

Fast Edge-Orientation Heuristics for Job-Shop Scheduling

Problems with Applications to Train Scheduling

Omid Gholami
1
, Yuri N. Sotskov

2
 and Frank Werner

3*

1Islamic Azad University, Mahmudadad Branch

Moalem, Mahmudabad, Iran
2United Institute of Informatics Problems
National Academy of Sciences of Belarus

Belarus, Minsk
3Faculty of Mathematics, Otto-von-Guericke-University

PSF 4120, 39106 Magdeburg, Germany

e-mails: gholami@iaumah.ac.ir; sotskov@newman.bas-net.by;frank.werner@ovgu.de

Abstract

A train scheduling problem in a single-track railway can be modeled as a job-shop scheduling problem.
We use a mixed graph model for such a job-shop problem with appropriate criteria. There are several
performance evaluations for a train schedule. Optimizing a train schedule subtends minimizing total
tardiness of the trains, minimizing the sum of train transit times, minimizing the makespan for a train

schedule, etc. Since the corresponding job-shop problems with the above three criteria are NP-hard,
several constructive heuristics have been developed using different priorities based on the release times of
the jobs, the job due-dates and the job completion times. Experiments on a computer were used for
evaluating the quality and efficiency of the heuristic algorithms developed for appropriate job-shop
problems. The release times, due-dates and completion times of the jobs have been used as input
parameters (priorities) to see the effect of them on the quality of the schedules with different objective
functions. The efficiency of the developed heuristics was tested on a set of 118 randomly generated
instances of small and large sizes with up to 2000 operations.

Keywords: train scheduling, single-track railway, job-shop problem, disjunctive graph, heuristics

1. Introduction

This paper addresses the problem of generating an efficient schedule of passenger and

freight trains in a single-track railway. We use the terminology from [11] for train
scheduling and that from [17] for machine scheduling.

In the world, the railway traffic is increasing from year to year. The employment of

railroads grows both for passenger and freight transportation. When the density of train
moving is increasing, the train schedule becomes more difficult both as the generation

and control are concerned. During the last decades, a lot of new algorithms and software

have been developed and published in the OR literature and in the special literature in
order to produce a better tool for generating an accurate and reliable train schedule.

* corresponding author

mailto:gholami@iaumah.ac.ir
mailto:sotskov@newman.bas-net.by
mailto:frank.werner@ovgu.de

20 Gholami et.al / IJORN 2 (2013) 19 – 32

In this paper, it is shown how one can find a train schedule for a single-track railway

which is close to an optimal one for three objective functions. A possible way to achieve
a proper train schedule uses job-shop scheduling [4, 12, 16], although job-shop problems

are fairly complicated since they belong to the class of NP-hard problems [2, 3, 17]. In

order to achieve a practical size of a job-shop problem, which can be solved within a

reasonable time, we propose and test several constructive heuristics for three objective
functions which are based on the orientation of edges in a mixed graph and which turn

out to be appropriate for train scheduling. In Section 2, we give a brief literature review.

In Sections 3 - 5, we consider a railway network provided that a pair of sequential stations
can be connected by at most one single-track (a railroad section). In particular, this is the

case for most railway systems in countries of the Middle East. In Section 6, we present

computational results for 118 small and large instances. Section 7 gives some concluding

remarks.

2. Literature Review

In [19], a resource-constrained project scheduling was used for a single-track timetabling

problem. Both the track segments and stations were modelled as limited resources. A

branch-and-bound algorithm has been developed in order to obtain a feasible train

timetable with a guaranteed level of optimality. A lower bound based on Lagrangian
relaxation was used to relax the segment and station capacity constraints. A lower bound

was used to estimate the least train delay. An upper bound was constructed via a beam

search heuristic. In [5], a heuristic algorithm was developed for train scheduling in a
single-track railway under the assumption that all trains moving in the same direction

must have the same speed. A greedy heuristic was proposed based on a local optimality

criterion in the event of a potential crossing conflict.

The paper [10] was devoted to train scheduling problems when prioritized trains and non-

prioritized trains are simultaneously traversed in a single-track railway. No-wait

conditions arise because the prioritized trains (e.g., an express passenger train has a
higher priority) should traverse continuously without interruptions. Non-prioritized trains

(e.g., a freight train) are allowed to either enter the next section immediately (if it is free)

or to remain in a section until the next section on the route becomes available. A generic
algorithm has been developed to construct a feasible train timetable in terms of the given

train order. The proposed algorithm comprises several recursively used procedures to

guarantee the feasibility by satisfying the no-waiting, a deadlock-free condition, and a

conflict-free constraint.

Szpigel [16] was the first who identified the similarities between a job shop problem and

train scheduling in a single-track railway. The former was solved in [16] using a branch-
and-bound algorithm, where the initial linear programming problem excludes the order

constraints. Branching is required if the current solution contains trains which are in a

conflict (i.e., when trains turn out to be located on the same railroad section at the same
time). The objective was to minimize the weighted sum of the train transit times.

Computational results for 5 single-track sections and 10 trains have been reported. The

same problem was considered in [6] via binary mixed integer programming similarly to

Fast Edge-Orientation Heuristics for Job-Shop Scheduling ….. 21

that considered in [8]. The temporal constraints were identical to those used in [16]. The

objective was to minimize the deviation from the ideal arrival times and the departure
times for the trains to be scheduled. In [13], a job-shop problem was used to solve the

train scheduling problem, where a route was interpreted as follows: The route is a

sequence of the facilities the train must cross from the origin to the destination. Assuming

that the train trips are jobs to be scheduled, which require elements of the infrastructure as
restricted resources, it was done by mapping the initial problem into a special case of a

job-shop problem. In order to solve the job-shop problem, a constraint programming

approach has been developed. A support for finding quickly a good schedule was offered
by an original separation and a bound-and-search heuristic. To improve the time

performance, a surrogate objective function was used which had a smaller domain than

the actual objective function.

In [7], a discrete-event model was used to schedule the traffic on a railway network. This

model was computationally efficient and generated near optimal schedules with respect to

a number of time-of-travel-related criteria. In [4], train scheduling was interpreted in

terms of a job-shop problem with parallel machines. A disjunctive graph model was used

in several algorithms with the makespan objective. It was demonstrated that solutions

with a good quality may be obtained within a reasonable CPU-time.

3. Problem settings and testing

One of the main problems in the management of a railway network is the train scheduling

(timetabling) problem, in which it is necessary to determine a schedule (timetable) for a
set of given trains that does not violate the railway constraints. This problem has to be

solved at the tactical level of the railway planning process [11]. For the case of a single-

track railway, train scheduling may be interpreted as the following job-shop problems.

There are jobs to be processed on different machines

. The time needed for processing an operation of a job

 on the corresponding machine is known. Operation preemptions are not

allowed, and the machine routes for the jobs may be

different. A job is available for processing from time-point . The time-point

 defines a due-date for completing the job . A machine can process a job

 at most once. So, any two operations and , , of the same job

have to be processed by different machines of the set , i.e., inequality holds

(such a problem is called a classical job-shop).

One objective is to find a schedule minimizing the sum of the tardiness

times of the jobs . Hereafter, denotes the completion time

of a job . According to the three-field notation used for machine scheduling

problems, the above job-shop problem is denoted as . If , then this

problem is denoted as . If , then it is denoted as .

22 Gholami et.al / IJORN 2 (2013) 19 – 32

The problems , and arise in train scheduling for a single-

rack railway: To determine the best train schedule among those which do not violate the

single-track capacities. For passenger trains, the criteria and are more

important than while for freight trains, the criteria and are more

important than .

In a job-shop approach to train scheduling, the trains and railroad sections are

synonymous with the jobs and the machines , respectively. An operation

 is regarded as a movement of a train across a railroad section (in the

route , machine processes operation). The positive number denotes the time

required for the train to travel through the railroad section . The non-

negative number denotes the departure time of the train , which is given in the

official train timetable. The positive number denotes the official arrival time of the

train (a due-date for the desired completion time of a job) at the terminal

station in the route . Note that for train scheduling, usually the inequality holds.

The problems , and are complicated in the computational
sense since their special cases belong to the class of NP-hard problems [17]. In order to

achieve a practical size of a classical job-shop problem, which can be solved heuristically

within a reasonable time, we have coded a shifting bottleneck algorithm, which was

originated in [1] for the job-shop problem . However, testing the program

realizing a shifting bottleneck algorithm for the problem showed an

unsatisfactorily large CPU-time when the number of trains was large and the number

of railroad sections was no less than [14]. Computational experiments showed that this
algorithm can handle 125 operations (e.g., 25 trains on 5 railroad sections or 5 trains on

25 railroad sections) within half an hour of CPU time. For larger job-shops with

(what is typical for train scheduling problems), the CPU-time grows quickly. We also

observed that meta-heuristic algorithms are often time-consuming (e.g., a survey of
genetic algorithms for shop scheduling algorithms can be found in [18]).

In Sections 4 and 5, we develop heuristic edge-orientation algorithms, which run faster
than the shifting bottleneck algorithm providing a quality of the objective function values

which is close to the quality of the schedules constructed by the shifting bottleneck

algorithm.

4. Mixed graph model

The problems , and described in Section 3 can be

formulated using a mixed graph model [17] or a disjunctive graph model

[15].

Let denote the set of operations , , , to be executed by the

machines and a dummy operation associated with the beginning of a schedule and

n dummy operations associated with the completion of the jobs .

Fast Edge-Orientation Heuristics for Job-Shop Scheduling ….. 23

Two operations and , which have to be executed by the same machine ,

cannot be simultaneously processed by this machine. This restriction is presented by an

edge . Two consecutive operations and of the same job

are connected by an arc , where . The arc

means that operation has to be started after the completion of operation . The

processing time is prescribed to the arc , and the two processing

times and are prescribed to the edge . For the dummy operation

, the arc with the weight is included into the set for each job

 . For the dummy operation , the arc with the weight

 is included into the set .

The problems , and are modelled by a mixed graph

. The due-dates are used when calculating the objective function

 for a schedule constructed.

Since operation preemptions are not allowed, a schedule on a mixed graph

may be defined as a sequence of the starting times

 of all the operations such that the conjunctive

constraint

 (1)

has to be satisfied for each arc , and the disjunctive constraint

either or (2)

has to be satisfied for each edge .

Using the above weighted mixed graph , to define a feasible sequence . of

the starting times, one has to replace each edge either by the arc

with the weight or by the arc with the weight respecting the disjunctive

constraint (2) in such a way that no circuit arises in the obtained digraph. As a result, the

set of edges will be substituted by the chosen set , the mixed graph

will be transformed into a circuit-free digraph , and an operation

sequence for each machine of the set will be determined. Since the cardinality of the

set is equal to , using the critical path method, one can build a

unique semiactive schedule defined by the weighted digraph in time. A

schedule is called semiactive if no operation , , , can start

earlier without delaying the processing of some operation from the set or (and) without

altering the processing sequence of the operations on any of the machines .

24 Gholami et.al / IJORN 2 (2013) 19 – 32

The main complexity of the problem with a regular criterion is to find an optimal

circuit-free digraph generated by the mixed graph . In

other words, it is necessary to find a set of arcs for substituting the set of edges in

the mixed graph such that the objective function has the minimal value among all

other circuit-free digraphs generated by the mixed graph via replacing each edge

 either by the arc or by the arc .

5. Heuristic edge-orientation algorithms

We developed three types of constructive edge-orientation algorithms denoted as Ordinal,

Max-PT and Min-PT. The release times, completion times and due-dates are used as

priorities in ordering the jobs for processing on the same machine from the set .

Nine heuristic algorithms of three types with three priority rules are developed.

5.1 Ordinal-algorithm

The Ordinal-algorithm generates a sequence of the operations on different machines

of the set in the order as they are requested for processing the jobs . In the first

iteration, the Ordinal-algorithm finds the first request (i.e., operation) of a job

for the machine processing operation . Then, depending on which priority

rule is used, the Ordinal-algorithm computes either the release time or the completion

time or the due-date as the priority of operation . For example, let the Ordinal-

algorithm use the release time of operation as its priority. Then the algorithm

compares the release time of operation with the release times of all operations

of the other jobs , , on the same machine processing operation .

If the release time is smaller than the release time of the operations of the other jobs

on the same machine , then an arc starting from operation and ending in

operation has to be added to the digraph . Otherwise, the symmetric arc

 has to be added to the digraph .

The release time denotes the earliest start time of operation which can be

computed due to the recursion , where the maximum is taken over

all operations preceding operation in the digraph already constructed. The

release time of the source operation is equal to zero.

The above procedure is repeated for the second job request (iteration 2), then for the third

job request (iteration 3) and so on until all machine requests have been satisfied. We

called this version of the algorithm as Ordinal-SRT (from Shortest Release Time).

The other two versions of the Ordinal-algorithm based on either the completion time

priority or the due-date priority are called Ordinal-SCT (Shortest Completion Time) and

Ordinal-SDD (Shortest Due-Date), respectively.

Fast Edge-Orientation Heuristics for Job-Shop Scheduling ….. 25

5.2 MaxPT-algorithm

The MaxPT-algorithm (Maximum Processing Time) tends to schedule first the jobs that

need more processing time on all machines .

In the first step, the MaxPT-algorithm calculates the sum of the processing times (total

processing time) of all operations , for each job . Before

scheduling, the maximum sum of the processing times of a job is equal to the

length of a critical path in the digraph .

The MaxPT-algorithm sorts the jobs in non-increasing order of their total processing

times and selects a job with the maximum total processing time to be processed next. The

MaxPT-algorithm starts to process the first request (operation) of the job with

maximum total processing time, then the second request of the same job and so on until

the last request of job . At each operation, the MaxPT-algorithm computes one of the

three priorities (either the release time, the completion time or the due-date) depending on

the version of the algorithm. The chosen priority is compared with those of all operations

of the other jobs on the same machine . Then either the arc or the arc

 is added to the digraph depending on the larger priority of job or

job . The added arc defines the order of processing the jobs and on machine .

Then the MaxPT-algorithm repeats the same procedure for the other jobs that are sorted

by non-increasing sums of their processing times. We call this version of the algorithm

which uses the release time as priority as MaxPTRT-algorithm (Maximum Processing

Time, Release Time).

The MaxPTCT-algorithm (Maximum Processing Time and Completion Time) is another

version that compares the job completion times as priorities, and the MaxPTDD-

algorithm (Maximum Processing Time, Due-Date) compares the due-dates as priorities.

5.3 MinPT-algorithm

The MinPT-algorithm (Minimum Processing Time) is basically similar to its counterpart,

the MaxPT-algorithm but in contrast to the latter one, the MinPT-algorithm schedules

first the job that needs the smallest total processing time on all machines .

The MinPT-algorithm sorts the jobs in non-decreasing order of their total processing

times and then schedules the jobs on each machine in non-decreasing order of

the corresponding priorities.

The three versions of the MinPT-algorithm are the MinPTRT-algorithm (Minimum

Processing Time, Release Time), the MinPTCT-algorithm (Minimum Processing Time,

Completion Time) and the MinPTDD-algorithm (Minimum Processing Time, Due-Date).

26 Gholami et.al / IJORN 2 (2013) 19 – 32

6. Computational results

Three versions of the three types of algorithms (Ordinal, Max-PT and Min-PT) have been

coded in Borland Delphi. For the computational experiments, a laptop computer with the

following specification has been used: Intel, coreTM 2 Duo, CPU T6400, 2.00 GHz and

2GB Internal Memory, Windows 7, Ultimate 32 bit. We were mainly interested in

investigating experimentally the effect of choosing different types of algorithms and

different priorities for the three objective functions and therefore, we compare the nine

algorithms relative to each other.

6.1 Small instances

First, we considered 80 small instances with at most 144 operations per instance. In

particular, we randomly generated job-shop problems of size , where

 to see the effect of these algorithms on different objective functions for job-

shop problems. The computational times for each of these small instances is less than 1

second.

First, we compared the makespan objective function for 80 randomly generated instances

of the problem with . We compared the makespan values obtained by the

nine algorithms developed for instances with the same input data. Each series includes 10

randomly generated instances. The results are presented in Fig. 1, which shows that the

quality of a schedule obtained by the algorithms generally depends on the input data, but

both the OrdinalSCT-algorithm and the OrdinalSRT-algorithm can be recommended for

the makespan criterion.

Figure 1: Objective function values of the obtained schedules for job-shop problems with the

criterion .

Fast Edge-Orientation Heuristics for Job-Shop Scheduling ….. 27

Figure 2: Objective function values of the obtained schedules for job-shop problems with the

criterion .

Figure 3: Objective function values of the obtained schedules for job-shop problems with the

criterion .

Figure 2 gives the function values for the nine algorithms with the objective function

. It can be seen that the OrdinalSCT-algorithm provides schedules with the best

quality among the algorithms tested. In addition, the OrdinalSRT-algorithm can also be
recommended.

Then we evaluated the objective function . Figure 3 shows that the OrdinalSCT-
algorithm again provides schedules with the best quality among the algorithms tested.

28 Gholami et.al / IJORN 2 (2013) 19 – 32

6.2 Medium and large instances

Next, we considered 38 medium and large instances with up to 2000 operations per
instance to compare the nine edge-orientation heuristics. First, we considered 10 instances

with = 20 jobs. For each value of we randomly generated one

instance. So all but one of these instances satisfy the inequality which is typical
for train scheduling problems. In Table 1, we compare the ranks of the nine edge-

orientation algorithms (i.e., the best algorithm gets rank 1, the second best algorithm gets

rank 2, and so on, while the worst algorithm gets rank 9). For each objective function, we

give the average ranks (ave) and the numbers of best function values (nbv) obtained by
the particular algorithms among the 10 instances considered.

It can be observed that mostly the DD variants (with the due-dates as priorities) work

poor. On the other side, particularly for the sum criteria, the CT variants work well in

general. However, the Ordinal-algorithm is not superior for the makespan criterion and

even for the sum criteria, the Ordinal SRT-algorithm is not as good as observed for the
small instances while the Ordinal SCT-algorithm works well for these instances.

Next, we generated 8 instances with a fixed number of machines. For

, we randomly generated one instance. Here, all but one

instance satisfy the inequality . For these instances, again the average ranks (ave)

and the numbers of best values (nbv) obtained by the particular algorithms are given in
Table 2.

Table 1: Results for randomly generated instances with

 jobs and machines

n = 20 Algorithm Cmax ave nbv Ci ave nbv Ti ave Nbv

OrdinalSDD 6.1 0 8.4 0 8.4 0

OrdinalSCT 3.95 3 2.5 3 2.4 3

OrdinalSRT 5.2 1 3.9 1 4.0 1

MaxPTDD 5.45 0 8.0 0 8.0 0

MaxPTCT 6.75 0 3.4 1 3.4 1

MaxPTRT 6.05 1 4.0 1 4.0 1

MinPTDD 4.85 0 7.6 0 7.6 0

MinPTCT 2.75 2 3.5 2 3.5 2

MinPTRT 3.9 3 3.7 2 3.7 2

Fast Edge-Orientation Heuristics for Job-Shop Scheduling ….. 29

Table 2: Results for randomly generated instances with

 jobs and machines

m = 20 Algorithm Cmax ave nbv Ci ave nbv Ti ave Nbv

OrdinalSDD 7.125 0 8.5 0 8.5 0

OrdinalSCT 4.25 1 4.125 0 4.125 0

OrdinalSRT 5.375 1 3.0 2 3.0 2

MaxPTDD 6.125 0 8.125 0 8.0 0

MaxPTCT 5.125 0 3.125 1 3.25 1

MaxPTRT 3.875 1 2.375 3 2.25 3

MinPTDD 4.875 1 7.375 0 7.5 0

MinPTCT 3.625 1 4.0 1 4.0 1

MinPTRT 4.625 3 4.375 1 4.375 1

From Table 2, it can be observed that the DD variants work again poor, particularly for

the sum criteria. In contrast to the instances evaluated in Table 1, now the SRT variants

work better than the SCT variants for the sum criteria, where the OrdinalSCT- and the
MaxPTCT-algorithms can be recommended. It can also be seen that the situation is a bit

different for the makespan criterion, where e.g. the OrdinalSRT-algorithm is not so

good).

Table 3: Average CPU-times in seconds for instances with jobs and machines

m = 10 20 30 40 50 60 70 80 90 100

n = 20 1 2 5 7 12 20 28 32 45 60

n = 10 20 30 40 50 60 70 80

m = 20 1 2 10 27 81 160 360 1080

Table 4: Results for the Lawrence instances La01 - La20 for the criterion

Algorithm ave nbv brank wrank

OrdinalSDD 7.3 0 3 9

OrdinalSCT 4.6 2 1 9

OrdinalSRT 3.15 6 1 8

MaxPTDD 6.6 0 3 9

MaxPTCT 5.2 0 3 9

MaxPTRT 4.65 4 1 9

MinPTDD 6.55 1 1 9

MinPTCT 4.3 3 1 9

MinPTRT 2.65 4 1 6

30 Gholami et.al / IJORN 2 (2013) 19 – 32

In Table 3, we summarize the average computational times of the nine algorithms in

dependence on the number of jobs and the number of machines. It can be seen that

these times only moderately increase with , if the number of jobs is constant. In this

case, even instances with 100 machines can be solved within a minute. On the other side,

if is constant, these times grow faster with the number of jobs. The reason for this

behavior is that for large , the numbers of edges to be oriented is much larger than in the

case of a large value of .

Although the heuristics presented in this paper were mainly developed for train

scheduling problems (where typically holds and often sum criteria are

considered), we also compared the nine algorithms on the 20 benchmark instances La01 -

La20 given by Lawrence [9]. The results are given in Table 4, where the average ranks of
the algorithms (ave), the numbers of best values obtained by the particular variants (nbv)

together with the best rank (brank) and the worst rank (wrank) are given. It can also be

seen that there is no clear superiority of particular variants. Although mostly the quality
of the more time consuming shifting bottleneck procedure was not reached, nevertheless

there exist also makespan instances, where a good edge orientation algorithm reaches the

quality of the shifting bottleneck procedure or even a better objective function value.

Table 5: Comparison of the procedures for medium and large instances

Algorithm
Cmax

m=20

Ci

m=20

Ti

m=20

Cmax

n=20

Ci

n=20

Ti

n=20
Lawrence

OrdinalSDD 9 9 9 9 9 9 9

OrdinalSCT 3 5 5 3 1 1 4

OrdinalSRT 7 2 2 5 5 5.5 2

MaxPTDD 8 8 8 6 8 8 8

MaxPTCT 6 3 3 9 2 2 6

MaxPTRT 2 1 1 7 6 5.5 5

MinPTDD 5 7 7 4 7 7 7

MinPTCT 1 4 4 1 3 3 3

MinPTRT 4 6 6 2 4 4 1

Finally, we give an overall evaluation of the nine algorithms for the medium and large

instances. In Table 5, we give the average ranks of each of the algorithms for the seven

different types of problems (three criteria for fixed n, three criteria for fixed m and the

Lawrence instances La01 - La20 for the criterion). From Table 5, we see again that

all DD (due-date) variants work poor. For the instances with fixed (where mostly

 holds), the CT variants work well in general. In Table 5, we tried to give a pattern

(drawn in bold face) of variants of edge-orientation algorithms which can be
recommended for the particular types of problems. In particular, we can recommend both

Ordinal-SCT and MaxPTCT for instances with . In contrast, for the larger

makespan instances, the variants MinPTCT and MinPTRT seems to work good.

Fast Edge-Orientation Heuristics for Job-Shop Scheduling ….. 31

7. Concluding Remarks

The problem of finding an optimal train schedule includes several criteria. We considered

three of them and developed nine heuristic edge-orientation algorithms to solve the

corresponding job-shop problems. In particular, we coded different variants of heuristic
algorithms and compared three parameters for job-shop scheduling to find suitable

heuristic algorithms for three objective functions.

The computational results showed that the selection of an appropriate algorithm depends

on the type of problem (ratio of and , objective function, size of the instance).

However, for the case , which is typical for train scheduling problems in a single-

track railway, often the OrdinalSCT-algorithm generates a good schedule when
minimizing the sum of job completion times or the sum of job tardiness. Since the edge-

orientation heuristics are rather fast, one can apply several good variants to an instance.

We also observed in our tests that the use of a more complicated algorithm (like the
shifting bottleneck one) for solving train scheduling problems needed more CPU-time for

the case when (the bottleneck machine is often shifted) with only a slight

improvement of the objective function values.

For future research, we recommend to compare more parameters for those objective

functions appropriate for train scheduling. Note that the OrdinalSCT and OrdinalSRT-

algorithms can be generalized to the weighted objective functions and

allowing a scheduler to take into account different priorities of the trains. In addition, the

inclusion of a learning stage in the edge-orientation procedure seems promising.

References

[1] Adams, J., Balas, E. and Zawack, D., 1988, The shifting bottleneck procedure for job-shop

scheduling. Management Science, 34, 391 - 401.

[2] Brucker, P., Kravchenko, S. and Sotskov, Y., 1997, On the complexity of two-machine job-

shop scheduling with regular objective functions. Operations Research Spektrum, 19, 5 -

10.

[3] Brucker, P., Sotskov, Y. and Werner, F., 2007, Complexity of shop scheduling problems

with fixed number of jobs: a survey, Mathematical Methods of Operations Research, 65,

461 - 481.

[4] Burdett, B. and Kozan, E., 2010, A disjunctive graph model and framework for

constructing new train schedules, European Journal of Operational Research, 200, 85 - 98.

[5] Cai, X. and Goh, C., 1994, A fast heuristic for the train scheduling problem, Computers &

Operations Research, 21, 499 - 510.

[6] Carey, M. and Lookwood, D., 1995, A model, algorithms and strategy for train pathing,

Journal of the Operations Research Society, 46, 988 -1005.

32 Gholami et.al / IJORN 2 (2013) 19 – 32

[7] Dorfman, M. and Medanic, J., 2004, Scheduling trains on a railway network using a

discrete event model of railway traffic, Transportation Research Part B, 38, 81 - 98.

[8] Jovanovic, D. and Harker, P., 1991, Tactical scheduling of rail operations: the scan i

system, Transportation Science, 25, 46 - 64.

[9] Lawrence, S., 1984, Supplement to resource constrained scheduling: An experimental

investigation of heuristic scheduling techniques, Graduate School of Industrial

Administration, Carnegie-Mellon University, Pittsburg.

[10] Liu, S. and Kozan, E., 2011, Scheduling trains with priorities: a no-wait blocking parallel-

machine job-shop scheduling model, Transportation Science, 45, 175 - 198.

[11] Lusby, R., Larsen, J., Ehrgott, M. and Ryan, D., 2011, Railway track allocation: models and

methods, Operations Research Spectrum, 33, 843- 883.

[12] Mascis, A. and Pacciarelli, D., 2002, Job shop scheduling with blocking and no-wait
constraints, European Journal of Operational Research, 143, 498 - 517.

[13] Mladenovic, S. and Cangolovic, M., 2007, Heuristic approach to train rescheduling,

Yugoslav Journal of Operations Research, 17, 9 - 29.

[14] Sotskov, Y. and Gholami, O., 2012, Shifting bottleneck algorithm for train scheduling in a

single-track railway, Proccedings of the 14th IFAC Symposium on Information Control

Problems, Part 1, Bucharest / Romania, 87 - 92.

[15] Sussmann, B., 1972, Scheduling problems with interval disjunctions, Mathematical

Methods of Operations Research, 16, 165 - 178.

[16] Szpigel, B., 1973, Optimal train scheduling on a single line railway, Operations Research,

72, 344 - 351.

[17] Tanaev, V., Sotskov, Y. and Strusevich, V., 1994, Scheduling Theory: Multi-Stage Systems,

Kluwer Academic Publishers, Dordrecht, The Netherlands.

[18] Werner, F., 2011, Genetic algorithms for shop scheduling problems: a survey, Preprint

31/11, Faculty of Mathematics, Otto-von-Guericke-University Magdeburg, 66 p.

[19] Zhou, X. and Zhong, M., 2007, Single-track train timetabling with guaranteed optimality:

branch-and-bound algorithms with enhanced lower bounds, Transportation Research Part
B, 21, 320 - 341.

