
Definition 1 A feasible solution x = (x1, x2, . . . , xn)T ,
for which the objective function has an optimum (i.e.
maximum or minimum) value is called an optimal so-
lution.

Definition 2 A set M is called convex, if for any two
vectors x1,x2 ∈M , any vector

λx1 + (1− λ)x2

with 0 ≤ λ ≤ 1 also belongs to set M .

Definition 3 A vector (point) x ∈ M is called an ex-
treme point of the convex set M , if x cannot be writ-
ten as

λx1 + (1− λ)x2

with x1,x2 ∈M and 0 < λ < 1.

Theorem 1 The set M of feasible solutions of an LPP
is either empty or a convex set with at most a finite
number of extreme points.

1

Theorem 2 If the set M of feasible solutions of an
LPP is bounded, it can be written as the set of all con-
vex combinations of the extreme points x1,x2, . . . ,xs of
set M , i.e.:

M =
{

x ∈ Rn | x = λ1x
1 + λ2x

2 + · · · + λsx
s;

0 ≤ λi ≤ 1, i = 1, 2, . . . , s,

s∑
i=1

λi = 1
}

Theorem 3 If an LPP has a (finite) optimal solution,
then there exists at least one extreme point, where the
objective function has an optimum value.

Theorem 4 Let P1, P2, . . . , Pr described by vectors

x1,x2, . . . ,xr

be optimal extreme points. Then every convex combi-
nation

x0 = λ1x
1 + λ2x

2 + . . . + λrx
r

λi ≥ 0, i = 1, 2, . . . , r,

r∑
i=1

λi = 1

is also an optimal solution.

2

Definition 4 A system Ax = b of p = r(A) linear
equations, where in each equation one variable occurs
only in this equation and it has the coefficient +1, is
called system of linear equations in canonical form.

These eliminated variables are called basic variables
(bv), while the remaining variables are called nonbasic
variables (nbv).

Definition 5 A solution x of a system of equations
Ax = b in canonical form, where each nonbasic vari-
able has the value zero, is called a basic solution.

Definition 6 An LPP of the form

z = cTx −→ max!

s.t. Ax = b, x ≥ 0,

where A = (AN , I) and b ≥ 0, is called the standard
form of an LPP.

3

The standard form of an LPP

• is a maximization problem

• the constraints are given as
a system of linear equations
in canonical form
with non-negative right-hand sides and

• all variables have to be non-negative

4

BASIC IDEA OF THE SIMPLEX
ALGORITHM

(Iterative procedure)

Starting with some initial extreme point (basic
feasible solution), compute the value of the ob-
jective function and check whether the latter can
be improved upon by moving to an adjacent ex-
treme point (by applying the pivoting procedure).
If so, we make the move and seek then whether
further improvement is possible by a subsequent
move.

When finally an extreme point is attained that
does not admit of further improvement, it will
constitute an optimal solution.

5

Theorem 5 (Optimality criterion)
If

gj ≥ 0, j = 1, 2, . . . , n′,

for all coefficients of the nonbasic variables in
the objective row, the corresponding solution
is optimal.

Theorem 6 If we have gl < 0 for a coefficient
of a nonbasic variable in the objective row and
âil ≤ 0 for all coefficients in column l, then the
LPP does not have a (finite) optimal solution.

Theorem 7 If there exists a coefficient gl =
0 in the objective row of an optimal solution
such that âil > 0 for at least one coefficient
in column l, then there exists another optimal
basic feasible solution, where xNl is a basic
variable.

6

2 Discrete Optimization

2.1 Preliminaries

Discrete Optimization Problem:

f (x)→ min! (max!)

x ∈ S
Special case: S finite

→ Often S is described by linear inequalities / equations.

Integer (Linear) Optimization Problem:

f (x) = cT · x→ min! (max!)

s.t.

A · x ≤ b

x ∈ Zn+

Parameters A, b, c integer

Zn+ - Set of integer, non-negative, n-dimensional vectors

7

Mixed Integer (Linear) Optimization Problem:

replace x ∈ Zn+ by

x1, x2, . . . , xr ∈ Z+

xr+1, xr+2, . . . , xn ∈ R+

Binary Optimization Problem:

replace x ∈ Zn+ by

x1, x2, . . . , xn ∈ {0, 1}
i.e., x ∈ {0, 1}n

Mixed Binary Optimization Problem:

x1, x2, . . . , xr ∈ {0, 1}

xr+1, xr+2, . . . , xn ∈ R+

Combinatorial Optimization Problem

(COP):

The set S is finite and non-empty.

8

Example 1 (Investment planning) An enterprise may
realize 5 projects with the following expenditures (in
Mill. EUR) for the next three years.

Project year 1 year 2 year 3 profit
1 5 1 8 20
2 4 7 10 40
3 3 9 2 20
4 7 4 1 15
5 8 6 10 30

Available budgets 25 25 25

Which projects should be realized in order to maximize
the profit?

9

2.2 Branch and Bound Algorithms (B&B)

• Exact procedure

• Method of implicit enumeration: Exclude successively
subsets of S which cannot contain an optimal solution.

• Basic idea for minimization problems:

– Branching: Partition the set of solutions at least
into two (disjoint) subsets.

– Bounding: Determine for each subset S(i) a lower
bound LB(i)

– Let UB be a known upper bound and LB(i) ≥
UB for S(i), then S(i) does not need to be consid-
ered further.

First we consider a binary optimization problem :

f (x)→ min!

s.t.

x ∈ S ⊆ {0, 1}n

10

Remark: In the case of a complete enumeration for n =
50, we would already obtain

| {0, 1}50 |= 250 ≈ 1015

possible combinations.

States of variables

Variable uj describes the state of xj as follows:

State of xj Value of xj Value of uj
fixed ‘settled’ 1 1
fixed ‘locked’ 0 0

free 0 ∨ 1 -1

• Vector u ∈ U := {−1, 0, 1}n is identified with node
u in the branching tree. Node u restricts the set of
solutions as follows:

S(u) = {x ∈ S | xj = uj, xj fixed}, j ∈ {1, . . . , n}

• To node u, there corresponds the following optimization
problem:

f (x)→ min!

s.t.

x ∈ S(u)

 P (u)

Let f ∗(u) := min{f (x) | x ∈ S(u)}.
11

Introduction of bound functions

Definition 7 A function LB : U → R∪{∞} is called
a lower bound function, if

(a) LB(u) ≤ min{f (x) | x ∈ S(u)} = f ∗(u)

(b) S(u) = {x} ⇒ LB(u) = f (x)

(c) S(u) ⊆ S(v) ⇒ LB(u) ≥ LB(v)

Definition 8 UB ∈ R is called an upper bound on the
optimal objective function value, if UB ≥ min{f (x) |
x ∈ S}.

x̄ represents the best solution found so far.

At the beginning of a B&B procedure, we set UB := f (x̄),
if x̄ a heuristic solution, or we set UB :=∞.

12

Generation of the branching tree

active node: a node, which has not been investigated yet

At the beginning, the branching tree contains only the root
u = (−1,−1, . . . ,−1)T as active node.

Investigation of an active node u

• Case 1: LB(u) ≥ UB

Node u is removed from the branching tree, since ac-
cording to Definition 5 (a)

min{f (x) | x ∈ S(u)} ≥ LB(u) ≥ UB

holds.

→ Problem can be excluded.

13

• Case 2a: LB(u) < UB with uj ∈ {0, 1} for j =
1, 2, . . . , n

solution x = u is uniquely determined

If x ∈ S ⇒ due to

f (x) = LB(u) < UB = f (x̄),

we have found a new best solution. Set x̄ := x and
UB := f (x̄). (Node u is no longer active.)

→ Problem can be excluded.

• Case 2b: LB(u) < UB with uj = −1 for (at least)
one j ∈ {1, 2, . . . , n}
Generate the successor nodes wi of node u by fixing one
(or several) free variables. (Node u is no longer active,
but the successors wi of u are active.)

→ Problem is branched.

14

Search strategies - Selection of the next active
node to be selected for investigation

(a) FIFO strategy (first in, first out)

Newly generated nodes are added to the end of the
queue and the node at the beginning of the queue is
investigated next.

→ Breadth first search

(b) LIFO strategy (last in, first out)

Newly generated nodes are added to the end of the
queue and the node at the end of the queue is inves-
tigated first.

→ Depth first search

(c) LLB strategy (least lower bound)

The node with the smallest LB(u) is investigated next.
(If LB(u) ≥ UB, then stop.)

The LIFO strategy delivers often quickly feasible solutions.
During the course of the search, it is often recommendable
to switch to the FIFO or LLB strategy.

15

On the bound function LB(u)

One or several constraints of P (u) are ”‘relaxed”’ or re-
moved.

⇒ One obtains an easier problem P ∗(u) with S∗(u) ⊇
S(u).

P ∗(u) → Relaxation of P (u)

Set LB(u) := f (x∗(u)), where x∗(u) is an optimal solution
of P ∗(u).

Binary problem: For the free variables, replace xi ∈ {0, 1}
by 0 ≤ xi ≤ 1.

(LP relaxation)

16

B&B algorithm for binary optimization prob-
lems (minimization)

Step 1:

• If a feasible solution x ∈ S is known, set

x := x and UB := f (x),

otherwise set
UB :=∞.

• Set u0 := (−1,−1, . . . ,−1)T and Ua := {u0}
(u0 is the root).

Step 2:

• If Ua = ∅, go to Step 4.

Otherwise, select by means of a search strategy a node
u ∈ Ua, remove u from Ua and calculate LB(u).

Step 3:

• If LB(u) ≥ UB, go to Step 4 in the case of the LLB
strategy.

Otherwise, eliminate u from the branching tree.

• If LB(u) < UB and all variables are fixed, set in the
case of x ∈ S:

x := x and UB := f (x).

17

• If LB(u) < UB and at least one variable is free, gener-
ate by fixing one (or several) free variables the succes-
sors of node u. Add the successors of u to Ua and to
the branching tree.

• Go to Step 2.

Step 4: (Stop)

• If UB <∞, then x is an optimal solution with f (x) =
UB. Otherwise, the problem has no feasible solution.

This procedure can be generalized to mixed binary problems
of the form

f (x,y)→ min!

s.t. (
x

y

)
∈ S

x ∈ Rn, y ∈ {0, 1}k.

If all binary variables are fixed, we have an LPP in the
variables x1, x2, . . . , xn.

18

Modifications for integer programming problems

Use as relaxation the resulting LPP, where xi ∈ Z+ is re-
placed by xi ≥ 0 (LP Relaxation).

The optimal solution (OS) gives a lower bound LB(u) for
node u (we have S∗(u) ⊇ S(u)).

Algorithm by Dakin: (branching strategy)

If in the OS of the LPP at least one variable x∗i is not inte-
ger, generate two successor nodes vk und vl by adding the
following constraints:

xi ≤ [x∗i] in S(vk) and

xi ≥ [x∗i] + 1 in S(vl)

19

3 Metaheuristics

3.1 Local Search, Preliminaries

Introduce a neighborhood structure as follows:

N : S → 2S

x ∈ S ⇒ N(x) ⊆ 2S

S - Set of feasible solutions

N(x) - Set of neighbors of a feasible solution x ∈ S

Algorithm ITERATIVE IMPROVEMENT

1. determine an initial solution x ∈ S;

REPEAT

2. determine the best solution x′ ∈ N(x);

3. IF f (x′) < f (x) THEN x := x′;

UNTIL f (x′) ≥ f (x) for all x′ ∈ N(x).

x′ - local minimal point w.r.t. neighborhood N

→ The algorithm works with “largest improvement”

(best-fit).

20

Modification:

Use “first improvement” (first-fit), i.e., search the neigh-
borhood in a systematic way and accept a neighbor with
a better objective function value than the current starting
solution immediately for the next iteration.

(Stop, if a complete cycle with all neighbors has been checked
without getting a better objective function value.)

| N(x) | very large⇒ Generate the neighbors randomly.

⇒ Replace row 2 in algorithm “Iterative Improvement” by

2∗: Determine a solution x′ ∈ N(x)

Stop, if

• a settled time limit is elapsed or

• a settled number of feasible solutions has been gener-
ated or

• a settled number of solutions after the last objective
function value improvement has been generated without
improving the objective function value further.

21

We consider

f (x)→ min! (max!)

s.t.

x ∈ S ⊆ {0, 1}n

Neighborhood Nk(x):

Nk(x) = {x′ ∈ S |
n∑
i=1

| xi − x′i |≤ k}

(x′ ∈ Nk(x
′) ⇔ x′ is feasible and differs in at

most k components from x)

⇒ | N1(x) | ≤ n

| N2(x) | ≤ n +

(
n

2

)
= n +

n(n− 1)

2
=
n(n + 1)

2

For the systematic generation of neighbors, change compo-
nent 1,2,. . . etc.

22

3.2 Simulated Annealing

randomized procedure, since

• x′ ∈ N(x) is randomly selected

• in the i-th iteration, x′ is accepted with probability

min

{
1, exp

(
− f (x′)− f (x)

ti

)}
as new starting solution

({ti} is a sequence of positive control parameters known
as the temperature).

23

Algorithm SIMULATED ANNEALING

1. i := 0; choose t0;

2. determine an initial solution x ∈ S;

3. best := f (x);

4. x∗ := x;

REPEAT

5. generate randomly a solution x′ ∈ N(x);

6. IF rand[0, 1] < min
{

1, exp
(
−f(x′)−f(x)

ti

)}
THEN x := x′;

7. IF f (x′) < best THEN

BEGIN x∗ := x′; best := f (x′) END;

8. ti+1 := g(ti);

9. i := i + 1;

UNTIL stopping criterion is satisfied.

24

Modification:

Threshold Accepting (deterministic variant of Simulated
Annealing)

• accept x′ ∈ N(x) if

f (x′)− f (x) ≤ ti

ti – Threshold in the i-th iteration

3.2 Tabu Search

Goal: Avoidance of ‘short cycles’

⇒ use attributes to characterize the solutions attended re-
cently and forbid the returnal to such solutions for a spec-
ified number of iterations

Notations:

Cand(x) – contains all neighbors x′ ∈ N(x),

to which a transition (‘move’) is allowed

TL – tabu list

t – length of the tabu list

25

Algorithm TABU SEARCH

1. determine an initial solution x ∈ S;

2. best := f (x);

3. x∗ := x;

4. TL := ∅;
REPEAT

5. determine Cand(x) = { x′ ∈ N(x) | the move

from x to x′ is not tabu };
6. select a solution x ∈ Cand(x);

7. update TL (such that maximal t attributes are

contained in TL);

8. x := x;

9. IF f (x) < best THEN

BEGIN x∗ := x; best := f (x) END;

UNTIL stopping criterion is satisfied.

26

3.3 Genetic Algorithms

• Use of Darwin’s evolution theory (survival of the
fittest)

• Genetic algorithms work with a population of in-
dividuals (chromosomes), which are characterized by
their fitness

• Generation of offspring by genetic operators (crossover,
mutation)

Fitness and Encoding of an Individual

e.g. fitness(ch)=f (x) for f → max!

fitness(ch)= 1
f(x) for f → min! and f (x) > 0,

where ch denotes the encoding of solution x ∈ S

x = (0, 1, 1, 1, 0, 1, 0, 1)T ∈ {0, 1}8

ch: 0 1 1 1 0 1 0 1

27

Genetic Operators for Generating Offspring

Mutation: ‘Mutate’ the genes of an individual.

parent chromosome 0 1 1 1 0 1 0 1

(3,5)-Inversion 0 1 0 1 1 1 0 1

2-Mutation 0 0 1 1 0 1 0 1

(1,4,7)-Mutation 1 1 1 0 0 1 1 1

Crossover: Combine the genetic structures of two

individuals and generate two offspring.

1-Point-Crossover e.g. (4,8)-Crossover

P1 1 0 1 0 0 1 0 1 O1 1 0 1 1 0 0 1 1
→

P2 0 1 1 1 0 0 1 1 O2 0 1 1 0 0 1 0 1

2-Point-Crossover e.g. (3,5)-Crossover

P1 1 0 1 0 0 1 0 1 O1 1 0 1 1 0 1 0 1
→

P2 0 1 1 1 0 0 1 1 O2 0 1 1 0 0 0 1 1

28

Algorithm GEN-ALG

1. set the parameters population size POPSIZE, maximal number

of generations MAXGEN , probability PCO for the application of

a crossover and probability PMU for the application of a mutation;

2. generate the initial population POP0 with POPSIZE individuals

(chromosomes);

3. determine the fitness of all individuals;

4. k := 0;

WHILE k < MAXGEN DO

BEGIN

5. h := 0;

WHILE h < POPSIZE DO

BEGIN

6. select two parents from POPk (e.g. randomly proportional to their

fitness values or according to roulette wheel selection);

7. apply with probability PCO a crossover to the selected parents;

8. apply with probability PMU a mutation to each of the individuals;

9. h := h + 2;

END;

10. k := k + 1;

11. select from the generated offspring (and possibly also from the

parents) POPSIZE individuals of the k-th generation POPk

(e.g. proportional to their fitness values);

END

29

4 Dynamic Programming

→ Problems are considered, which can be partitioned into
particular ‘stages’ so that the overall optimization can be
replaced by a ‘stepwise optimization’ over the stages.

→ Dynamic programming is often applied to an optimal
control of economic processes, where the stages correspond
to time periods.

4.1 Introductory Examples

(a) Inventory Problem

Problem Formulation:

• A good is stored during a finite planning horizon con-
sisting of n periods.

• In each period, a delivery to the inventory is possible at
the beginning.

• There is a demand in each period, which has to be
satisfied after a potential delivery.

30

Notations:

uj ≥ 0 - amount delivered at the beginning of period j

rj ≥ 0 - demand in period j

xj - stock immediately before the delivery in period j
(j = 1, 2, . . . , n)

Optimization problem:

n∑
j=1

[
Kδ(uj) + hxj+1

]
→ min!

s.t.

xj+1 = xj + uj − rj, j = 1, 2, . . . , n

x1 = xn+1 = 0

xj ≥ 0, j = 2, 3, . . . , n

uj ≥ 0, j = 1, 2, . . . , n

(12)

31

Remark:

x1 = xn+1 = 0 and (12)

⇒ Replace in the objective function hxj+1 by hxj

such that each term in the sum has the form gj(xj, uj).

xj = xj+1 − uj + rj ≥ 0 ⇒ uj ≤ xj+1 + rj

The constraints can be formulated as follows:

x1 = xn+1 = 0

xj = xj+1 − uj + rj, j = 1, 2, . . . , n

xj ≥ 0, j = 1, 2, . . . , n

0 ≤ uj ≤ xj+1 + rj, j = 1, 2, . . . , n

32

(b) Knapsack Problem

uj :=
{ 1, if item j is put into the knapsack

0, otherwise

Optimization problem:

n∑
j=1

cjuj → max!

s.t.
n∑
j=1

ajuj ≤ V

u1, u2, . . . , un∈ {0, 1}

→ Here the states are no time periods. The decisions which
of the items 1, 2, . . . , n are put into the knapsack is inter-
preted as decisions in n successive stages.

33

xj - remaining volume of the knapsack for the items j, j+
1, . . . , n

⇒ x1 = V and xj+1 = xj−ajuj for all j = 1, 2, . . . , n

Reformulated optimization problem:

n∑
j=1

cjuj → max!

u.d.N.

xj+1 = xj − ajuj, j = 1, 2, . . . , n

x1 = V

0 ≤ xj+1 ≤ V, j = 1, 2, . . . , n

uj ∈ {0, 1}, if xj ≥ aj, j = 1, 2, . . . , n

uj = 0, if xj < aj, j = 1, 2, . . . , n

34

4.2 Problem Formulation

Dynamic programming problems consider a finite planning
horizon, which is partitioned into n periods or stages.

State variable xj:

→ describes the state of the system at the beginning of
period j (and at the end of period j − 1, respectively)

→ x1 := xa - given initial state of the system

Decision variable uj:

→ In period 1 the decision u1 is made, which transforms
die system into the state x2, i.e.,

x2 = f1(x1, u1),

where, from the decision u1, the cost g1(x1, u1) results.

35

in general:

xj+1 = fj(xj, uj) resultant state

gj(xj, uj) stage cost

Xj+1 6= ∅ State region, which contains possible states

at the end of period j, where X1 = {x1}
Uj(xj) 6= ∅ Control region, which contains possible

decisions in period j (depends on state xj

at the beginning of period j)

Optimization problem:

n∑
j=1

gj(xj, uj) → min!

u.d.N.

xj+1 = fj(xj, uj), j = 1, 2, . . . , n

x1 = xa,

xj+1 ∈ Xj+1, j = 1, 2, . . . , n

uj ∈ Uj(xj), j = 1, 2, . . . , n

(13)

36

Remark:

In general, the time complexity increases exponentially with
the dimension of the state and decision variables

Definition 9 A sequence of decisions (u1, u2, . . . , un)
is called policy or control. The sequence of decisions
(x1, x2, . . . , xn, xn+1) corresponding to a given policy
(u1, u2, . . . , un) according to

x1 = xa and xj+1 = fj(xj, uj) for all j = 1, 2, . . . , n

is called the corresponding state sequence.

A policy or state sequence satisfying the constraints
(13) is called feasible.

37

4.3 Bellman Equations and Bellman’s Principle
of Optimality

Given are gj, fj, Xj+1 and Uj for all j = 1, 2, . . . , n.

⇒ Optimization problem depends on x1, i.e., P1(x1).

analogously: Pj(xj) - problem for the periods j, j +
1, . . . , n with the initial state xj

Theorem 8 (Bellman’s Principle of Optimality)

Let (u∗1, . . . , u
∗
j , . . . , u

∗
n) be an optimal policy for the prob-

lem P1(x1) and x∗j be the state at the beginning of period
j, then (u∗j , . . . , u

∗
n) is an optimal policy for the problem

Pj(x
∗
j), i.e.:

The decisions in the periods j, . . . , n of the n-period
problem P1(x1) are (for a given state x∗j) independent
of the decisions in the periods 1, . . . , j − 1.

38

Bellman Equations:

1. Let v∗j (xj) be the minimal cost for the problem Pj(xj).

For j = 1, 2, . . . , n, the relationships

v∗j (xj) = gj(xj, u
∗
j) + v∗j+1(x

∗
j+1)

= min
uj∈Uj(xj)

{
gj(xj, uj) + v∗j+1[fj(xj, uj)]

}
xj ∈ Xj

(14)

are called the Bellman equations (BE), where

v∗n+1(xn+1) = 0

for xn+1 ∈ Xn+1.

⇒ Function v∗j can be determined provided that v∗j+1

is known.

39

2. BE can also be determined for the following cases:

(a)
n∑
i=1

gj(xj, uj) → max!

⇒ Replace in (14) min! by max!

(b)
n∏
i=1

gj(xj, uj) → min!

⇒ BE:

v∗j (xj) = min
uj∈Uj(xj)

{
gj(xj, uj) · v∗j+1

[
fj(xj, uj)

]}
where v∗n+1(xn+1) := 1 and gj(xj, uj) > 0

for all xj ∈ Xj, uj ∈ Uj(xj), j = 1, 2, . . . , n

(c) max
1≤j≤n

{
gj(xj, uj)

}
→ min!

⇒ BE:

v∗j (xj) = min
uj∈Uj(xj)

{
max

{
gj(xj, uj); v

∗
j+1

[
fj(xj, uj)

]}}
where v∗n+1(xn+1) = 0

40

4.4 Bellman Method

⇒ successive evaluation of (14) for j = n, n − 1, . . . , 1 to
determine v∗j (xj)

Algorithm DO

Phase 1: Backward Calculation

(a) Set v∗n+1(xn+1) := 0 for all xn+1 ∈ Xn+1.

(b) For j = n, n− 1, . . . , 1 do:

For all xj ∈ Xj, determine z∗j (xj) as the minimum point
of function

wj(xj, uj) := gj(xj, uj) + v∗j+1

[
fj(xj, uj)

]
on Uj(xj), i.e.,

wj(xj, z
∗
j (xj)) = min

uj∈Uj(xj)
wj(xj, uj) = v∗j (xj) for xj ∈ Xj

Phase 2: Forward Calculation

(a) Set x∗1 := xa.

(b) For j = 1, 2, . . . , n do:

u∗j := z∗j (xj), x
∗
j+1 := fj(x

∗
j , u
∗
j)

41

⇒ (u∗1, u
∗
2, . . . , u

∗
n) optimal policy

⇒ (x∗1, x
∗
2, . . . , x

∗
n+1) optimal state sequence for prob-

lem P1(x
∗
1 = xa)

Summary: DP (Dynamic Programming)

Phase 1: Decomposition

Phase 2: Backward calculation

Phase 3: Forward calculation

Remark: If all equations

xj+1 = fj(xj, uj), j = 1, 2, . . . , n

can be uniquely solved for xj, one can also execute first a
forward calculation and then a backward calculation (e.g.
for the inventory problem from 4.1).

42

4.5 Examples and Applications

(a) Knapsack Problem

Assumption: V, aj, cj - integer

gj(xj, uj) = cjuj, j = 1, 2, . . . , n

fj(xj, uj) = xj − ajuj, j = 1, 2, . . . , n

Xj+1 = {0, 1, . . . , V }

Uj(xj) =

{
{0, 1} for xj ≥ aj
0 for xj < aj

, j = 1, 2, . . . , n

BE:

v∗j (xj) = max
uj∈Uj(xj)

{
cjuj + v∗j+1(xj − ajuj)

}
, 1 ≤ j ≤ n

Backward Calculation:

v∗n(xn) =

{
cn, if xn ≥ an

0, otherwise

z∗n(xn) =

{
1, if xn ≥ an

0, otherwise

43

For j = n− 1, n− 2, . . . , 1:

v∗j (xj) =

{
max

{
v∗j+1(xj); cj + v∗j+1(xj − aj)

}
, if xj ≥ aj

v∗j+1(xj), otherwise

z∗j (xj) =

{
1, if v∗j (xj) > v∗j+1(xj)

0, otherwise

⇒ v∗1(V) - maximal value of the knapsack filling

Forward Calculation:

x∗1 := V

u∗j := z∗j (x
∗
j), j = 1, 2, . . . , n

x∗j+1 := x∗j − aju∗j , j = 1, 2, . . . , n

44

(b) Determination of a Shortest (Longest) Path
in a Graph

Goal: Determine a shortest path from vertex (city) x1 to
vertex (city) xn+1.

Let:

Xj = {x1j , x2j , . . . , xkj} - set of all vertices of stage j, 2 ≤
j ≤ n

X1 = {x1}, Xn+1 = {xn+1}

Uj(xj) = {xj+1 ∈ Xj+1 | ∃ a vertex from xj to xj+1}, j =
1, 2, . . . , n

v∗j (xj) - length of a shortest path from vertex xj ∈ Xj to
vertex xn+1

gj(xj, uj) = cxj ,uj

fj+1(xj, uj) = uj = xj+1

45

z∗j (xj) = uj = xj+1 if xj+1 is the next vertex after vertex
xj on a shortest path from vertex xj to vertex xn+1

BE:
v∗n(xn) = cxn,xn+1 for xn ∈ Xn

For j = n− 1, n− 2, . . . , 1:

v∗j (xj) = min
{
cxj ,xj+1

+ v∗j+1(xj+1) | xj+1 ∈ Xj+1

such that the arc (xj, xj+1) exists
}

46

