAM_WIDTH 32

double UPPER_BOUND 10000000

double LOWER_BOUND 0

string EXTENSION_STRATEGY FIXED

long STEPS 2500

double CONVERGENCE_FACTOR 0.98

long FIXED_KEXT 1

string APPEND_STRATEGY SORTED

string PRE_SELECTION ACTIVE

double WEIGHT_EST 1.8

double WEIGHT_TIJ 2

double WEIGHT_RAND 1

double EVAPORATION_RATE 0.3

</CONTROLPARAMETERS>

The sequence in which the parameters are passed is irrelevant. In case of optional parameters,
here the default-value is given.
As an executable file, beam aco must be invoked for beam ant colony procedures. Then, op-
tionally, the following parameters can be activated: The information about the beam width,
the upper bound, the lower bound, determination of beam extensions (EXTEN-
SION STRATEGY), number of runs (STEPS), convergence factor for re-start, num-
ber of beam extensions (FIXED KEXT), the strategy for the selection of extensions
(APPEND STRATEGY), pre-selection of extensions, the influence of earliest com-
pletion time (WEIGHT EST), the influence of pheromone values (WEIGHT TIJ),
and the influence of randomness.

4.4. ALGORITHMS FOR SOLVING SPECIAL PROBLEMS 51

4.4 Algorithms for Solving Special Problems

4.4.1 Brucker’s Branch & Bound Algorithm

This exact algorithm has been developed and implemented by the team of Peter Brucker at
the University of Osnabrück. There exists a variant for open-shop problems and a variant
for job-shop problems.

Invocation
After the input of the problem type and the required parameters, one chooses Exact
Algorithms/Brucker’s Open-Shop B&B and Exact Algorithms/Brucker’s Job-
Shop B&B, respectively, in the menu Algorithms.

Settings
For the open-shop algorithm, the choice of a heuristic for generating sequences must be
made. For the job-shop algorithm, no options are available.

Heuristic: The algorithm can use several heuristics for generating or completing sequences.
(There exist more than the two heuristics mentioned here. However, they are deacti-
vated since they do not work with incomplete sets of operations.)

• LB PREC RULE: This heuristic is based on a dispatching rule which results
from the calculation of a lower bound.

• LB PREC RULE VAR: This heuristic is a variation of the above heuristic.

Invocation in the Autoalg input file
In the input file for the Autoalg-function (→ 7.3), the branch & bound algorithm by
Brucker is activated as follows:

<CONTROLPARAMETERS>

string AUTOALG_EXECUTABLE os_bb_wo

string HEURISTIC MIN_MATCHING

</CONTROLPARAMETERS>

As executable file, there must be invoked os bb wo for open-shop problems and js bb br
for job-shop problems. Then, for open-shop problems, a heuristic can be selected. For
job-shop problems, there are no further parameters.

4.4.2 Two-Machine Problems

For problems with 2 machines, the Johnson rule yields an optimal solution for the flow-shop
problem with minimizing the makespan as well as for the extensions to the job-shop and
open-shop case, i.e., it works for the problem type α ∈ {F2, J2, O2}.

Invocation

52 CHAPTER 4. ALGORITHMS IN LISA

After the input of the problem type (choose under α in addition to F, J or O also given
number of machines since it has the initial value 2) and the required parameters, one
chooses Exact Algorithms/Johnson Rule in the menu Algorithms.

Invocation in the Autoalg input file
In the input file for the Autoalg-function (→ 7.3), the Johnson rule is activated as follows:

<CONTROLPARAMETERS>

string AUTOALG_EXECUTABLE johnson

</CONTROLPARAMETERS>

For an O2 || Cmax problem, the LAPT (longest alternating processing times) rule also yields
an optimal solution.

Invocation
After the input of the problem type (note that α = O2) and the required parameters,
one chooses Exact Algorithms/LAPT-Rule in the menu Algorithms.

Invocation in the Autoalg input file
In the input file for the Autoalg-function (→ 7.3), the LAPT rule is activated as follows:

<CONTROLPARAMETERS>

string AUTOALG_EXECUTABLE pr

</CONTROLPARAMETERS>

4.4.3 Single Machine Problems with Minimizing the Number of
Late Jobs

This algorithm minimizes the total number of late jobs in a single machine environment. It
finds an exact solution in polynomial time.

Invocation
After the input of the problem type and the required parameters, one chooses Exact
Algorithms/Single Machine - Sum Ui in the menu Algorithms.

Invocation in the Autoalg input file
In the input file for the Autoalg-function (→ 7.3), the single machine algorithm is activated
as follows:

<CONTROLPARAMETERS>

string AUTOALG_EXECUTABLE single_sum_ui

</CONTROLPARAMETERS>

As executable file, there must be invoked single sum ui. No parameters are passed to the
algorithm.

4.5. HEURISTIC ALGORITHMS FOR SPECIAL PROBLEMS 53

4.4.4 Open-Shop Problem with Makespan Minimization and pmtn
(Allowed Preemptions)

The algorithm by Gonzales/Sahni [14] has been implemented. However, since the LiSA
core cannot present Gantt charts with preemptions and in addition, a sequence and a schedule
with pmtn is not contained in the graphical interface, the result is written into a file. One
uses the LiSA interface to input the problem type and the required parameters. Then one
invokes Exact Algorithms/Gonzales & Sahni (Research). LiSA stores the results in
the file algo out.xml in the directory ~/.lisa/proc. At each position (ij) of the matrix,
one can find an information about the sub-operations into which (ij) is split. Further
information about the extension of the block-matrices model to problems with preemptions
can be found in Bräsel/Hennes [6].

4.5 Heuristic Algorithms for Special Problems

4.5.1 The Shifting Bottleneck Heuristic

The shifting bottleneck heuristic generates an approximate solution for the job-shop and
the flow-shop problem, respectively, with minimizing the makespan by solving successively
single machine problems. In the first step, the weight of a critical path in the corresponding
disjunctive graph is determined, where all non-oriented edges have been deleted. This value
is a lower bound LB for the makespan Cmax. Step by step, one now solves for any machine a
single machine problem with release dates of the jobs (heads of the operations on the corre-
sponding machine), due dates (LB minus tails of the operations on the considered machine),
precedence constraints between the jobs (precedence constraints between the operations on
the considered machine from the current disjunctive graph without disjunctive edges) and
the minimization of Lmax. The exact solution of this problem is used as the job order of the
operations on the considered machine. In addition, after fixing the job order on a machine,
one tries to improve already fixed job orders further, i.e., one shifts the bottleneck.

Invocation
After the input of the problem type and the required parameters, one chooses Heuristic
Algorithms/ShiftingBottleneck in the menu Algorithms.

Settings

Speed: By this, one can select a fast variant which might generate infeasible schedules or a
slower variant which contains the complete heuristic.

• FAST The fast variant does not consider the precedence graph of the operations
when solving the single machine problems. As a consequence, there can be gener-
ated combinations of the machine and job orders which are infeasible, i.e., which
contain cycles, what LiSA returns as an error message.

• SLOW Here, the shifting bottleneck heuristic is completely implemented.

Invocation in the Autoalg input file
In the input file for the Autoalg-function (→ 7.3), the shifting bottleneck heuristic is
activated as follows:

54 CHAPTER 4. ALGORITHMS IN LISA

<CONTROLPARAMETERS>

string AUTOALG_EXECUTABLE bottle

string SPEED SLOW

</CONTROLPARAMETERS>

Computational tests with randomly generated machine orders have created cycles in the
FAST variant only for problems with more than 20 machines and 20 jobs.

4.5.2 The Flow-Shop Heuristic

This heuristic determines a heuristic solution for the flow-shop problem from the set of
all permutation schedules (i.e., the same job order is chosen on all machines). To this end,
the insertion order of the jobs according to non-increasing sums of their processing times is
used. One starts with the first job of this order and sequences the second job directly before
and after the first job. Choosing the partial sequence with the smallest makespan value, the
third job is sequenced on position 1, 2 and 3, etc. (beam-insert with width 1 on the set of
all permutation schedules).

Invocation
After the input of the problem type and the required parameters, one chooses Heuristic
Algorithms/Flow Shop Heuristic in the menu Algorithms.

Invocation in the Autoalg input file
In the input file for the Autoalg-function (→ 7.3), the flow-shop heuristic is activated as
follows:

<CONTROLPARAMETERS>

string AUTOALG_EXECUTABLE fsheur

</CONTROLPARAMETERS>

As an executable file, there must be invoked fsheur. No further parameters are expected.

Chapter 5

Output

As soon as LiSA has determined a schedule or a file with a schedule has been opened, LiSA
always displays the corresponding Gantt chart in the main window. Then in the menu item
View , the following information on the current schedule can be activated:

• Parameters

• Sequence → 5.1

• Sequence graph → 5.2

• Schedule → 5.3

• Gantt chart → 5.4

By the call of the menu item File/Print, the current content of the main window is printed.
In addition, it is possible to store the current results as an XML file, siehe output file →
5.5.

5.1 Sequence

A sequence is a feasible combination of the machine orders of the jobs and the job orders on
the machines. It is described by the rank matrix of the vertices (operations) of the (acyclic)
sequence graph (see 5.2). The rank of a vertex v in an acyclic digraph is defined as the
number of vertices on a longest path to vertex v, where v is included.

It can be noted that any sequence is a latin rectangle which satisfies the so-called sequence
condition: If there is the number a > 1 at position (i, j) in the latin rectangle, then number
a − 1 exists either in row i or in column j or in both. A latin rectangle LR[m,n, r] is a
matrix of order m × n with entries from a set B = {1, ..., r}, where any number from B
occurs at most once in any row and column.

For further information: see Block-Matrices-Model → 2.3.2

Invocation
After the input of the problem instance and the first application of an algorithm, the re-
sulting schedule is always represented by a Gantt chart. After selecting the menu item
View/Sequence, the sequence is displayed in the main window.

55

56 CHAPTER 5. OUTPUT

5.2 Sequence Graph

The sequence graph G(MO, JO) is an acyclic digraph with operations as vertices. The
directed edges (arcs) correspond to the direct precedence constraints between operations in
the machine and job orders of the operations, i.e., there is an arc from operation (ij) to
operation (kl), if (i = k and job Ji has to be processed on machine Ml directly after Mj) or
(j = l and on machine Mj, job Jk is processed directly after job Ji) holds.
For further information: see the Block-Matrices-Model → 2.3.2

Invocation
After the input of a problem instance and a first application of an algorithm, the resulting
schedule is always represented by a Gantt chart. After the selection of the menu item
View/Sequence graph, the sequence graph is displayed in the main window.

Extras
In case of minimizing the makespan, arcs of the critical path(s) are colored in red.

5.3 Schedule

If the operations are weighted by the corresponding processing times in a sequence graph, a
schedule (a timetable of processing the operations) can be constructed. The set of schedules
belonging to a sequence graph has infinitely many elements, but there is a unique sequence
belonging to a schedule. A schedule is called:

• semi-active, if all operations are processed as early as possible such that the under-
lying sequence is not violated.

• active, if there does not exist an idle time on the machines, in which an operation
sequenced later can be completely processed.

• non-delay, if there is no unforced delay of an operation, i.e., if at any time when
a machine is available and a job is waiting for the processing, the processing of this
operation has to be started.

Any non-delay schedule is active, and any active schedule is semi-active, but the opposite
does not necessarily hold.

In LiSA, semi-active schedules are described by the matrix C = [cij], where cij denotes the
completion time of (ij).
For further information: see Block-Matrices-Model → 2.3.2

Invocation
After the input of a problem instance and the first application of an algorithm, the result-
ing schedule is always presented by a Gantt chart. After the selection of the menu item
View/Schedule, the schedule is displayed in the main window.

Extras
In case of minimizing the makespan, those values cij are colored in red which belong to
operations (ij) which are passed by at least one critical path.

5.4. GANTT CHART 57

5.4 Gantt Chart

The Gantt chart (named after Henry Laurence Gantt, 1861-1919) visualizes the timetable
of the processing of the operations, i.e., it visualizes a schedule.

Invocation
After the input of a problem instance and the first application of an algorithm, the resulting
schedule is always represented by a Gantt chart. After the selection of the menu item
View/Gantt chart, the schedule is displayed in the main window. Several representations
of the Gantt chart can be settled in the menu item Options/Gantt chart as soon as a
schedule is available.

Settings
Orientation:

• Machine Oriented: The operations of the jobs appear as a bar over the time axis
(x-axis) on the machines.

• Job Oriented: The operations on the machines appear as a bar over the time axis (x-
axis) for the jobs (y-axis). Here also possibly given release and due dates are displayed.

Special Emphasis:

• None: Standard: The operations are colored with up to 23 well distinguishable colors.

• Critical Path: In case of minimizing the makespan, the operations belonging to a
critical path are colored in red, all other operations are colored in gray.

• Assign Colors to Some Jobs: It is possible to choose explicitly colors for at most
5 jobs or machines.

Extras
Manipulations of the Gantt chart:

• Zoom: The view can be zoomed. To this end, click on the magnifier symbol or activate
the zoom mode in the menu Extras. Open with the mouse a rectangle in order to
make this to be the new view. In the chosen zoom mode, one can scroll through the
Gantt chart. In order to view again the whole Gantt chart, deactivate the zoom mode.

• Sequence editor: A double click on an operation starts the manipulation of se-
quences and schedules (→ 6.2) which can be used to shift the chosen operation in
the corresponding machine or job order.

For further information, see: Manipulation of Sequences and Schedules → 6.2.

5.5 Output File

By the call of the menu item File/Save as, the following information is stored in an XML
file, where the name of the file and the directory can be arbitrarily chosen:

58 CHAPTER 5. OUTPUT

• Problem type in the α | β | γ notation;

• n (number of jobs) and m (number of machines);

• Matrix of the processing times;

• Set of operations (by means of a Boolean matrix);

• Sequence as a latin rectangle with sequence condition;

• Schedule as a matrix of the completion times of all operations.

This file can be used again as input file for LiSA.
For further information on the file format: The File Format in LiSA → 2.5

Chapter 6

Extras

LiSA contains several interesting internal tools. Some of them are referred to in this chapter.

6.1 Complexity Status of a Problem

LiSA is able to give the complexity status of a problem in the α | β | γ notation. The deter-
mination of the complexity is done by analysing a BibTeX-database (file classify.bib) which
is based on the following collection of results for scheduling problems: Complexity results of
scheduling problems, see: http://www.mathematik.uni-osnabrueck.de/research/OR/class/.

Invocation
As soon as a particular problem type has been settled, one can select the menu item
Extras/Problem Classification. In the window problem classification, it is displayed
whether the problem is polynomially solvable, pseudo-polynomially solvable, NP-hard or
NP-hard in the strong sense.
If the complexity of the problem considered is known, a hint to the corresponding reference
is given, where this result can be found. For the output of the corresponding complete
reference, the button Complete Reference must be pressed.

6.2 Manipulation of Sequences and Schedules

LiSA enables one to manipulate later a sequence or schedule which has already been deter-
mined by shifting particular operations in the corresponding machine and/or job order.

Invocation
Select an operation to be manipulated by a double click on the corresponding bar in the
Gantt chart. The chosen operation (ij) is marked by a black border, and a window opens
with the corresponding manipulation possibilities.

59

http://www.mathematik.uni-osnabrueck.de/research/OR/class/

60 CHAPTER 6. EXTRAS

Settings

Manipulation possibilities for the selected operation (i j)

Symbol Meaning

Source The operation (i j) becomes a source in the sequence graph, i.e., it does not
have predecessor operations.

Sink The operation (i j) becomes a sink in the sequence graph, i.e., it does not
have successor operations.

MO The operation (i j) becomes the first operation in the machine order of job
i.

MO The operation (i j) is shifted left in the machine order of job i by one
position.

MO The operation (i j) becomes the last operation in the machine order of job
i.

MO The operation (i j) is shifted right in the machine order of job i by one
position.

JO The operation (i j) becomes the first operation in the job order on machine
j.

JO The operation (i j) is shifted left in the job order on machine j by one
position.

JO The operation (i j) becomes the last operation in the job order on machine
j.

JO The operation (i j) is shifted right in the job order on machine j by one
position.

The sequence is re-determined which was available before opening the ma-
nipulation window.

ATTENTION: If the shift of an operation creates a cycle in the graph G(MO, JO), a
window is opened with the error message: cycle: modification not possible.

In the lower part of the manipulation window, the immediate predecessors and successors
of the chosen operation (i j) are displayed. Simultaneously, the processing time pij and the
completion time cij are displayed.

6.3. IRREDUCIBILITY TEST 61

6.3 Irreducibility Test

This test solves different problems from the irreducibility theory, see Willenius [26]. It
is applicable to open-, job- and flow-shop problems with processing times of the jobs and
with the regular criteria Cmax, Lmax, SumCi, SumWiCi, SumUi, SumWiUi, SumTi und
SumWiTi.
A sequence S∗ reduces a sequence S, if S∗ does not have a worse objective function value than
S for any possible choice of the processing times. Two sequences are called similar if they have
the same objective function value for any possible choice of the processing times. A sequence
S∗ reduces a sequence S strictly, if they are not similar and if S∗ reduces the sequence S. A
sequence S is called irreducible, if there is no sequence S∗ which strictly reduces S. Thus,
there exists a globally optimal sequence in the set of all irreducible sequences for any possible
choice of the processing times.

Invocation
If LiSA knows the problem type and all parameters and a sequence is already available, the
algorithm can be activated in the menu item Heuristic Algorithms/Irreducibilitytest
(Research) in the menu Algorithms.

Settings

Generate sequences: It is settled which sequences should be generated:

• SIMILAR All sequences are generated which are similar to the input sequence.

• ALL REDUCING All sequences are generated which strictly reduce the input
sequence, namely exactly one from each class of similar sequences. If such a
sequence does not exist, LiSA gives an error message: Warning: Sequence is
irreducible.

• ITERATIVE REDUCING If a sequence has been found which strictly reduces
the input sequence, the algorithm is interrupted and re-started with the new
sequence. This is continued until an irreducible sequence has been found.

If the input sequence is irreducible, LiSA gives an error message: Warning: Se-
quence is irreducible.

Return following sequences: They are stored in the file algo out.xml in the directory
~/.lisa/proc. In LiSA, the output is displayed under Edit/List of Sequences.

• ALL All generated sequences are returned, where the number can be rather large
when using the ALL REDUCING option.

• ONLY IRREDUCIBLE Only irreducible sequences are returned.

Generate sequences in random order: Selection possibilities:

• YES Sequences are generated by the algorithm in random order. This is only
interesting when using the ITERATIVE REDUCING option in order to obtain
different results for repeated calls of the algorithm.

• NO Sequences are generated by the algorithm in an efficient order.

62 CHAPTER 6. EXTRAS

Chapter 7

On the External Work with LiSA

7.1 Algorithm Modules

All algorithms for solving scheduling problems in LiSA are externalized into modules. They
are independent executables which can be invoked in LiSA after the selection in the menu
Algorithms. They can also be manually invoked from the command line.

Structure of a module
A module in LiSA basically consists of five particular files:

• an XML file of document type (→ 2.5) algorithm for describing the algorithm

• a help file in HTML format,

• and finally the algorithm itself in form of an independent executable,

where the first two files are required in a German and an English version.
The XML document is needed for the inclusion of the module into the main program. It
can be found in the subdirectories data/alg desc/language/german and data/alg desc/

language/english. There it is settled which problem types a particular algorithm can
solve, whether an already determined solution is available or whether a problem will be
solved exactly or heuristically. Moreover, parameters can be declared which are transferred
to the algorithm. The detailed structure of such an XML document is described in Appendix
A.
The help file serves for the human-readable description of the algorithm. It should briefly
give the solution strategy, the problem types which can be solved and the description of the
program parameters. It is contained in the subdirectories doc/lisa/english/algorithm

and doc/lisa/german/algorithm.
The algorithm itself is contained in the subdirectory bin.

Command line interface
The program which implements the algorithm accepts exactly two command line parameters:
an input file and an output file. The input file must contain a LiSA problem instance in
XML format. It can either be of document type (→ 2.5) instance or of solution. The
output file is generated by the module of the algorithm and contains the solution determined
by the algorithm.

63

64 CHAPTER 7. ON THE EXTERNAL WORK WITH LISA

Transfer of parameters
Chapter 4 describes a set of parameters for any algorithm which influence its behavior. The
passing of the parameters is done by means of the input file. To this end, the <controls> ele-
ment is available which can be included into documents of the type instance and solution.
It contains particular parameter settings in form of <parameter> elements. They arrange
the assignment of a value for a parameter by an information on the data type (integer,
real or string), the parameter name and the value.
A <controls> block for a call of the algorithm iterative improvement (→ 4.3.1) can be
for instance as follows:

<controls>

<parameter type="string" name="METHOD" value="IterativeImprovement" />

<parameter type="string" name="NGBH" value="k_API" />

<parameter type="integer" name="k" value="1" />

<parameter type="integer" name="STEPS" value="1" />

<parameter type="integer" name="NUMB_STUCKS" value="214748000" />

<parameter type="real" name="ABORT_BOUND" value="-214748000" />

</controls>

In instance documents, <controls> blocks must be directly inserted after the <values>

element. In solution documents, they are also after the <values> element, but before the
first <schedule> element.

Output of run time information
Algorithm modules can pass information to the main program by means of the standard
output. For that purpose, there are available four key words PID=, OBJECTIVE=, WARNING:
and ERROR:.

PID=x gives the process-ID x of the current module to the main program. This information
should be passed at the beginning of the execution, if possible.

OBJECTIVE=x returns a message about the current computation status. For instance, the
current objective function value can be the output value. These values are graphically
represented by the LiSA interface during the computations. The first output settles the size
of the window, all further information should possibly not exceed this size.

WARNING:msg displays a message window with the warning msg. The algorithm module
continues then its execution.

ERROR:msg displays a message window with the error message msg and stops the execution
of the algorithm.

Manual call of an algorithm
If an algorithm should be executed independently of the LiSA interface, this can be done
by the invocation of the corresponding executable file in the subdirectory bin. To this end,
an input file must be created which contains the problem to be solved. Such files can be
easily generated by storing a problem created by LiSA with the menu item File/Save as

7.2. INCLUSION OF EXTERNAL ALGORITHMS 65

(→ 3.3). However, the parameters for the algorithm must be settled by hand (at least an
empty <controls /> tag, if all parameters should be fixed by their standard values).

For further information on the parameters of the particular algorithms, see Chapter 4 and
the XML reference in Appendix A.

7.2 Inclusion of External Algorithms

To include a new algorithm module, it suffices to create the files described in the previous
section. In principle, the algorithm can be implemented in any programming language which
can be compiled into the binary format. However, LiSA provides particularly for C++ classes
which simplify the work with scheduling problems and the implementation of algorithms.
For instance, the problem description, schedules and parameters can be read from the XML
files and written into them. In addition, basic and also specific data types are provided
which are helpful for the treatment of scheduling problems. To use this class library, the
LiSA source code package must be installed.

In the following, we assume that an algorithm should be implemented in C++.

New algorithms should obtain an own directory in the subdirectory src/algorithm to sim-
plify the later creation process. There the following files must be created:

• C++ source code and header files which implement the algorithm.

• Makefile

• Make.List

• The XML and HTML files mentioned in Section 7.1. They are moved during the
creation process into the corresponding directories.

• Make.Depend and Make.Objects, which are automatically created.

Source code

The algorithm itself is implemented as a usual console program, which takes the inputs
described in Chapter 7.1 and writes the determined solution into an output file. As an
introductory example we refer to the algorithm in the directory src/algorithm/sample,
where the basic structure of the implementation of an algorithm is already prefabricated.
Mostly it suffices to take over the source code file sample.cpp and to replace the marked
parts by an own code. Of course, it is also possible to externalize an own code into other
files.

Makefile

The following basic structure of the makefile for C++ programs can directly be adopted.
Here one must only adapt the name of the program which is the name of the subdirectory,
that contains the source code files of the algorithm.

66 CHAPTER 7. ON THE EXTERNAL WORK WITH LISA

LiSA Sample Algorithm Makefile

--

LiSA part: sample

PROGRAMNAME=sample

--

TOPPROGRAMPATH=../../..

--

include ../Make.Algorithm

Make.List
In this file, all C++- source code files are listed, which are compiled during the creation
process and which are linked to an executable module file. In addition to the actual source
code files of the module, here also all external dependencies must be given so that the linker
can resolve all symbols. In in the source code of the module e.g. class LISA Matrix is
used, the corresponding source code file matrix.cpp in the subdirectory src/basics must
be linked. The information on the path is done in relation to the module directory, i.e., the
entry ../../basics/matrix.cpp must be included. The corresponding source code files for
the classes can be taken from the documentation on the LiSA class library.

CXXSOURCES=\

sample.cpp \

../../basics/list.cpp \

../../basics/matrix.cpp \

../../basics/pair.cpp \

../../lisa/ctrlpara.cpp\

../../lisa/lvalues.cpp \

../../lisa/ptype.cpp \

../../main/global.cpp \

../../misc/except.cpp \

../../misc/int2str.cpp \

../../scheduling/mo_jo.cpp \

../../scheduling/schedule.cpp

Make.Depend and Make.Object
These files are created by a single call make depend in the module directory from the file
Make.List. If the file Make.List is changed, they must be updated by make depend again.

XML and HTML documents
These documents must be available in an English and a German version (both versions of
the XML document mostly differ only by translation of the name of the algorithm and the

7.3. AUTOMATED CALL OF ALGORITHMS 67

parameters). The English versions of the documents have the suffixes english.xml and
english.html, respectively, and the German versions have the suffixes german.xml and
german.html, respectively. During the creation process, these suffixes are replaced by .html

and .xml, respectively, and the documents are moved to their destinations.

Creation process

The creation process can be started by means of the call make in the module directory.
During this process, the source code files which are given in Make.list are compiled and
linked to an executable file. Then all module files are copied to their destination directories
(→ 7.1).

7.3 Automated Call of Algorithms

By means of the program auto alg, which is contained in the directory LiSA/bin., the call
of algorithms can be automated. In order to use this tool, one must first create an input file
which serves then as a parameter for the call of the program auto alg.
By means of the random generator contained in LiSA (see Taillard [24]), there are auto-
matically generated instances of scheduling problems for which specific algorithms can be
invoked. For instance, a particular instance can be automatically solved by several different
algorithms and the results can be compared.
For any instance of the problem, the call auto alg generates an XML file with this instance
and the solutions generated by the invoked algorithms. In addition, the initial values used
for the generation of the random numbers are given. This XML file can be opened by LiSA
(Button: Process/List of sequences). Any solution is callable but a further processing of a
particular solution deletes the list.

ATTENTION

The work with the automated call of algorithms must be done very carefully since the
input file is not internally checked for correctness. In particular, the user has to take care
whether the invoked algorithm is available for the problem type considered and whether the
parameters for the generation of the problem instance and the algorithms are correct (take
care about capital and small letters as well as space characters). Another error source is the
number of algorithms to be executed.

Creation of an input file

The input file is a text file (e.g. ~/test/myproblem.alg), which defines the problem type
to be processed, the parameters for the random number generator and the algorithms to be
applied. An illustration is given by the following example. It generates 10 problem instances
of the type O | ri |

∑
wiTi. To any instance, first the random dispatching rule is applied

and then the obtained solution is improved by iterative search.

68 CHAPTER 7. ON THE EXTERNAL WORK WITH LISA

<PROBLEMTYPE>

Lisa_ProblemType= { O / r_i / SumWiTi }

</PROBLEMTYPE>

<CONTROLPARAMETERS>

long MINPT 1

long MAXPT 99

long MINRI 0

long MAXRI 100

long MINDD 200

long MAXDD 1000

double MINWI 0.0

double MAXWI 2.0

long M 10

long N 20

long TIMESEED 658496

long MACHSEED 2465865

long DDSEED 1123545

long WISEED 8885564

long RISEED 566945

long NUMBERPROBLEMS 10

long NUMBERALGORITHMS 3

long RIDIMODE 0

double TFACTOR 0.7

</CONTROLPARAMETERS>

<CONTROLPARAMETERS>

string AUTOALG_EXECUTABLE lower_bounds

</CONTROLPARAMETERS>

<CONTROLPARAMETERS>

string AUTOALG_EXECUTABLE dispatch

string SCHEDULE ACTIVE

string RULE RANDOM

</CONTROLPARAMETERS>

<CONTROLPARAMETERS>

string AUTOALG_EXECUTABLE nb_iter

string METHOD IterativeImprovement

string NGBH k_API

long k 1

long STEPS 1000

long NUMB_STUCKS 1000

double ABORT_BOUND -1

string TYPE RAND

</CONTROLPARAMETERS>

7.3. AUTOMATED CALL OF ALGORITHMS 69

The first block, which is enclosed by <PROBLEMTYPE> ... </PROBLEMTYPE>, gives the prob-
lem type in the α | β | γ notation. The following information can be given (see also Problem
Type → 2.2):

Parameter Possible entries

α O, J or F

β r i or nothing (empty)

γ Cmax, Lmax, SumCi, SumWiCi, SumUi, SumWiUi, SumTi or SumWiTi

Important: The notation in the input file for auto alg depends on capital and small let-
ters. One should also take care that space characters are correctly given (as in the example).

After the declaration of the problem type, several blocks follow in the input file which are
enclosed by <CONTROLPARAMETERS> ... </CONTROLPARAMETERS>. The first of these blocks
has a particular importance since here the parameters for the random number generator and
the number of algorithms are fixed. Parameters, which are not needed, can be dropped. The
particular parameters have the following meaning:

70 CHAPTER 7. ON THE EXTERNAL WORK WITH LISA

Parameter Meaning

M, N Gives the problem size n ×m, where n is the number of jobs and m
is the number of machines.

NUMBERPROBLEMS Gives the number of problem instances which auto alg should gener-
ate and solve.

NUMBERALGORITHMS Gives the number of algorithms which should be applied to a problem
instance.

MINPT, MAXPT Minimal and maximal values for an entry in the matrix of the pro-
cessing times.

MINDD, MAXDD Minimal and maximal values for the due dates of the jobs.

MINRI, MAXRI Minimal and maximal values for the release dates of the jobs. These
parameters are only needed, if r i has been settled in the problem
type.

MINWI, MAXWI Minimal and maximal values for the weights of the jobs (is required
for the objective functions

∑
wiCi,

∑
wiUi and

∑
wiTi).

TIMESEED Random seed for the matrix of the processing times.

MACHSEED Random seed for the machine orders.

DDSEED Random seed for the due dates of the jobs.

RISEED Random seed for the release times of the jobs.

WISEED Random seed for the weights of the jobs.

RIDIMODE If this parameter is set to 1, the due dates di are determined by the
following formula:

di = ri + TF ·
m∑
j=1

pij, i = 1, 2, . . . n (7.1)

The release times ri of the jobs are uniformly distributed in the interval
[0, rmax].

rmax =
1

2n
·

n∑
i=1

m∑
j=1

pij (7.2)

TFACTOR Settles the parameter TF (tightness factor) for the case RIDIMODE = 1.

7.3. AUTOMATED CALL OF ALGORITHMS 71

After the declaration of the parameters for the random generator, further parameter blocks
follow which represent the algorithms successively to be applied. The number of blocks
must coincide with parameter NUMBERALGORITHMS. The first algorithm should always be
lower bounds to avoid later problems with the filtering of the output data. This algorithm
calculates lower bounds for Cmax and

∑
Ci and as a third result, it determines the expecta-

tion value of
∑
Ci under the assumption that idle times do not exist.

The exact notation for the invocation of a particular algorithm is described in the Chapter
Algorithms in LiSA (→ 4).

auto alg processes the input file as follows:

• Generation of a problem instance by the random number generator according to the
given parameters.

• Application of the algorithms to the generated problem instance according to the order,
which is given in the input file. Solutions determined by some algorithm can be used
by a subsequent algorithm as starting solution, and they can be iteratively improved
further.

• Storage of the problem instance with all solutions found by the algorithms.

These steps are repeated as often as given by the parameter NUMBERPROBLEMS.

Additional parameters for the algorithms
The line AUTOALG START FROM {NUMBER1,NUMBER2,...} determines which outputs are used
as input for the current algorithm. NUMBER1 and NUMBER2 are the numbers of algorithms al-
ready applied. {0} means no input for this algorithm. The standard setting for an algorithm
with number i is {i-1}.
By the algorithm best of the best solution for an instance among all applied procedures
is chosen. In this way, the best solution found by several constructive procedures for any
problem instance can be used as starting solution for an iterative procedure. This selection
algorithm works as an independent procedure and has to be counted for the number of al-
gorithms applied.

In the following example, the starting solution should be the best solution among those
generated by algorithms 2, 5, and 10:

<CONTROLPARAMETERS>

string AUTOALG_EXECUTABLE best_of

string AUTOALG_START_from {2,5,10}

</CONTROLPARAMETERS>

By the call AUTOALG TIMELIMIT, a time limit can be set for any algorithm. Then the proce-
dure is stopped by SIGINT as soon as the time limit has been reached. The measured time
is not the pure time of the process but the real time. The standard setting is 0 and does not
correspond to a limit. This parameter should only be used for algorithms which generate an
output if they are stopped by SIGINT.

72 CHAPTER 7. ON THE EXTERNAL WORK WITH LISA

Call of Autoalg
The program auto alg can be found in the LiSA main directory in the subdirectory bin.
It must be invoked exactly from this directory since the algorithms to be invoked must be
started from here. Of course, the expected input file can be in an arbitrary directory. In the
directory with the input file, auto alg will save all problems solved during the processing.
They can be opened and inspected with LiSA.
During the processing, auto alg outputs log messages to the standard output. These mes-
sages are rather numerous and might be confusing. It is recommended to transfer this
information from the standard output into a file. The written information can be better
evaluated, if a filter is applied to this file.

A call of auto alg under Linux/Unix/Cygwin can for instance look as follows:

cd ~/LiSA/bin

./auto_alg ~/LiSA-Data/algorithms.alg > ~/LiSA-Data/auto_alg.out

Under Windows (with a standard installation of the LiSA package), the command line
(Start/Execute → “cmd”) can be used. The corresponding command can look as follows:

cd C:\Program Files\LiSA\bin

auto_alg.exe C:\LiSA-Data\algorithms.alg > C:\LiSA-Data\auto_alg.out

This activates auto_alg with the input file algorithms.alg and transfers the output into
the file auto_alg.out.

Evaluation of the results by filters
The filters are also in the subdirectory bin. To execute them, Perl must be installed. When
activating them, the output file of auto alg previously generated must be transferred. The
filters write their output again to the standard output which can also be transferred by the
> operator into a file.
The following console command under Linux/Unix/Cygwin activates a filter to the output
file previously generated. The result of the filtering is written into the file filter.out.

./filter_objectives ~/LiSA-Data/auto_alg.out > ~/LiSA-Data/filter.out

In the Windows command line, the command looks for instance as follows:

perl filter_objectives C:\LiSA-Data\auto_alg.out > C:\LiSA-Data\filter.out

Remark: For a call of the filters via the Windows command line one must ensure that
Perl is correctly listed in the environment variable PATH. However, mostly this is done auto-
matically when installing Perl.

All filters list their results in tables. Each row contains an information on the processed
problem instance. It is expected that algorithm lower bounds is executed as the first one.
Therefore, the results of the first algorithm are not displayed by the filters. An exception is
filter runtime, which also gives the running time of the first algorithm.

7.3. AUTOMATED CALL OF ALGORITHMS 73

filter meaning

filter runtime Lists columnwise the running time for any algorithm in seconds.

filter objectives Gives lower bounds for the problem in the first three columns.
The following columns list the obtained objective function value
for any executed algorithm.

filter lmax Gives lower bounds for the problem in the first three columns.
The following columns list the obtained maximum tardiness of
the jobs for any executed algorithm.

filter abort Gives for any algorithm the execution status in per cent, if given.
This is usually 99 % or 100 % if the algorithm has been normally
run. However, some algorithms have stopping criteria (a bound
for the objective function value has been reached, or too many
iterations have been performed without getting an improvement)
so that they can additionally terminate. If the algorithm is very
fast, here also “n/a” can be written.

filter abortStucks Gives for iterative algorithms, whether they have been prema-
turely terminated. This may happen if the objective function
value has not been improved over a long time. A “1” means that
the algorithm has been prematurely terminated, a “0” means
that the given number of iterations has been completely per-
formed. If the algorithm is very fast, here also “n/a” can be
written.

filter sumti Gives for any algorithm the obtained value for
∑
Ti (also if this

was not the objective function). The first three columns list
different lower bounds.

Once again: ATTENTION!
The work with the automated call of algorithms must be done very carefully since the
input file is not internally checked for correctness. In particular, the user hast to take care
whether the invoked algorithm is available for the problem type considered and whether the
parameters for the generation of the problem instance and the algorithms are correct (take
care about capital and small letters as well as white spaces). Another error source is the
number of algorithms to be executed (please count correctly!)

74 CHAPTER 7. ON THE EXTERNAL WORK WITH LISA

Chapter 8

Examples

In this chapter it is described how one can invoke an algorithm via the command line and
how one can use the graphical interface of LiSA. In the directory LiSA/data/sample,
some files with examples are contained. These are input files for LiSA and input files for the
automated call of algorithms.

8.1 Call of an Algorithm from the Command Line

In this example, we solve a given problem instance without the use of the graphical user
interface of LiSA. This is done by coding the problem instance in XML and by the subsequent
call of a solution algorithm directly from the command line. This way can be used to
automate the solution and optimization of given shop scheduling problems.

Given is a problem instance of the type J ||
∑
Ci with 4 machines and 3 jobs. In addition,

the processing times and job orders are given as follows:

PT =

 53 98 0 80
88 38 89 96
37 30 0 60

 A1 : M2 → M4 → M1

A2 : M2 → M1 → M3 → M4

A3 : M4 → M2 → M1

For this problem instance, a schedule should be determined by means of the algorithm Beam
Search (→ 4.2.3).

Completion of missing information
For the transfer to a solution algorithm, the set of operations and the machine orders must
be given in matrix form. From the matrix of the processing times PT , the set of operations
can be determined:

SIJ = I × J\{(13), (33)} =⇒

 1 1 0 1
1 1 1 1
1 1 0 1


Matrix MO is obtained as follows:

MO =

 3 1 . 2
2 1 3 4
3 2 . 1


75

76 CHAPTER 8. EXAMPLES

Generation of the instance document
Now the problem instance has to be transformed into an XML document which can be
transferred to the solution algorithm. The information on the parameters of the call for
the solution algorithm is important which are also contained in the document – combined
in a <controls> element. The particular parameters consist of a name, the type (string,
integer or real) and a value. In Chapter 4, one can find which parameters are required
for a particular algorithm.

Hint: For the correct input of the XML file, the order of the XML elements is important.
For instance, the <controls> element must follow directly after the <values> element. The
general structure of an instance document is described in Appendix A.

For the data given above, the following instance document created:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE instance PUBLIC "" "LiSA.dtd">

<instance xmlns:LiSA="http://lisa.math.uni-magdeburg.de">

<problem>

<alpha env="J"/>

<beta/>

<gamma objective="Sum_Ci"/>

</problem>

<values m="4" n="3">

<processing_times model="lisa_native">

{

{ 53 98 0 80 }

{ 88 38 89 96 }

{ 37 30 0 60 }

}

</processing_times>

<operation_set model="lisa_native">

{

{ 1 1 0 1 }

{ 1 1 1 1 }

{ 1 1 0 1 }

}

</operation_set>

<machine_order model="lisa_native">

{

{ 3 1 0 2 }

{ 2 1 3 4 }

{ 3 2 0 1 }

}

</machine_order>

</values>

<controls>

<parameter type="string" name="MODE" value="INSERT" />

<parameter type="string" name="INS_ORDER" value="LPT" />

<parameter type="string" name="INS_METHOD" value="INSERT1" />

<parameter type="string" name="CRITERION" value="OBJECTIVE" />

8.1. CALL OF AN ALGORITHM FROM THE COMMAND LINE 77

<parameter type="integer" name="k_BRANCHES" value="5" />

</controls>

</instance>

Call of an algorithm under Windows
It is assumed that the XML file created is contained under the name example.xml in the
directory C:\Scheduling\. The algorithm to be called (in this case beam.exe) is contained
in the subdirectory bin of the LiSA directory (standard C:\Program Files\LiSA\bin). By
means of the Windows command line (cmd), one has to change into this directory in order
to invoke the algorithm from here (the call from another working directory is not possible).

cd C:\Program Files\LiSA\bin

beam.exe C:\Schedulng\example.xml C:\Scheduling\example.out.xml

This invocation generates in the directory C:\Scheduling\ the file example.out.xml which
is a document of the type solution. It contains the output of the algorithm and the
determined schedule.

Call of the algorithm under UNIX and cygwin
Here it is assumed that the created XML file has been stored in the home directory under
the name example.xml. The algorithm to be called (in this case beam) is contained in the
subdirectory bin of the LiSA directory (standard ~/LiSA/bin). By means of a console, the
program can be activated in this working directory (a call from another directory is not
possible.).

cd ~/LiSA/bin

./beam ~/example.xml ~/example.out.xml

This invocation generates in the home directory the file example.out.xml which is a doc-
ument of the type solution. It contains the output of the algorithm and the determined
schedule.

78 CHAPTER 8. EXAMPLES

8.2 Example for the Use of LiSA

The user considers an open-shop problem with m = 4 machines and n = 4 jobs and makespan
minimization. No further restrictions are given. How can one use LiSA in this case? After
starting LiSA, one clicks under File the button New. The window with the problem type
opens and the problem is entered in the α | β | γ description, i.e., one chooses the machine
environment O and the objective function Cmax.

Figure 8.1: Input of a problem instance

Moreover, both the number of machines and the number of jobs are set to 4. Now LiSA makes
all modules available which are contained for this problem type. One starts with the input of
the processing times (Button Edit, Parameter, Generate, ... Processing Times). In
addition to the manual input, it is possible to use a random number generator. It generates
the processing times uniformly distributed from the interval [Minimum, Maximum]. Time
seed and machine seed are arbitrary parameters for starting the generator which determines
for the same selection the same numbers.
Figure 8.1 displays the corresponding LiSA windows. The matrix of the processing times
PT is given by

PT =


12 6 15 7
13 6 7 13
3 14 8 7

10 13 9 7


In addition, one can also read the data from an XML file the format of which is described

8.2. EXAMPLE FOR THE USE OF LISA 79

in Chapter 2.5. Now LiSA releases the available algorithms. Under Algorithms, there are
available both exact and heuristic algorithms.

Figure 8.2: Heuristic Algorithms

Figure 8.2 displays some of the available heuristics. Fast dispatching rules like the LPT rule
(longest processing time first) generate a first active schedule which can be used for starting
several iterative search procedures. Here the window for simulated annealing is displayed.
Several parameters such as the neighborhood or the cooling scheme can be chosen. Details
for the parameters can be taken from the description of the search procedure. Another
constructive procedure is the use of matching algorithms, where step by step operations are
appended to the sequence which can be simultaneously processed. Here, the minimization
of the maximal processing time of the operations simultaneously processed is used.

When applying an algorithm, LiSA immediately displays the Gantt chart of the generated
schedule on the screen. All forms of the output are given in Figure 8.3. So the sequence
and the matrix of the completion times of all operations as well as the visualizations in the
sequence graph and in the Gantt chart can be selected under View. Gantt charts can be
displayed machine and job oriented, the critical path can be highlighted (Button Options).
If the number of machines or jobs is too large, i.e., the Gantt chart is too complex, the zoom

80 CHAPTER 8. EXAMPLES

Figure 8.3: Output of the results

function may help. By zooming repeatedly, the Gantt chart can be enlarged such that all
information can be viewed when scrolling.

LiSA has some extras, two of them are given in Figure 8.4.

The Gantt charts can be manipulated, i.e., an operation which is chosen by clicking the right
mouse button can be shifted both in the machine order (MO) and the job order (JO) one
position to the left or right. If this shift does not lead to an acyclic sequence graph, an error
massage is given. In addition, it is possible that an operation is chosen as source or sink in
the sequence graph. In this case, an acyclic sequence graph is always generated.

As a second extra, LiSA contains a complexity module. As soon as a problem has been
entered in the α | β | γ notation, the complexity of the problem can be retrieved under
Extras, Problem classification. Here LiSA uses the database from Osnabrück on the
complexity of deterministic scheduling problems. Moreover, it makes the complete reference
available.

8.2. EXAMPLE FOR THE USE OF LISA 81

Figure 8.4: Manipulation and Complexity

82 CHAPTER 8. EXAMPLES

Bibliography

[1] Adams,J., Balas, E., Zawack, D. [1988] The Shifting Bottleneck Procedure for Job Shop
Scheduling; Management Science 34, 391-401

[2] Baker, K.R. [1984]: Introduction to Sequencing and Scheduling; Wiley & Sons, New
York

[3] Blazewicz, J., Ecker, K., Pesch, E., Schmidt, G., Weglarz, J. [1996]: Scheduling Com-
puter and Manufacturing Processes; Springer Verlag Berlin-Heidelberg-New York

[4] Blum, Ch. [2003]: Beam-ACO-hybridizing ant colony optimization with beam search:
an application to open shop scheduling; computers & operations research III, Online
verfügbar unter www.sciencedirect.com

[5] Bräsel, H.[1990]: Latin Rectangle in Scheduling Theory; Professorial Dissertation (in
German), University Magdeburg, Germany

[6] Bräsel, H., Hennes, H.[2004]: On the open-shop problem with preemption and minimizing
the average completion time; European Journal of Operational Research 157, 607-619

[7] Bräsel, H., Tautenhahn,T., Werner,F.[1993]: Constructive Heuristic Algorithms for the
Open Shop Problem; Computing, 51, 95-110

[8] Brucker, P. [2001]: Scheduling Algorithms; Third Edition, Springer Verlag Berlin-
Heidelberg-New York

[9] Chretienne, P., Coffman, E.G., Lenstra, J.K. (Editors) [1995]: Scheduling Theory and
its Applications; John Wiley & Sons, Chichester-New York-Brisbane

[10] Conway, R.W., Maxwell, W.L., Miller, L.W. [1967]: Theory of Scheduling; Addison-
Wesley Publishing Company, Massachusetts

[11] Dannenbring, D.G. [1977] An Evaluation of Flowshop Sequencing Heuristics; Manage-
mant Science 23, 1174-1182

[12] Domschke, W., Scholl, A., Voß, S. [1993]: Produktionsplanung - Ablauforganisatorische
Aspekte; Springer Verlag Berlin-Heidelberg-New York

[13] French, S. [1982]: Sequencing and Scheduling: An Introduction to the Mathematics of
the Job-Shop; John Wiley & Sons, New York

[14] Gonzales, T., Sahni, S.[1976]: Open-shop to minimize finish time; Journal of the Asso-
ciation for Computing Machinery 23 (4), 665-679

83

84 BIBLIOGRAPHY

[15] Graham, R.E., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G. [1979]: Optimization
and approximation in deterministic sequencing and scheduling: a survey; Ann. Discrete
Math. 4, 287-326

[16] Graves, S.C., Rinnooy Kan, A.H.G., Zipkin, P.H. (Editors) [1993]: Handbooks in Opera-
tions Research and Management Science (Volume 4): Logistics of Production and Inven-
tory; Elsevier Science Publishers B.V., North-Holland, Amsterdam-London-NewYork-
Tokyo

[17] Lageweg, B.J., Lawlwer, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G. [1981]: Computer-
aided Complexity Classification of Deterministic Scheduling Problems; Report BM 138,
Centre for Mathematics and Computer Science, Amsterdam

[18] Lenstra, J.K. [1977]: Sequencing by enumerative methods; Centre Tracts 69, Amsterdam

[19] Morton, T.E., Pentico, D.W. [1993]: Heuristic Scheduling Systems; John Wiley & Sons,
Inc., New York

[20] Muth, J.F., Thompson, G.L. (Editors) [1963]: Industrial Scheduling; Prentice Hall,
Englewood Cliffs

[21] Pinedo, M.: Scheduling [1995]: Theory, Algorithms and Systems; Prentice Hall, Inc.,
Englewood Cliffs, New Jersey

[22] Rinnooy Kan, A.H.G. [1976]: Machine scheduling problems: Classification, Complexity
and Computations; Martinus Nijhoff/ The Hague,

[23] Tanaev, V.S., Sotskov, Y.N., Strusevich, V.A. [1994]: Scheduling Theory: Multi-Stage
Systems; Kluwer Academic Publishers, Dordrecht

[24] Taillard, E. [1993]: Benchmarks for basic scheduling problems; European Journal of
Operational Research 64, 278-285

[25] Tanaev, V.S., Sotskov, Y.N., Strusevich, V.A. [1994]: Scheduling Theory: Multi-Stage
Systems; Kluwer Academic Publishers, Dordrecht

[26] Willenius, P. [2000] Irreduzibilitẗstheorie bei Shop-Schedulingproblemen; Shaker Verlag,
Aachen, Dissertation

Appendix A

XML-Reference

This chapter gives a detailed overview about the structure of all XML files that are used in
LiSA. It rounds up the section The File Format in LiSA (→ 2.5), where the five document
types have been introduced.

A.1 General

A.1.1 The XML Language

XML (extensible markup language) is a markup language, similar to HTML, for storing
information in text form. Like in HTML, XML documents consist of elements, that can
be nested, such that a tree-like structure is created. These elements may contain text,
attributes or other elements. Here a summary about all XML-related notions is given, that
are used in this documentation. However, these explanations are kept very simple and
are just provided to give a basic understanding of the examples used here. A more detailed
description of the language can be viewed on the web site of the World Wide Web Consortium
(www.w3.org/xml)

• A tag is a string enclosed in sharp brackets (< >). If this string begins with a slash
(/), it is called an end tag, otherwise it is a start tag. The first word in the string is
the name of the tag. After every start tag, there must follow an end tag with the same
name.
Example: <controls> </controls>

• Start tags may contain attributes. These are denoted as [attribute]="[value]",
with a space character between the tag name and the attribute.
Example: <schedule m="5" n="3" semiactive="yes">

• A pair of start and end tags, as well as the enclosed text, is called an element. This
text can contain elements itself, which are called child elements.
Example: <due_dates model="lisa_native"> { 5 8 10 4 2 } </due_dates>

• If an element does not contain child elements or an enclosed text, the shorter notation
<[tagname] [attribute1]="[value1]" ... /> can be used. The end tag, in this
case, is omitted.

85

http://www.w3.org/xml

86 APPENDIX A. XML-REFERENCE

A.1.2 Representation of Data

Primitive data types, as integer or real numbers, as well as strings are simply stored in
attributes. An example is the <schedule> tag:

<schedule m="10" n="20" semiactive="yes">

Here the problem size is fixed by the integers m = 10 and n = 20. Moreover, the string
"yes", as the value of the attribute semiactive, indicates that the following schedule is
semi-active. Attention has to be paid to real numbers, where a decimal point must be used
instead of a comma.

In addition, vectors and matrices are used as complex data types. A vector of dimension n
with the components a 1 to a n is denoted as follows:

{ a_1 a_2 a_3 ... a_n }

As a separator between the values, one or more whitespace characters may be used. An
n×m matrix can be denoted as an n-dimensional vector that itself contains m-dimensional
vectors:

{

{ a_11 a_12 a_13 ... a_1m }

{ a_21 a_22 a_23 ... a_2m }

...

{ a_n1 a_n2 a_n3 ... a_nm }

}

A.2 The Document Types problem, instance and solution

These three document types are generally used for the communication of scheduling problems
in LiSA. They are built consecutively upon each other. Thus, a problem document only
stores a problem type in the α | β | γ notation; an instance document additionally stores
an individual problem instance. A solution document, besides a problem instance, also
stores one or more solutions.

A.2.1 Structure

Representative for the three document types, here only the structure of a solution document
is shown. In an instance document, the <schedule> elements are omitted, whereas problem
documents only consist of the <problem> element.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE solution PUBLIC "" "LiSA.dtd">

<solution xmlns:LiSA="http://lisa.math.uni-magdeburg.de">

<problem>

<alpha ... />

A.2. THE DOCUMENT TYPES PROBLEM, INSTANCE AND SOLUTION 87

<beta ... />

<gamma ... />

</problem>

<values m="..." n="...">

<processing_times model="lisa_native">

...

</processing_times>

<operation_set model="lisa_native">

...

</operation_set>

<due_dates model="lisa_native">

...

</due_dates>

<release_times model="lisa_native">

...

</release_times>

<weights model="lisa_native">

...

</weights>

<weights_2 model="lisa_native">

...

</weights_2>

<extra model="lisa_native">

...

</extra>

</values>

<controls>

<parameter type="..." name="..." value="..." />

...

</controls>

<schedule m="..." n="..." semiactive="...">

<plan model="lisa_native">

...

</plan>

<machine_sequences model="lisa_native">

...

</machine_sequences>

<job_sequences model="lisa_native">

...

</job_sequences>

<completion_times model="lisa_native">

...

</completion_times>

</schedule>

...

</solution>

88 APPENDIX A. XML-REFERENCE

A.2.2 Description

<solution>

This element contains one or more solutions for an instance of a scheduling problem.
Parent element: none (root element of the document type solution)
Child elements: <problem>, <values>, <schedule>, <controls> (optional)

This element does not contain attributes.

<instance>

This element contains an instance of a scheduling problem.
Parent element: none (root element of the document type instance)
Child elements: <problem>, <values>, <controls> (optional)

This element does not contain attributes.

<problem>

This element represents a problem type. It contains one <alpha>, <beta> and <gamma> tag
each, that constitute a problem type in the common α | β | γ notation.
Parent element:

• none in the document type problem (root element)

• <instance> in the document type instance

• <solution> in the document type solution

Child elements: <alpha>, <beta>, <gamma>

This element does not contain attributes.

<alpha>

α describes the machine environment.
Parent element: <problem>

Child elements: none

Attribute Meaning

env The machine environment of the problem. Possible values are 1, O, F,
J, G, P, Q, R

m (optional) Fixes the number of machines. If this parameter is omitted,
the number of machines is variable and is part of the problem instance.

A.2. THE DOCUMENT TYPES PROBLEM, INSTANCE AND SOLUTION 89

<beta>

β describes job characteristics and additional constraints.

Parent element: <problem>

Child elements: none

Attribute Meaning

pmtn (optional) Fixes if preemption is allowed. Possible values are
yes and no.

prec (optional) Fixes if precedence constraints between jobs are given.
Possible values are yes, no, intree, outtree, tree, sp graph,
chains.

release times (optional) Fixes if release dates for the jobs are given. Possible
values are yes, no.

due dates (optional) Fixes if due dates for the jobs are given. Possible
values are yes, no.

processing times (optional) Gives an information about the processing times of
the jobs. Possible values are arbitrary, constant, uniform.

no-wait (optional) Fixes if waiting times between the operations of one
job are forbidden. Possible values are yes and no.

<gamma>

γ describes the objective function.

Parent element: <problem>

Child elements: none

Attribute Meaning

objective The objective function of the problem. Possible values are Cmax, Lmax,
Sum Ci, Sum wiCi, Sum Ui, Sum wiUi, Sum Ti, Sum wiTi, irreg 1,
irreg 2

90 APPENDIX A. XML-REFERENCE

<values>

This element summarizes all information that belongs to a problem instance.
Parent element:

• <instance> in the document type instance

• <solution> in the document type solution

Child elements: <processing_times>, <operation_set>, <machine_order> (optional),
<release_times> (optional), <due_dates> (optional), <weights> (optional), <weights_2>
(optional), <extra> (optional)

Attribute Meaning

m The number of machines in the problem.

n The number of jobs in the problem.

<processing times>

This element contains the matrix P of the processing times.
Parent element: <values>

Child elements: A matrix of the format n × m with the processing times.

Attribute Meaning

model Reserved, must be lisa_native.

<operation set>

This element contains the set of operations as a binary matrix. A one on position (i, j) means
that the operation (ij) has to be executed, i.e., job Ai has to be processed on machine Mj.
On the other hand, a zero on position (i, j) means that operation (ij) is not executed. pij,
in this case, must also be zero.
Parent element: <values>

Child elements: A binary matrix of the format n × m that represents the set of operations.

Attribute Meaning

model Reserved, must be lisa_native.

A.2. THE DOCUMENT TYPES PROBLEM, INSTANCE AND SOLUTION 91

<machine order>

This element contains the matrix MO that defines the machine order.
Parent element: <values>

Child elements: A matrix of the format n × m that represents the machine order.

Attribute Meaning

model Reserved, must be lisa_native.

<release times>

This element contains the release dates of the jobs as an n-dimensional vector. The i-th
component of this vector contains the release date of job Ai.
Parent element: <values>

Child elements: A vector with n components.

Attribute Meaning

model Reserved, must be lisa_native.

<due dates>

This element contains the due dates for the jobs as an n-dimensional vector. The i-th
component of this vector contains the due date of job Ai.
Parent element: <values>

Child elements: A vector with n components.

Attribute Meaning

model Reserved, must be lisa_native.

<weights>

This element contains the weights wi of the jobs Ai as an n-dimensional vector.
Parent element: <values>

Child elements: A vector with n components.

Attribute Meaning

model Reserved, must be lisa_native.

92 APPENDIX A. XML-REFERENCE

<weights 2>

Parent element: <values>

Child elements: A vector with n components.

Attribute Meaning

model Reserved, must be lisa_native.

<extra>

Parent element: <values>

Child elements:

Attribute Meaning

model Reserved, must be lisa_native.

<controls>

This element contains all parameters for an algorithm, for which this document will serve as
input file.

Parent element:

• <instance> in the document type instance

• <solution> in the document type solution

Child elements: <parameter>

This element contains no attributes.

<parameter>

This element represents one parameter for an algorithm.

Parent element: <controls>

Child elements: none

A.2. THE DOCUMENT TYPES PROBLEM, INSTANCE AND SOLUTION 93

Attribute Meaning

type The data type of the parameter. Possible values are string, integer,
real

name The name of the parameter. For a list of all parameters that have to
be specified for a particular algorithm, see Chapter 4.

value The value of the parameter.

<schedule>

This element represents one solution of a problem instance. Besides the sequence, it may
contain the matrix of the completion times as well as the machine and job orders.

Parent element: <solution>

Child elements: <plan>, <machine_sequences> (optional), <job_sequences> (optional),
<completion_times> (optional)

Attribute Meaning

m The number of machines for this problem.

n The number of jobs for this problem.

semiactive (optional) Fixes if a schedule is semi-active.

<plan>

This element contains the matrix LR that contains the sequence of the solution.

Parent element: <schedule>

Child elements: A latin rectangle of the format n × m that represents the sequence of the
solution.

Attribute Meaning

model Reserved, must be lisa_native.

94 APPENDIX A. XML-REFERENCE

<machine sequences>

This element contains the matrix MO that represents the machine order of the solution.

Parent element: <schedule>

Child elements: A matrix of the format n × m representing the machine order.

Attribute Meaning

model Reserved, must be lisa_native.

<job sequences>

This element contains the matrix JO that represents the job order of the solution.

Parent element: <schedule>

Child elements: A matrix of format n × m representing the job order.

Attribute Meaning

model Reserved, must be lisa_native.

<completion times>

This element contains the matrix C of the completion times.

Parent element: <schedule>

Child elements: A matrix of the format n × m with the completion times of all operations.

Attribute Meaning

model Reserved, must be lisa_native.

A.3. THE DOCUMENT TYPE ALGORITHM 95

A.3 The Document Type algorithm

This document type is used to include algorithms into LiSA. Further information about their
use can be found in the section Algorithm Modules (→ 7.1).

A.3.1 Structure

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE algorithm PUBLIC "" "LiSA.dtd">

<algorithm

xmlns:LiSA="http://lisa.math.uni-magdeburg.de"

name="..."

type="..."

call="..."

code="external"

help_file="algorithm/...">

<exact>

<problem>

<alpha ... />

<beta ... />

<gamma ... />

</problem>

...

</exact>

<heuristic>

<problem>

<alpha ... />

<beta ... />

<gamma ... />

</problem>

...

</heuristic>

<alg_controls>

<integer name="..." caption="..." default="..." />

...

<real name="..." caption="..." default="..." />

...

<choice>

<item name="..." caption="..." />

...

</choice>

...

<fixed name="..." value="..." />

...

</alg_controls>

</algorithm>

Examples of algorithm documents can be found in the subdirectory src/algorithm/sample.

96 APPENDIX A. XML-REFERENCE

A.3.2 Description

<algorithm>

This element surrounds the whole algorithm description.
Parent element: none (root element of the algorithm document).
Child elements: <heuristic>, <exact>, <alg_controls> (optional).

Attribute Meaning

name Name of the algorithm which is shown in the menu Algorithms.

type Either constructive or iterative. Iterative Algorithms require an
initial solution to build a new one upon. Constructive algorithms ever
build completely new solutions and do not require this.

code Reserved, must be external

call Name of the program that implements the algorithm, without file ex-
tension (.exe, for example). This program should have the same name
as the directory where the source code is located.

help file Name of the HTML help file (with file extension, like .html).

<exact> and <heuristic>

<exact> and <heuristic> behave in a similar way. They contain problem descriptions that
an algorithm can solve. Problems under <exact> are guaranteed to be solved optimally,
whereas problems under <heuristic> can only be solved heuristically.
Parent element: <algorithm>

Child elements: <problem>

These elements do not contain attributes.

<problem>

This element represents a problem type that can be solved. It is either placed in the <exact>
or <heuristic> elements and contains each <alpha>, <beta> and <gamma> elements that
specify the problem type in the common α | β | γ notation.
Parent element: <heuristic> or <exact>
Child elements: <alpha>, <beta>, <gamma>

This element does not contain attributes.

A.3. THE DOCUMENT TYPE ALGORITHM 97

<alpha>

α describes the machine environment.

Parent element: <problem>

Child elements: none

Attribute Meaning

env The machine environment of the problem. Possible values are 1, O, F,
J, G, P, Q, R

m (optional) Fixes the number of machines. If this parameter is omitted,
the number of machines is variable and is part of the problem instance.

<beta>

β describes job characteristics and additional constraints.

Parent element: <problem>

Child elements: none

Attribute Meaning

pmtn (optional) Fixes if preemption is allowed. Possible values are
yes and no.

prec (optional) Fixes if precedence constraints between jobs are given.
Possible values are yes, no, intree, outtree, tree, sp graph,
chains.

release times (optional) Fixes if release dates for the jobs are given. Possible
values are yes, no.

due dates (optional) Fixes if due dates for the jobs are given. Possible
values are yes, no.

processing times (optional) Gives an information about the processing times of
the jobs. Possible values are arbitrary, constant, uniform.

no-wait (optional) Fixes if waiting times between the operations of one
job are forbidden. Possible values are yes and no.

98 APPENDIX A. XML-REFERENCE

<gamma>

γ describes the objective function.

Parent element: <problem>

Child elements: none

Attribute Meaning

objective The objective function of the problem. Possible values are Cmax, Lmax,
Sum Ci, Sum wiCi, Sum Ui, Sum wiUi, Sum Ti, Sum wiTi, irreg 1,
irreg 2

<alg controls>

With the element <alg controls> one can declare parameters that can be passed to the
algorithm.

Parent element: <problem>

Child elements: <integer> (optional), <real> (optional), <choice> (optional), <fixed>
(optional)

This element contains no attributes.

<integer>

This declares an integer parameter that can be passed to the algorithm.

Parent element: <alg_controls>

Child elements: none

Attribute Meaning

name Name of the parameter. With this name, the parameter is identified
internally.

caption The name of the parameter in a human readable form. This name is
shown in the parameter window when the algorithm is called via the
menu.

default The standard value for this parameter.

A.3. THE DOCUMENT TYPE ALGORITHM 99

<real>

Declares a real-valued parameter that can be passed to the algorithm.
Parent element: <alg_controls>

Child elements: none

Attribute Meaning

name Name of the parameter. With this name, the parameter is identified
internally.

caption The name of the parameter in a human readable form. This name is
shown in the parameter window when the algorithm is called via the
menu.

default The standard value for this parameter.

<choice>

<choice> parameters offer a selection of a set of predefined values.
Parent element: <alg_controls>

Child elements: <item>

Attribute Meaning

name Name of the parameter. With this name, the parameter is identified
internally.

caption The name of the parameter in a human readable form. This name is
shown in the parameter window when the algorithm is called via the
menu.

<item>

Items define the values that can be selected with a <choice> parameter.
Parent element: <choice>

Child elements: none

Attribute Meaning

name The name of the value.

100 APPENDIX A. XML-REFERENCE

<fixed>

<fixed> parameters pass predefined constant values. They are not shown in the LiSA GUI
and thus cannot be edited. They can be used to pass some hidden piece of data.

Parent element: <alg_controls>

Child elements: none

Attribute Meaning

name The ID of the parameter.

value The value of the parameter. This cannot be edited by the user.

A.4 The Document Type controls

A.4.1 Structure

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE controls PUBLIC "" "LiSA.dtd">

<controls xmlns:LiSA="http://lisa.math.uni-magdeburg.de">

<parameter type="integer" name="WIDTH" value="600"/>

<parameter type="integer" name="HEIGHT" value="500"/>

<parameter type="string" name="LANGUAGE" value="german"/>

<parameter type="string" name="HTML_VIEWER" value="konqueror"/>

</controls>

A.4.2 Description

<controls>

The <controls> element surrounds all parameter declarations.

Parent element: none (root element of the controls document)

Child elements: <parameter>

This element does not contain attributes.

<parameter>

This element fixes one parameter that is passed to LiSA at program startup.

Parent element: <controls>

Child elements: none

A.4. THE DOCUMENT TYPE CONTROLS 101

Attribute Meaning

type The type of the parameter. Possible values are string, integer, real

name The name of the parameter.

value The value of the parameter.

A.4.3 LiSA-Program Parameters

Type Name Meaning

integer WIDTH Width of the LiSA window at the program startup
(in pixels).

integer HEIGHT Height of the LiSA window at the program startup
(in pixels).

string STARTFILE File name of a problem in XML format that is initially
shown at the program startup.

string HTML VIEWER The console command that LiSA should use to start
the standard browser, for example iexplore (Win-
dows), konqueror oder firefox (Linux)

string LANGUAGE Here the program language can be selected (either
english or german).

102 APPENDIX A. XML-REFERENCE

Appendix B

GNU License Conditions

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom
to share and change free software—to make sure the software is free for all its users. This
General Public License applies to most of the Free Software Foundation’s software and to
any other program whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Library General Public License instead.) You can apply it
to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free
software (and charge for this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it in new free programs;
and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain responsi-
bilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone under-
stands that there is no warranty for this free software. If the software is modified by someone
else and passed on, we want its recipients to know that what they have is not the original, so

103

104 APPENDIX B. GNU LICENSE CONDITIONS

that any problems introduced by others will not reflect on the original authors’ reputations.
Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect
making the program proprietary. To prevent this, we have made it clear that any patent
must be licensed for everyone’s free use or not licensed at all.
The precise terms and conditions for copying, distribution and modification follow.

Terms and conditions for copying, distribution and modification

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee
is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work
based on the Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

(c) If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright
notice and a notice that there is no warranty (or else, saying that you provide a
warranty) and that users may redistribute the program under these conditions,
and telling the user how to view a copy of this License. (Exception: if the Program

105

itself is interactive but does not normally print such an announcement, your work
based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do
not apply to those sections when you distribute them as separate works. But when
you distribute the same sections as part of a whole which is a work based on the
Program, the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to each and every
part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:

(a) Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

(c) Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable
form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifica-
tions to it. For an executable work, complete source code means all the source code for
all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system n on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

106 APPENDIX B. GNU LICENSE CONDITIONS

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You
are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation

107

excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software
Foundation; we sometimes make exceptions for this. Our decision will be guided by
the two goals of preserving the free status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.

NO WARRANTY

11. Because the Program is licensed free of charge, there is no warranty for the
Program, to the extent permitted by applicable law. except when other-
wise stated in writing the copyright holders and/or other parties provide the
program “as is” without warranty of any kind, either expressed or implied,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. The entire risk as to the quality and per-
formance of the Program is with you. Should the Program prove defective,
you assume the cost of all necessary servicing, repair or correction.

12. In no event unless required by applicable law or agreed to in writing will any
copyright holder, or any other party who may modify and/or redistribute
the program as permitted above, be liable to you for damages, including
any general, special, incidental or consequential damages arising out of the
use or inability to use the program (including but not limited to loss of
data or data being rendered inaccurate or losses sustained by you or third
parties or a failure of the Program to operate with any other programs),
even if such holder or other party has been advised of the possibility of
such damages.

END OF TERMS AND CONDITIONS

	General Information
	What is LiSA? - Introduction and Overview
	System Requirements and License
	The LiSA Team

	Basic Knowledge
	Definitions and Notations
	Classification of Deterministic Scheduling Problems
	Models for Shop Problems
	Sequences and Schedules
	The Block-Matrices Model for Shop Problems
	Disjunctive Graph Model and Block-Matrices Model
	Basic Algorithms for the Block-Matrices Model

	Overview of Algorithms
	Universal Algorithms
	Specific Algorithms

	The File Format in LiSA
	The Document Type problem
	The Document Type instance
	The Document Type solution
	The Document Type algorithm
	The Document Type controls

	Input
	Problem Type
	Parameters
	Input File

	Algorithms in LiSA
	Universal Exact Algorithm
	Universal Branch & Bound Algorithm

	Universal Constructive Procedures
	Dispatching Rules
	Matching Heuristics
	Beam Search Procedures with Appending Technique
	Beam Search Procedures with Insertion Technique

	Universal Iterative Improvement Procedures
	Iterative search
	Tabu Search
	Simulated Annealing
	Threshold Accepting
	Genetic Algorithms
	Beam Ant Colony Procedures

	Algorithms for Solving Special Problems
	Brucker's Branch & Bound Algorithm
	Two-Machine Problems
	Single Machine Problems with Minimizing the Number of Late Jobs
	Open-Shop Problem with Makespan Minimization and pmtn (Allowed Preemptions)

	Heuristic Algorithms for Special Problems
	The Shifting Bottleneck Heuristic
	The Flow-Shop Heuristic

	Output
	Sequence
	Sequence Graph
	Schedule
	Gantt Chart
	Output File

	Extras
	Complexity Status of a Problem
	Manipulation of Sequences and Schedules
	Irreducibility Test

	On the External Work with LiSA
	Algorithm Modules
	Inclusion of External Algorithms
	Automated Call of Algorithms

	Examples
	Call of an Algorithm from the Command Line
	Example for the Use of LiSA

	XML-Reference
	General
	The XML Language
	Representation of Data

	The Document Types problem, instance and solution
	Structure
	Description

	The Document Type algorithm
	Structure
	Description

	The Document Type controls
	Structure
	Description
	LiSA-Program Parameters

	GNU License Conditions

