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Abstract: For an assembly line, it is necessary to minimize the cycle time for processing a
partially ordered set of operations V = {1, . . . , n} on a set of m linearly ordered working stations.
The number m of stations and the initial processing times t = (t1, . . . , tn) of the operations V

are given. However, for a subset Ṽ ⊆ V of the manual operations j ∈ Ṽ , it is impossible to fix
the processing times tj for the whole life cycle of the assembly line. On the other hand, for each

automated operation i ∈ V \ Ṽ , the processing time ti is fixed. We investigate the stability of an
optimal line balance b0 of the assembly line with respect to variations of the processing times

tj , j ∈ Ṽ . It is shown how to calculate the stability radius ρb0(t) of an optimal line balance b0,
i.e., the maximal value of simultaneous independent variations of the processing times of the
manual operations with keeping the optimality of the line balance b0. We survey known results
on the stability radius of an optimal line balance for a dual problem which is to minimize the
number m of the working stations for the given cycle time.

Keywords: Optimal line balance; Stability analysis

1. INTRODUCTION

We consider a single-model paced assembly line (see Erel
and Sarin (1998); Scholl (1999) for definitions and termi-
nology) which continuously manufactures a homogeneous
product in large quantities (a mass production).

An assembly line consists of a sequence of m linearly
ordered (working) stations, which are linked by a conveyor
belt. The set of operations V, which have to be repeatedly
processed on the m stations, is fixed. Each operation i ∈ V
is indivisible. A station has to perform the same subset
of operations of the set V within a cycle time c. All the
m stations start simultaneously with the processing of a
sequence of the operations, which are assigned to a station,
and there is no buffer between sequential stations. The
technological factors define a partial order on the set of
operations V which is given by a digraph G = (V,A),
where V is the vertex set and A is the arc set. The set
V includes two specific subsets of operations: the non-

empty subset Ṽ includes all the manual operations, and

the subset V \ Ṽ includes all the automated operations.

The simple assembly line balancing problem is to find an
optimal line balance for a given set of m stations, i.e., to
find a feasible assignment of the operations V to the m
stations in such a way that the cycle time c reaches its
minimal value. In Scholl (1999), the abbreviation SALBP-
2 is used to denote such a problem.

Let Ṽ = {1, . . . , ñ} and V \ Ṽ = {ñ + 1, . . . , n}, where
1 ≤ ñ ≤ n. The vectors of the processing times of
the operations are denoted as t̃ = (t1, . . . , tñ), t =

(tñ+1, . . . , tn), and t = (t̃, t) = (t1, . . . , tn). Let the non-

empty set V brk of operations be assigned to station Sk,
k ∈ {1, . . . ,m}. The assignment br

V = V br1

⋃
. . .
⋃
V brm

of the operations V to m linearly ordered stations
S1, . . . , Sm (where

V brk

⋂
V bul = ∅

with 1 ≤ k < l ≤ m) is called a line balance, if the
following conditions 1 and 2 hold.

1. The assignment br does not violate the partial order
given by the digraph G = (V,A), i.e., inclusion (i, j) ∈ A
implies that operation i ∈ V is assigned to station Sk and
operation j ∈ V is assigned to station Sl in such a way
that inequalities 1 ≤ k ≤ l ≤ m must hold.

2. The assignment br has to use all m stations:

V brk 6= ∅, k ∈ {1, . . . ,m}.

The line balance br is optimal if it provides the minimal
cycle time c. The cycle time c = c(br, t) for the line balance
br with the vector t of the operation processing times is
defined as

c(br, t) =
m

max
k=1

∑
i∈V br

k

ti.
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Let B = {b0, . . . , bh} be the set of all line balances. The
optimality of the line balance b0 ∈ B with the vector t of
the operation processing times is defined by the following
condition:

3. c(b0, t) = min{c(br, t) : br ∈ B}

If j ∈ Ṽ , the processing time tj is a positive real number:
tj > 0. However, the value of the processing time tj
can vary during the life cycle of the assembly line and
a modified processing time t′j can be even equal to zero.
A zero processing time t′j = 0, t′j 6= tj , means that the
manual operation

j ∈ V brk
⋂
Ṽ := Ṽ brk

is processed by an additional worker in parallel with
processing other operations assigned to the station Sk. So,
due to an additional worker, the processing of operation j
does not increase the total processing time for the station
Sk in the line balance br:∑

i∈V br
k

t′i =
∑

i∈V br
k
\{j}

t′i. (1)

It is clear that equality (1) is only possible if t′j = 0.

If j ∈ Ṽ , the processing time tj is a real number which is
fixed during the whole life cycle of the assembly line. One
can assume that the strict inequality ti > 0 holds for each

automated operation i ∈ V \ Ṽ since an operation with a
fixed zero processing time has no influence on a solution
of the problem SALBP-2.

In contrast to a stochastic assembly line balancing problem
(see the survey Erel and Sarin (1998)), we do not assume
any probability distribution known in advance for the

random processing time tj ∈ Ṽ .

Moreover, this paper does not deal with an algorithm
for constructing an optimal line balance. It is assumed
that an optimal line balance b0 ∈ B is somehow already
constructed for the initial vector t = (t1, . . . , tn) of the
operation processing times. Our aim is to investigate the
stability of the optimality of a line balance b0 with respect
to simultaneous independent variations of the processing

times of the manual operations Ṽ .

In what follows, we show how to calculate the stability ra-
dius of an optimal line balance b0 ∈ B. The stability radius
may be interpreted as the maximum of simultaneous inde-
pendent variations of the processing times of the manual

operations Ṽ with definitely keeping the optimality of line
balance b0.

It should be noted that the processing times ti, i ∈ V , are
assumed to be real numbers (in contrast to the assumption
used by Scholl (1999) that the processing times must be
integers).

2. DEFINITION OF THE STABILITY RADIUS

The main question under consideration is as follows. How
much can the components of a vector t̃ simultaneously and
independently be modified such that the line balance b0,
which is optimal for the initial vector t of the operation

processing times, remains optimal for the modified vector
t′ of the operation processing times?

To be more precise, we study the stability radius of an
optimal line balance, which is defined similarly to the
stability radius of an optimal schedule (see Bräsel et al.
(1996); Sotskov et al. (1997, 2010)).

If the stability radius of the line balance b0 is strictly
positive, then any simultaneous independent changes of

the operation times tj , j ∈ Ṽ , within the ball with this

radius and the center t̃ definitely keep the optimality of
the line balance b0.

On the other hand, if the stability radius of the line
balance b0 is equal to zero, then even small changes of the
processing times of the manual operations may deprive the
optimality of the line balance b0.

Let Rñ denote the space of real vectors t̃ = (t1, . . . , tñ)

with the Chebyshev metric, i.e., the distance d(t̃, t̃′) be-

tween the vector t̃ and the vector t̃′ = (t′1, . . . , t
′
ñ) is defined

as follows:

d(t̃, t̃′) = max{|ti − t′i| : i ∈ Ṽ },
where |ti − t′i| denotes the absolute value of the difference
ti − t′i. Let B(t) be the set of all line balances in the set
B, which are optimal for the vector t of the operation
processing times. Rñ+ denotes the space of non-negative
real vectors.

Definition 1. The closed ball Oρ(t̃) in the space Rñ with

the radius ρ ∈ R1
+ and the center t̃ ∈ Rñ+ is called a

stability ball of the line balance b0 ∈ B(t), if for each

vector t′ = (t̃′, t) of the processing times with

t̃′ ∈ Oρ(t̃)
⋂
Rñ+

the line balance b0 remains optimal. The maximal value
ρb0(t) of the radius ρ of a stability ball Oρ(t̃) is called the
stability radius of the line balance b0.

In Definition 1, the initial vector t = (t̃, t) of the processing

times is fixed, while the vector t̃′ of the processing times
of the manual operations may vary within the intersection
of the closed ball Oρ(t̃) with the space Rñ+.

Let W (br, t) be the set of subsets Ṽ brk , k ∈ {1, . . . ,m}, for
which equality (2) holds:

t(V brk ) = c(br, t). (2)

Hereafter, we use the notation

t(V brk ) =
∑
i∈V br

k

ti,

where t indicates a vector t = (t̃, t) = (t1, . . . , tn) ∈ Rn+,
for which the sum ∑

i∈V br
k

ti

has been calculated.

Sotskov et al. (2005) proved the following criterion for a
zero value of the stability radius ρb0(t).

Theorem 1. Let b0 ∈ B(t). The equality ρb0(t) = 0 holds
if and only if there exists a line balance bs ∈ B(t) such
that condition (3) does not hold:
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W (b0, t) ⊆W (bs, t). (3)

In Section 3, we present a sketch of the proof of Theorem
2 which allows us to calculate the stability radius ρb0(t)
for the line balance b0 ∈ B(t) in the case when ρb0(t) 6= 0.

3. CALCULATION OF THE STABILITY RADIUS

Assume that for a line balance b0 ∈ B(t), there does not
exist a line balance bs ∈ B(t) such that inclusion (3) holds.
Due to Theorem 1, the stability radius ρb0(t) is strictly
positive. First, we consider the following case (j).

Case (j): B(t) = {b0}
In order to calculate the exact value of a strictly positive
stability radius ρb0(t) > 0, we shall look for a line balance

br ∈ B \ {b0} and for a vector t̃ε = (tε1, . . . , t
ε
ñ) ∈ Rñ+ such

that the following strict inequality holds:

c(br, t
ε) < c(b0, t

ε), (4)

where tε = (t̃ε, t) and the vector t̃ε may be as close as

desired to the vector t̃ provided that the strict inequality
(4) holds.

Since the value c(b0, t) linearly depends on the components

of the vector t̃ = (t1, . . . , tñ), before reaching the strict in-
equality in (4) via a continuous change of the components

of the vector t̃, one first reaches the following equality

c(br, t
′) = c(b0, t

′)

for some vector t̃′ = (t′1, . . . , t
′
ñ), for which the optimal line

balance b0 becomes unstable, i.e., the equality

ρb0(t′) = 0 (5)

must hold.

Due to Theorem 1, from equality (5), it follows that there
exists a line balance br ∈ B(t′) such that the condition
W (b0, t

′) ⊆ W (br, t
′) does not hold. Hence, one can

construct a vector t̃ε, for which inequality (4) holds and

d(t̃ε, t̃′) = ε, where the positive number ε ∈ R1
+ may be as

small as desired.

Thus, the calculation of the stability radius ρb0(t) for the
line balance b0 ∈ B(t) may be reduced to the construction

of a vector t̃′ ∈ Rñ+, which is the closest one to the vector

t̃ provided that equality (5) holds.

In case (j), we have to compare the line balance b0 with
the non-optimal line balances br ∈ B \ {b0}.

Let t(V brk ) > t(V b0u ) and | Ṽ b0u ⊕ Ṽ
br
k |≥ 1.

Hereafter, the sign ⊕ denotes the direct summation of two
sets as follows:

Ṽ b0u ⊕ Ṽ
br
k = {Ṽ b0u

⋃
Ṽ brk } \ {Ṽ

b0
u

⋂
Ṽ brk }.

It is easy to see that one will reach the equality

t′(V brk ) = t′(V b0u ),

if the following value

δbr,kb0,u
=
t(V brk )− t(V b0u )

| Ṽ b0u ⊕ Ṽ brk |
(6)

will be added (will be subtracted, respectively) to the

processing time ti for each operation i ∈ Ṽ bou \ Ṽ
br
k , i.e.,

t′i = ti + δbr,kb0,u

(from the processing time tj for each operation j ∈ Ṽ brk \
Ṽ b0u , i.e.,

t′j = tj − δbr,kb0,u
).

It should be noted that in the latter modification, a

component t′j = tj − δbr,kb0,u
of the vector t′ = (t′1, . . . , t

′
n)

may become negative.

In order to get a non-negative modified vector t′, one has

to test the operations of the set Ṽ brk \Ṽ b0u in non-decreasing

order of their processing times. Let tuk(0) be equal to zero

and let
tuk(0), t

uk
(1), . . . , t

uk
(wuk)

denote a non-decreasing sequence of the processing times

of the operations from the set Ṽ brk \ Ṽ b0u , where wuk =

|Ṽ brk \ Ṽ b0u |. A non-negative vector t′ will be obtained if

δbr,kb0,u
defined in (6) will be substituted by the following

value:

δbr,kb0,u
= max
β=0,...,wuk

t(Vk
br )− t(V0bu)−

∑β
α=0 t

uk
(α)

max {1, | Ṽ b0u ⊕ Ṽ brk | −β}
. (7)

In order to obtain the minimal distance d(t, t′) between
the desired vector t′ and the initial vector t, one has to
take the following maximum on k

max
t(V br

k
)>c(b0,t)

δbr,kb0,u
,

then the following minimum on u

δ(b0, br, t) = min
|Ṽ b0

u ⊕Ṽ br
k
|≥1

max
t(V br

k
)>c(b0,t)

δbr,kb0,u
, (8)

and, finally, the following minimum

δ(b0, t) = min
br∈B\{b0}

min
|Ṽ b0

u ⊕Ṽ br
k
|≥1

max
t(V br

k
)>c(b0,t)

δbr,kb0,u
. (9)

Summarizing, we conclude that equality

ρb0(t) = δ(b0, t)

must hold in the case (j).

Next, we consider the remaining possible case (jj).

Case (jj): B(t) \ {b0} 6= ∅
Similarly as in the case (j), we have to calculate the value

δ(b0, t) = min
br∈B\B(t)

min
|Ṽ b0

u ⊕Ṽ br
k
|≥1

max
t(V br

k
)>c(b0,t)

δbr,kb0,u
, (10)

where δbr,kb0,u
is defined in (7) and in contrast to (9), the first

minimum is taken for all line balances br ∈ B \B(t).

In case (jj), along with calculating δ(b0, t), we have to
compare the line balance b0 with all other optimal line
balances bs ∈ B(t), bs 6= b0.

Let | Ṽ b0u ⊕ Ṽ
bs
k |≥ 1 and

t(V b0u ) < c(bs, t) = t(V bsk ),
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where bs ∈ B(t) \ {b0}. It is easy to see that one will reach
the equality

t′(V bsk ) = t′(V b0u ),

if the following value

∆bs,k
b0,u

=
c(bs, t)− t(V b0u )

| Ṽ b0u ⊕ Ṽ bsk |
(11)

will be added (will be subtracted, respectively) to the

processing time ti for each operation i ∈ Ṽ b0u \ Ṽ
bs
k , i.e.,

t′i = ti + ∆bs,k
b0,u

(from the processing time tj for each operation j ∈ Ṽ bsk \
Ṽ b0u , i.e.,

t′j = tj −∆bs,k
b0,u

).

Let tuk(0) be equal to zero and let

tuk(0), t
uk
(1), . . . , t

uk
(wuk)

denote a non-decreasing sequence of the processing times

of the operations from the set Ṽ bsk \Ṽ b0u , where wuk = |Ṽ bsk \
Ṽ b0u |. A non-negative vector t′ will be obtained if ∆bs,k

b0,u

defined in (11) will be substituted by the value ∆bs,k
b0,u

defined in (12):

∆bs,k
b0,u

= max
β=0,...,wuk

c(bs, t)− t(V b0u )−
∑β
α=0 t

uk
(α)

max {1, | Ṽ b0u ⊕ Ṽ bsk | −β}
. (12)

In order to obtain the minimal distance d(t, t′) of the
desired vector t′ to the initial vector t, one has to take
the following maximum on k

max
t(V

b0
u )<c(bs,t)=t(V

bs
k

)

∆bs,k
b0,u

,

then the following minimum on u

δ(b0, bs, t) = min
|Ṽ b0

u ⊕Ṽ bs
k
|≥1

max
t(V

b0
u )<c(bs,t)=t(V

bs
k

)

∆bs,k
b0,u

, (13)

and, finally, the following minimum

∆(b0, t) =

min
br∈B\{b0}

min
|Ṽ b0

u ⊕Ṽ bs
k
|≥1

max
t(V

b0
u )<c(bs,t)=t(V

bs
k

)

∆bs,k
b0,u

. (14)

Summarizing, we conclude that equality

ρb0(t) = min{δ(b0, t),∆(b0, t)}
must hold in the case (jj). So, for the general case, we can
formulate the following theorem.

Theorem 2. If b0 ∈ B(t) and ρb0(t) 6= 0, then

ρb0(t) = min{δ(b0, t),∆(b0, t)},
where ∆(b0, t) is defined in (14) and δ(b0, t) is defined
either in (9) or in (10).

Because of the page limit, we cannot present the complete
proof of Theorem 2 (we are forced to remove some impor-
tant details in the above argumentation).

The implementation of Theorem 2 is demonstrated on the
calculation of the stability radius ρb0(t) for a small example
given in Section 5.

l3
HHHj

��
�*

l1
l4 -

l6-

l5 l2H
HHj

�
��*

Fig. 1. The digraph G = (V,A) defining a partial order on
the set of operations V .

In Section 4, we show how one can restrict the number
of line balances from the set B \ {b0}, which have to
be compared with the line balance b0 for calculating the
stability radius ρb0(t) using Theorem 2.

4. REDUNDANT LINE BALANCES FOR
CALCULATING THE STABILITY RADIUS

Due to Theorem 2, the calculation of the stability radius
of an optimal line balance is reduced to a time-consuming
calculation on the set of line balances B. In the worst
case, an optimal line balance b0 must be compared with
all the line balances from the set B. In order to restrict
the number of line balances br ∈ B \ {b0} with which
a comparison of the line balance b0 has to be done for
calculating the stability radius ρb0(t) > 0, one can use the
lower bound on the value δ(b0, bg, t) given in Lemma 3
which is presented without a proof.

We denote

ñbr = max{| Ṽ brk | : k ∈ {1, . . . ,m}}.
Lemma 3. Let b0 ∈ B(t) and br ∈ B \ {b0}. Then there
is no need to compare the line balance b0 with the line
balance br if inequality

δ(b0, bg, t) ≥
c(br, t)− c(b0, t)

min{ñ, ñbr + ñb0}
(15)

holds for some line balance bg ∈ B \ {b0, br}.

The value δ(b0, bg, t) used in Lemma 3 is defined both in
(9) and in (13).

In Lemma 3, it is assumed that the line balance b0 is
already compared with the line balance bg. As a result,
the following upper bound on the stability radius ρb0(t) is
obtained:

ρb0(t) ≤ δ(b0, bg, t).
Due to Lemma 3, the line balance br ∈ B \{b0} may make

precise the achieved volume of the stability ball Oρ(t̃) only
if inequality (15) does not hold. Thus, the line balances
br ∈ B \ {b0} must be compared with the line balance b0
in the order of increasing the right-hand side of inequality
(15).

5. EXAMPLE

Let m = 3, n = 6, ñ = 3 and t = (t̃, t) = (4, 1, 6, 3, 7, 4).

The set Ṽ = {1, 2, 3} includes all the manual operations.

The set V \ Ṽ = {4, 5, 6} includes all the automated
operations. The digraph G = (V,A) defining a partial
order on the set of operations V is presented in Fig. 1.

If all the processing times are integers, then the following
lower bound on the minimal cycle time may be used:
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min{c(br, t) : br ∈ B} ≥

⌈
n∑
i=1

ti
m

⌉
, (16)

where dae denotes the smallest integer greater than or
equal to a.

One can convince that the line balance b0

V = {3, 4}
⋃
{1, 6}

⋃
{2, 5}

is optimal. Indeed, for the line balance b0, we obtain⌈
n∑
i=1

ti
m

⌉
=

⌈
6∑
i=1

ti
3

⌉
=

⌈
26

3

⌉
= 9 = c(b0, t),

which implies that b0 is an optimal line balance since
c(b0, t) is equal to the right-hand side of inequality (16).

Similarly, one can convince that the line balance b1

V = {3, 4}
⋃
{5}

⋃
{1, 2, 6}

is also optimal. The other line balances are non-optimal
for the vector t = (t̃, t) = (4, 1, 6, 3, 7, 4) of the operation
processing times.

For the line balance b1, there exists a line balance b0 ∈ B(t)
such that condition (3) does not hold, namely:

{{3}, {1, 2}} = W (b1, t) 6⊆W (b0, t) = {{3}}.
So, due to Theorem 1, we obtain the equality

ρb1(t) = 0

which means that the optimality of the line balance b1 ∈
B(t) is unstable: even small changes of the processing
times of the manual operations 1, 2 and 3 may deprive
the optimality of the line balance b1.

On the other hand, for the line balance b0, we obtain

{{3}} = W (b0, t) ⊆W (b1, t) = {{3}, {1, 2}},
where {b1} = B(t) \ {b0}. So, due to Theorem 1, the strict
inequality

ρb0(t) > 0

must hold, and the optimality of the line balance b0 ∈ B(t)

is stable: there exists a closed ball Oρ(t̃) in the space R3

with the positive radius ρ ∈ R1
+ and the center t̃ ∈ R3

+
such that inclusion b0 ∈ B(t′) holds for any modified vector

t′ = (t̃′, t) of the operation processing times with

t̃′ ∈ Oρ(t̃)
⋂
R3

+.

Due to Theorem 2, we can calculate the maximum value
ρb0(t) of such a radius ρ.

First, we compare the line balance b0 with the line bal-
ance b1, which is also optimal for the initial vector t =
(4, 1, 6, 3, 7, 4): b1 ∈ B(t). Using formula (13), we calculate

δ(b0, b1, t) = 1.

Using formula (14), we obtain ∆(b0, t) = 1.

Using bound (15) with the left-hand side δ(b0, b1, t) equal
to 1, we can convince that, to calculate the value δ(b0, t)
given in (9), it is sufficient to compare the line balance b0
with five line balances as follows:

with the line balance b2

V = {3, 4}
⋃
{1, 5}

⋃
{2, 6},

�
�	

-

6

t2

t1

t3

p
�� ��

�� ��

t̃

4

1

6

0

Fig. 2. The stability ball Oρ(t̃) with the radius ρ = ρb0(t) =
2
3 and the center t̃ = {4, 1, 6} for the line balance
b0 ∈ B(t) = {b0, b1}.

with the line balance b3

V = {1, 3}
⋃
{4, 5}

⋃
{2, 6},

with the line balance b4

V = {1, 3}
⋃
{4, 6}

⋃
{2, 5},

with the line balance b5

V = {1, 3}
⋃
{6}

⋃
{2, 4, 5},

and with the line balance b6

V = {3}
⋃
{4, 5}

⋃
{1, 2, 6}.

Using formula (8), we calculate

δ(b0, b2, t) = 1,

δ(b0, b3, t) = 1,

δ(b0, b4, t) =
2

3
,

δ(b0, b5, t) =
2

3
,

δ(b0, b6, t) = 1.

Using formula (9), we obtain

δ(b0, t) = min

{
1, 1,

2

3
,

2

3
, 1

}
=

2

3
.

Using Theorem 2, we obtain

ρb0(t) = min {δ(b0, t),∆(b0, t)} = min

{
2

3
, 1

}
=

2

3
.

The stability ball Oρ(t̃) with the radius

ρ = ρb0(t) =
2

3

and the center t̃ = {4, 1, 6} for the line balance b0 ∈ B(t)
is presented in Fig. 2.

6. A SURVEY OF STABILITY RESULTS FOR A
DUAL PROBLEM

At the stage of the design of the assembly line, the
following problem, which is dual to the problem SALBP-
2, has to be solved: minimize the number of stations
m for processing a set of partially ordered operations
V = {1, . . . , n} within the given cycle time c.
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The assignment br

V = V br1

⋃
. . .
⋃
V brm

of the operations V to m linearly ordered stations
S1, . . . , Sm (where V brk

⋂
V bul = ∅ with 1 ≤ k < l ≤ m) is

a feasible line balance, if condition 1 (see Section 1) and
the following condition 2∗ hold.

2∗. The given cycle time c is not violated for each station
Sk, k ∈ {1, . . . ,m}, i.e., the station time t(V brk ) has to be
no greater than the cycle time c.

The feasible line balance b0 ∈ B is optimal if it provides
the minimal number m = mb0 of stations used, i.e., the
following condition 3∗ holds.

3∗. m = mb0 = min{m(br) : br ∈ B}
Scholl (1999) uses the abbreviation SALBP-1 to denote
such a dual problem.

In practice, at the design stage of an assembly line, the
cycle time c may be calculated on the basis of the customer
demands for the finished products, which will be assembled
on the designed assembly line.

Similarly to the problem SALBP-2, considered in Sections
1–5, problem SALBP-1 is binary NP-hard even for the case
of two stations (m = 2) used in the optimal line balance.

A stability analysis for the problem SALBP-1 was devel-
oped by Sotskov and Dolgui (2001); Sotskov et al. (2006)
with slightly different definitions of the stability radii. In
particular, Sotskov et al. (2006) use the following defini-
tion.

Definition 2. For the problem SALBP-1, the open ball
O1
ρ(t̃) in the space Rñ with the radius ρ ∈ R1

+ and the

center t̃ ∈ Rñ+ is called a stability ball of the line balance

b0 ∈ B(t), if for each vector t′ = (t̃′, t) of the processing
times with

t̃′ ∈ O1
ρ(t̃)

⋂
Rñ+

the line balance b0 remains feasible and optimal. The
maximal value ρ1b0(t) of the radius ρ of a stability ball

O1
ρ(t̃) is called the stability radius of the line balance b0

for the problem SALBP-1.

The criterion (i.e., the necessary and sufficient condition)
for the equality ρ1b0(t) = 0 and a general formula for

calculating the stability radius ρ1b0(t) have been derived
by Sotskov et al. (2006).

In the definition of the stability radius of an optimal line
balance for the problem SALBP-1, used by Sotskov and
Dolgui (2001), it is assumed that the open ball O1

ρ(t̃) is

totally located within the space Rñ+. Therefore, in Sotskov
and Dolgui (2001), generally smaller stability radii may
be obtained. In particular, due to the definition of the
stability radius of an optimal line balance used by Sotskov
and Dolgui (2001), the stability radius of an optimal line
balance cannot be grater than

min{ti : i ∈ Ṽ }.
So, Definition 2 is more appropriate for a practical use
than that introduced by Sotskov and Dolgui (2001).

7. CONCLUSION

Along with using the lower bound on the value δ(b0, bg, t)
given in Lemma 3, we can restrict further the number of
line balances br ∈ B \{b0} with which a comparison of the
line balance b0 has to be done for calculating the stability
radius ρb0(t) 6= 0.

In particular, one does not need to distinguish the line
balances, which have different orders of the subsets in

V = V br1

⋃
. . .
⋃
V brm ,

but their sets of subsets

{V br1 , . . . , V brm }
are the same.

Note also, that in practice not all line balances are suitable
for a realization in the assembly line since not only
precedence constraints defined by the set of arcs A have
to be taken into account. Due to this, the cardinality of
the set of line balances tested in Theorem 2 and in Lemma
3 may be considerably smaller than the cardinality of the
set B.

It is easy to see that problem SALBP-2 with n unordered
operations V (i.e., with digraphG = (V, ∅)) andm working
stations, may be interpreted as the problem of optimal
scheduling n unordered jobs on m parallel identical ma-
chines with the makespan criterion. Therefore, the results
presented in Sections 1–5 on the stability analysis of an
optimal line balance for the problem SALBP-2 with n
unordered operations and m working stations may be
interpreted as new results on the stability analysis of a
schedule minimizing the makespan for processing n un-
ordered jobs on m parallel identical machines.
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