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Abstract 
 

A train scheduling problem in a single-track railway can be modeled as a job-shop scheduling problem. 
We use a mixed graph model for such a job-shop problem with appropriate criteria. There are several 
performance evaluations for a train schedule. Optimizing a train schedule subtends minimizing total 
tardiness of the trains, minimizing the sum of train transit times, minimizing the makespan for a train 

schedule, etc. Since the corresponding job-shop problems with the above three criteria are NP-hard, 
several constructive heuristics have been developed using different priorities based on the release times of 
the jobs, the job due-dates and the job completion times. Experiments on a computer were used for 
evaluating the quality and efficiency of the heuristic algorithms developed for appropriate job-shop 
problems. The release times, due-dates and completion times of the jobs have been used as input 
parameters (priorities) to see the effect of them on the quality of the schedules with different objective 
functions. The efficiency of the developed heuristics was tested on a set of 118 randomly generated 
instances of small and large sizes with up to 2000 operations. 
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1. Introduction  

This paper addresses the problem of generating an efficient schedule of passenger and 

freight trains in a single-track railway. We use the terminology from [11] for train 
scheduling and that from [17] for machine scheduling. 

 

In the world, the railway traffic is increasing from year to year. The employment of 

railroads grows both for passenger and freight transportation. When the density of train 
moving is increasing, the train schedule becomes more difficult both as the generation 

and control are concerned. During the last decades, a lot of new algorithms and software 

have been developed and published in the OR literature and in the special literature in 
order to produce a better tool for generating an accurate and reliable train schedule. 
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In this paper, it is shown how one can find a train schedule for a single-track railway 

which is close to an optimal one for three objective functions. A possible way to achieve 
a proper train schedule uses job-shop scheduling [4, 12, 16], although job-shop problems 

are fairly complicated since they belong to the class of NP-hard problems [2, 3, 17]. In 

order to achieve a practical size of a job-shop problem, which can be solved within a 

reasonable time, we propose and test several constructive heuristics for three objective 
functions which are based on the orientation of edges in a mixed graph and which turn 

out to be appropriate for train scheduling. In Section 2, we give a brief literature review. 

In Sections 3 - 5, we consider a railway network provided that a pair of sequential stations 
can be connected by at most one single-track (a railroad section). In particular, this is the 

case for most railway systems in countries of the Middle East. In Section 6, we present 

computational results for 118 small and large instances. Section 7 gives some concluding 

remarks.  

2. Literature Review 

In [19], a resource-constrained project scheduling was used for a single-track timetabling 

problem. Both the track segments and stations were modelled as limited resources. A 

branch-and-bound algorithm has been developed in order to obtain a feasible train 

timetable with a guaranteed level of optimality. A lower bound based on Lagrangian 
relaxation was used to relax the segment and station capacity constraints. A lower bound 

was used to estimate the least train delay. An upper bound was constructed via a beam 

search heuristic. In [5], a heuristic algorithm was developed for train scheduling in a 
single-track railway under the assumption that all trains moving in the same direction 

must have the same speed. A greedy heuristic was proposed based on a local optimality 

criterion in the event of a potential crossing conflict. 

 
The paper [10] was devoted to train scheduling problems when prioritized trains and non-

prioritized trains are simultaneously traversed in a single-track railway. No-wait 

conditions arise because the prioritized trains (e.g., an express passenger train has a 
higher priority) should traverse continuously without interruptions. Non-prioritized trains 

(e.g., a freight train) are allowed to either enter the next section immediately (if it is free) 

or to remain in a section until the next section on the route becomes available. A generic 
algorithm has been developed to construct a feasible train timetable in terms of the given 

train order. The proposed algorithm comprises several recursively used procedures to 

guarantee the feasibility by satisfying the no-waiting, a deadlock-free condition, and a 

conflict-free constraint.  
 

Szpigel [16] was the first who identified the similarities between a job shop problem and 

train scheduling in a single-track railway. The former was solved in [16] using a branch-
and-bound algorithm, where the initial linear programming problem excludes the order 

constraints. Branching is required if the current solution contains trains which are in a 

conflict (i.e., when trains turn out to be located on the same railroad section at the same 
time). The objective was to minimize the weighted sum of the train transit times. 

Computational results for 5 single-track sections and 10 trains have been reported. The 

same problem was considered in [6] via binary mixed integer programming similarly to 
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that considered in [8]. The temporal constraints were identical to those used in [16]. The 

objective was to minimize the deviation from the ideal arrival times and the departure 
times for the trains to be scheduled. In [13], a job-shop problem was used to solve the 

train scheduling problem, where a route was interpreted as follows: The route is a 

sequence of the facilities the train must cross from the origin to the destination. Assuming 

that the train trips are jobs to be scheduled, which require elements of the infrastructure as 
restricted resources, it was done by mapping the initial problem into a special case of a 

job-shop problem. In order to solve the job-shop problem, a constraint programming 

approach has been developed. A support for finding quickly a good schedule was offered 
by an original separation and a bound-and-search heuristic. To improve the time 

performance, a surrogate objective function was used which had a smaller domain than 

the actual objective function. 

 
In [7], a discrete-event model was used to schedule the traffic on a railway network.  This 

model was computationally efficient and generated near optimal schedules with respect to 

a number of time-of-travel-related criteria. In [4], train scheduling was interpreted in 

terms of a job-shop problem with parallel machines. A disjunctive graph model was used 

in several algorithms with the makespan objective. It was demonstrated that solutions 

with a good quality may be obtained within a reasonable CPU-time. 

3.  Problem settings and testing 

One of the main problems in the management of a railway network is the train scheduling 

(timetabling) problem, in which it is necessary to determine a schedule (timetable) for a 
set of given trains that does not violate the railway constraints. This problem has to be 

solved at the tactical level of the railway planning process [11]. For the case of a single-

track railway, train scheduling may be interpreted as the following job-shop problems. 
 

There are  jobs  to be processed on  different machines 

. The time  needed for processing an operation  of a job 

 on the corresponding machine is known. Operation preemptions are not 

allowed, and the machine routes  for the jobs  may be 

different. A job  is available for processing from time-point . The time-point 

 defines a due-date for completing the job . A machine  can process a job 

 at most once. So, any two operations  and , , of the same job  

have to be processed by different machines of the set , i.e., inequality  holds 

(such a problem is called a classical job-shop). 
 

One objective is to find a schedule minimizing the sum   of the tardiness 

times of the jobs  . Hereafter,  denotes the completion time 

of a job . According to the three-field notation  used for machine scheduling 

problems, the above job-shop problem is denoted as . If  , then this 

problem is denoted as . If , then it is denoted as .  
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The problems ,  and  arise in train scheduling for a single-

rack railway: To determine the best train schedule among those which do not violate the  

single-track capacities. For passenger trains, the criteria  and  are more 

important than  while for freight trains, the criteria  and  are more 

important than . 

In a job-shop approach to train scheduling, the trains and railroad sections are 

synonymous with the jobs  and the machines , respectively. An operation 

 is regarded as a movement of a train  across a railroad section  (in the 

route , machine  processes operation ). The positive number  denotes the time 

required for the train  to travel through the railroad section . The non-

negative number  denotes the departure time of the train  , which is given in the 

official train timetable. The positive number  denotes the official arrival time of the 

train  (a due-date for the desired completion time  of a job  ) at the terminal 

station in the route . Note that for train scheduling, usually the inequality  holds. 

 
The problems ,  and  are complicated in the computational 
sense since their special cases belong to the class of NP-hard problems [17]. In order to 

achieve a practical size of a classical job-shop problem, which can be solved heuristically 

within a reasonable time, we have coded a shifting bottleneck algorithm, which was 

originated in [1] for the job-shop problem . However, testing the program 

realizing a shifting bottleneck algorithm for the problem  showed an 

unsatisfactorily large CPU-time when the number  of trains was large and the number  

of railroad sections was no less than  [14]. Computational experiments showed that this 
algorithm can handle 125 operations (e.g., 25 trains on 5 railroad sections or 5 trains on 

25 railroad sections) within half an hour of CPU time. For larger job-shops with  

(what is typical for train scheduling problems), the CPU-time grows quickly. We also 

observed that meta-heuristic algorithms are often time-consuming (e.g., a survey of 
genetic algorithms for shop scheduling algorithms can be found in [18]). 

 
In Sections 4 and 5, we develop heuristic edge-orientation algorithms, which run faster 
than the shifting bottleneck algorithm providing a quality of the objective function values 

which is close to the quality of the schedules constructed by the shifting bottleneck 

algorithm. 

4. Mixed graph model 

The problems ,  and  described in Section 3 can be 

formulated using a mixed graph model  [17] or a disjunctive graph model 

[15]. 

 
Let  denote the set of operations  ,  , , to be executed by the 

machines  and a dummy operation  associated with the beginning of a schedule and 

n dummy operations  associated with the completion of the jobs . 
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Two operations  and , which have to be executed by the same machine , 

cannot be simultaneously processed by this machine. This restriction is presented by an 

edge . Two consecutive operations  and  of the same job  

are connected by an arc , where . The arc  

means that operation  has to be started after the completion of operation . The 

processing time  is prescribed to the arc , and the two processing 

times  and  are prescribed to the edge . For the dummy operation 

, the arc  with the weight  is included into the set  for each job 

 . For the dummy operation , the arc  with the weight 

 is included into the set . 

 
The problems ,  and  are modelled by a mixed graph 

. The due-dates  are used when calculating the objective function 

 for a schedule constructed. 

 
Since operation preemptions are not allowed, a schedule on a mixed graph  

may be defined as a sequence of the starting times 

 of all the operations  such that the conjunctive 

constraint  

 

  (1) 

 

has to be satisfied for each arc , and the disjunctive constraint  

 

either  or   (2) 

 

has to be satisfied for each edge . 

 
Using the above weighted mixed graph , to define a feasible sequence . of 

the starting times, one has to replace each edge  either by the arc  

with the weight  or by the arc  with the weight  respecting the disjunctive 

constraint (2) in such a way that no circuit arises in the obtained digraph. As a result, the 

set of edges  will be substituted by the chosen set , the mixed graph  

will be transformed into a circuit-free digraph , and an operation 

sequence for each machine of the set  will be determined. Since the cardinality of the 

set  is equal to , using the critical path method, one can build a 

unique semiactive schedule defined by the weighted digraph  in  time. A 

schedule is called semiactive if no operation  , , , can start 

earlier without delaying the processing of some operation from the set  or (and) without 

altering the processing sequence of the operations on any of the machines . 
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The main complexity of the problem  with a regular criterion   is to find an optimal 

circuit-free digraph  generated by the mixed graph . In 

other words, it is necessary to find a set of arcs  for substituting the set of edges  in 

the mixed graph  such that the objective function  has the minimal value among all 

other circuit-free digraphs generated by the mixed graph  via replacing each edge 

 either by the arc  or by the arc . 
 

5.  Heuristic edge-orientation algorithms 

We developed three types of constructive edge-orientation algorithms denoted as Ordinal, 

Max-PT and Min-PT. The release times, completion times and due-dates are used as 

priorities in ordering the jobs  for processing on the same machine from the set . 

Nine heuristic algorithms of three types with three priority rules are developed. 

5.1  Ordinal-algorithm 

The Ordinal-algorithm generates a sequence of the operations  on different machines 

of the set  in the order as they are requested for processing the jobs  . In the first 

iteration, the Ordinal-algorithm finds the first request (i.e., operation ) of a job  

for the machine  processing operation . Then, depending on which priority 

rule is used, the Ordinal-algorithm computes either the release time or the completion 

time or the due-date as the priority of operation . For example, let the Ordinal-

algorithm use the release time of operation  as its priority. Then the algorithm 

compares the release time  of operation  with the release times of all operations  

of the other jobs , , on the same machine  processing operation . 

If the release time  is smaller than the release time of the operations of the other jobs 

on the same machine , then an arc starting from operation  and ending in 

operation  has to be added to the digraph . Otherwise, the symmetric arc 

 has to be added to the digraph . 
 
The release time  denotes the earliest start time of operation  which can be 

computed due to the recursion , where the maximum is taken over 

all operations  preceding operation  in the digraph already constructed. The 

release time of the source operation  is equal to zero. 

 
The above procedure is repeated for the second job request (iteration 2), then for the third 

job request (iteration 3) and so on until all machine requests have been satisfied. We 

called this version of the algorithm as Ordinal-SRT (from Shortest Release Time). 

 
The other two versions of the Ordinal-algorithm based on either the completion time 

priority or the due-date priority are called Ordinal-SCT (Shortest Completion Time) and 

Ordinal-SDD (Shortest Due-Date), respectively. 
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5.2  MaxPT-algorithm 

The MaxPT-algorithm (Maximum Processing Time) tends to schedule first the jobs that 

need more processing time on all machines . 

 

In the first step, the MaxPT-algorithm calculates the sum of the processing times (total 

processing time) of all operations  ,  for each job . Before 

scheduling, the maximum sum of the processing times of a job  is equal to the 

length of a critical path in the digraph . 

The MaxPT-algorithm sorts the jobs  in non-increasing order of their total processing 

times and selects a job with the maximum total processing time to be processed next. The 

MaxPT-algorithm starts to process the first request (operation ) of the job  with 

maximum total processing time, then the second request of the same job and so on until 

the last request of job . At each operation, the MaxPT-algorithm computes one of the 

three priorities (either the release time, the completion time or the due-date) depending on 

the version of the algorithm. The chosen priority is compared with those of all operations 

of the other jobs on the same machine . Then either the arc  or the arc 

 is added to the digraph  depending on the larger priority of job  or 

job  . The added arc defines the order of processing the jobs  and  on machine . 
 

Then the MaxPT-algorithm repeats the same procedure for the other jobs that are sorted 

by non-increasing sums of their processing times. We call this version of the algorithm 

which uses the release time as priority as MaxPTRT-algorithm (Maximum Processing 

Time, Release Time). 

 
The MaxPTCT-algorithm (Maximum Processing Time and Completion Time) is another 

version that compares the job completion times as priorities, and the MaxPTDD-

algorithm (Maximum Processing Time, Due-Date) compares the due-dates as priorities. 

5.3  MinPT-algorithm 

The MinPT-algorithm (Minimum Processing Time) is basically similar to its counterpart, 

the MaxPT-algorithm but in contrast to the latter one, the MinPT-algorithm schedules 

first the job  that needs the smallest total processing time on all machines . 

 
The MinPT-algorithm sorts the jobs in non-decreasing order of their total processing 

times and then schedules the jobs on each machine  in non-decreasing order of 

the corresponding priorities. 

 
The three versions of the MinPT-algorithm are the MinPTRT-algorithm (Minimum 

Processing Time, Release Time), the MinPTCT-algorithm (Minimum Processing Time, 

Completion Time) and the MinPTDD-algorithm (Minimum Processing Time, Due-Date). 
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6.  Computational results 

Three versions of the three types of algorithms (Ordinal, Max-PT and Min-PT) have been 

coded in Borland Delphi. For the computational experiments, a laptop computer with the 

following specification has been used: Intel, coreTM 2 Duo, CPU T6400, 2.00 GHz and 

2GB Internal Memory, Windows 7, Ultimate 32 bit. We were mainly interested in 

investigating experimentally the effect of choosing different types of algorithms and 

different priorities for the three objective functions and therefore, we compare the nine 

algorithms relative to each other. 

6.1  Small instances 

First, we considered 80 small instances with at most 144 operations per instance. In 

particular, we randomly generated job-shop problems of size , where 

 to see the effect of these algorithms on different objective functions for job-

shop problems. The computational times for each of these small instances is less than 1 

second. 

First, we compared the makespan objective function for 80 randomly generated instances 

of the problem  with . We compared the makespan values obtained by the 

nine algorithms developed for instances with the same input data. Each series includes 10 

randomly generated instances. The results are presented in Fig. 1, which shows that the 

quality of a schedule obtained by the algorithms generally depends on the input data, but 

both the OrdinalSCT-algorithm and the OrdinalSRT-algorithm can be recommended for 

the makespan criterion. 
 

 
 

Figure 1: Objective function values of the obtained schedules for job-shop problems with the 

criterion . 
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Figure 2: Objective function values of the obtained schedules for job-shop problems with the 

criterion . 

 

 
 

Figure 3: Objective function values of the obtained schedules for job-shop problems with the 

criterion . 

 
Figure 2 gives the function values for the nine algorithms with the objective function 

. It can be seen that the OrdinalSCT-algorithm provides schedules with the best 

quality among the algorithms tested. In addition, the OrdinalSRT-algorithm can also be 
recommended.  

 

Then we evaluated the objective function . Figure 3 shows that the OrdinalSCT-
algorithm again provides schedules with the best quality among the algorithms tested. 
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6.2  Medium and large instances 

Next, we considered 38 medium and large instances with up to 2000 operations per 
instance to compare the nine edge-orientation heuristics. First, we considered 10 instances 

with  = 20 jobs. For each value of  we randomly generated one 

instance. So all but one of these instances satisfy the inequality  which is typical 
for train scheduling problems. In Table 1, we compare the ranks of the nine edge-

orientation algorithms (i.e., the best algorithm gets rank 1, the second best algorithm gets 

rank 2, and so on, while the worst algorithm gets rank 9). For each objective function, we 

give the average ranks (ave) and the numbers of best function values (nbv) obtained by 
the particular algorithms among the 10 instances considered. 

 
It can be observed that mostly the DD variants (with the due-dates as priorities) work 

poor. On the other side, particularly for the sum criteria, the CT variants work well in 

general. However, the Ordinal-algorithm is not superior for the makespan criterion and 

even for the sum criteria, the Ordinal SRT-algorithm is not as good as observed for the 
small instances while the Ordinal SCT-algorithm works well for these instances. 

 
Next, we generated 8 instances with a fixed number  of machines. For 

, we randomly generated one instance. Here, all but one 

instance satisfy the inequality . For these instances, again the average ranks (ave) 

and the numbers of best values (nbv) obtained by the particular algorithms are given in 
Table 2. 

 
Table 1: Results for randomly generated instances with 

 jobs and  machines 

 

n = 20 Algorithm Cmax ave nbv Ci ave nbv Ti ave Nbv 

OrdinalSDD 6.1 0 8.4 0 8.4 0 

OrdinalSCT 3.95 3 2.5 3 2.4 3 

OrdinalSRT 5.2 1 3.9 1 4.0 1 

MaxPTDD 5.45 0 8.0 0 8.0 0 

MaxPTCT 6.75 0 3.4 1 3.4 1 

MaxPTRT 6.05 1 4.0 1 4.0 1 

MinPTDD 4.85 0 7.6 0 7.6 0 

MinPTCT 2.75 2 3.5 2 3.5 2 

MinPTRT 3.9 3 3.7 2 3.7 2 
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Table 2: Results for randomly generated instances with 

 jobs and  machines 

 

m = 20 Algorithm Cmax ave nbv Ci ave nbv Ti ave Nbv 

OrdinalSDD 7.125 0 8.5 0 8.5 0 

OrdinalSCT 4.25 1 4.125 0 4.125 0 

OrdinalSRT 5.375 1 3.0 2 3.0 2 

MaxPTDD 6.125 0 8.125 0 8.0 0 

MaxPTCT 5.125 0 3.125 1 3.25 1 

MaxPTRT 3.875 1 2.375 3 2.25 3 

MinPTDD 4.875 1 7.375 0 7.5 0 

MinPTCT 3.625 1 4.0 1 4.0 1 

MinPTRT 4.625 3 4.375 1 4.375 1 

 
 

From Table 2, it can be observed that the DD variants work again poor, particularly for 

the sum criteria. In contrast to the instances evaluated in Table 1, now the SRT variants 

work better than the SCT variants for the sum criteria, where the OrdinalSCT- and the 
MaxPTCT-algorithms can be recommended. It can also be seen that the situation is a bit 

different for the makespan criterion, where e.g. the OrdinalSRT-algorithm is not so 

good). 

 
Table 3: Average CPU-times in seconds for instances with  jobs and  machines 

 

m = 10 20 30 40 50 60 70 80 90 100 

n = 20 1 2 5 7 12 20 28 32 45 60 

n = 10 20 30 40 50 60 70 80   

m = 20 1 2 10 27 81 160 360 1080   

 

Table 4: Results for the Lawrence instances La01 - La20 for the criterion  

 

Algorithm ave nbv brank wrank 

OrdinalSDD 7.3 0 3 9 

OrdinalSCT 4.6 2 1 9 

OrdinalSRT 3.15 6 1 8 

MaxPTDD 6.6 0 3 9 

MaxPTCT 5.2 0 3 9 

MaxPTRT 4.65 4 1 9 

MinPTDD 6.55 1 1 9 

MinPTCT 4.3 3 1 9 

MinPTRT 2.65 4 1 6 
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In Table 3, we summarize the average computational times of the nine algorithms in 

dependence on the number  of jobs and the number  of machines. It can be seen that 

these times only moderately increase with , if the number of jobs is constant. In this 

case, even instances with 100 machines can be solved within a minute. On the other side, 

if  is constant, these times grow faster with the number of jobs. The reason for this 

behavior is that for large , the numbers of edges to be oriented is much larger than in the 

case of a large value of . 

 
Although the heuristics presented in this paper were mainly developed for train 

scheduling problems (where typically  holds and often sum criteria are 

considered), we also compared the nine algorithms on the 20 benchmark instances La01 - 

La20 given by Lawrence [9]. The results are given in Table 4, where the average ranks of 
the algorithms (ave), the numbers of best values obtained by the particular variants (nbv) 

together with the best rank (brank) and the worst rank (wrank) are given. It can also be 

seen that there is no clear superiority of particular variants. Although mostly the quality 
of the more time consuming shifting bottleneck procedure was not reached, nevertheless 

there exist also makespan instances, where a good edge orientation algorithm reaches the 

quality of the shifting bottleneck procedure or even a better objective function value. 

Table 5: Comparison of the procedures for medium and large instances 

 

Algorithm 
Cmax 

m=20 

Ci 

m=20 

Ti 

m=20 

Cmax 

n=20 

Ci 

n=20 

Ti 

n=20 
Lawrence 

OrdinalSDD 9 9 9 9 9 9 9 

OrdinalSCT 3 5 5 3 1 1 4 

OrdinalSRT 7 2 2 5 5 5.5 2 

MaxPTDD 8 8 8 6 8 8 8 

MaxPTCT 6 3 3 9 2 2 6 

MaxPTRT 2 1 1 7 6 5.5 5 

MinPTDD 5 7 7 4 7 7 7 

MinPTCT 1 4 4 1 3 3 3 

MinPTRT 4 6 6 2 4 4 1 

 
Finally, we give an overall evaluation of the nine algorithms for the medium and large 

instances. In Table 5, we give the average ranks of each of the algorithms for the seven 

different types of problems (three criteria for fixed n, three criteria for fixed m and the 

Lawrence instances La01 - La20 for the criterion ). From Table 5, we see again that 

all DD (due-date) variants work poor. For the instances with fixed  (where mostly 

 holds), the CT variants work well in general. In Table 5, we tried to give a pattern 

(drawn in bold face) of variants of edge-orientation algorithms which can be 
recommended for the particular types of problems. In particular, we can recommend both 

Ordinal-SCT and MaxPTCT for instances with . In contrast, for the larger 

makespan instances, the variants MinPTCT and MinPTRT seems to work good.  
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7.  Concluding Remarks 

The problem of finding an optimal train schedule includes several criteria. We considered 

three of them and developed nine heuristic edge-orientation algorithms to solve the 

corresponding job-shop problems. In particular, we coded different variants of heuristic 
algorithms and compared three parameters for job-shop scheduling to find suitable 

heuristic algorithms for three objective functions. 

 
The computational results showed that the selection of an appropriate algorithm depends 

on the type of problem (ratio of  and , objective function, size of the instance). 

However, for the case , which is typical for train scheduling problems in a single-

track railway, often the OrdinalSCT-algorithm generates a good schedule when 
minimizing the sum of job completion times or the sum of job tardiness. Since the edge-

orientation heuristics are rather fast, one can apply several good variants to an instance. 

We also observed in our tests that the use of a more complicated algorithm (like the 
shifting bottleneck one) for solving train scheduling problems needed more CPU-time for 

the case when  (the bottleneck machine is often shifted) with only a slight 

improvement of the objective function values. 
 
For future research, we recommend to compare more parameters for those objective 

functions appropriate for train scheduling. Note that the OrdinalSCT and OrdinalSRT-

algorithms can be generalized to the weighted objective functions  and  

allowing a scheduler to take into account different priorities of the trains. In addition, the 

inclusion of a learning stage in the edge-orientation procedure seems promising. 
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