Fakultät für Mathematik Institut für Mathematische Optimierung Prof. Dr. F. Werner

Examination in Mathematics I

(15 July 2011)

Working time: 120 minutes

The derivation of the results must be given clearly. The statement of the result only is not sufficient.

Tools:

- pocket calculator
- printed collection of formulas
- **either** two individually prepared one-sided sheets of paper (write '2' on cover sheet) **or** textbook 'Mathematics of Economics and Business (write 'B' on cover sheet)

It is not allowed to use mobile phones.

Distribution of points obtainable for the problems:

problem	1	2	3	4	5	6	sum
points	4	6	7	9	13	11	50

Problems:

1. Given is the complex number

$$z = \frac{3i}{(1+i)(2-i)} \ .$$

Determine the real part Re z and the imaginary part Im z.

- 2. (a) On January 1, 2012, Tom will retire. At this time, he has $80{,}000 \in$ in a bank account, and he wants to arrange monthly withdrawals at the end of each month for a period of 15 years. If the bank offers a rate of interest of 3 % compounded monthly, what is the monthly withdrawal rate r so that at the end of 2026, no money is left over in his account.
 - (b) What is the amount left in his account after 10 years (i.e., at the beginning of 2022)?
- 3. Given is the polynomial $P: \mathbb{R} \to \mathbb{R}$ with

$$P(x) = (x^3 - x^2 - 10x - 8) \cdot (x^3 + 27).$$

Determine all real and complex zeroes of P. If complex zeroes occur, given them in the Cartesian form a + bi.

4. (a) Given are the functions

$$f: [0, 5] \to R_f$$
 with $f(x) = 3x + 1$

and

$$g: [-1,1] \to R_g$$
 with $g(x) = \sqrt{1-x^3}$

Determine the ranges R_f and R_g and the composite functions $f \circ g$ and $g \circ f$ provided that they exist.

(b) Determine

$$\lim_{x \to 2+0} \frac{\ln(2x-3)}{\sqrt{x^2-4}} \, .$$

5. Given is the function $f: D_f \to R_f$ with

$$f(x) = \frac{2}{3}\sqrt{4 - x^2} \cdot x^3 \ .$$

- (a) Find the domain D_f and zeroes of function f, and check whether f is even or odd.
- (b) Find monotonicity intervals for function f, and determine all local extreme points and values.
- (c) Give the range R_f .
- (d) Does the inverse function f^{-1} exist (give an argument).
- 6. (a) Find the following integral:

$$\int \frac{2\sqrt{x}}{\sqrt{x}+1} \, dx$$

(b) Evaluate

$$\int_{1}^{\infty} \frac{\ln x}{x^2} \ dx$$