Fakultät für Mathematik Institut für Mathematische Optimierung Prof. Dr. F. Werner

Examination in 'Methods for Economists'

(29 January 2013)

Working time: 120 minutes

The derivation of the results must be given clearly. The statement of the result only is not sufficient.

Tools:

- pocket calculator
- two individually prepared double-sided sheets of paper with arbitrary lecture material
- textbook 'Mathematics of Economics and Business'

It is not allowed to use mobile phones.

Distribution of points obtainable for the problems:

problem	1	2	3	4	5	sum
points	9	9	14	8	10	50

Problems:

1. Given is the function

$$f(x, y, z) = e^{x+y} - 2xy + z^3$$

- (a) Give the requirements on the variables x, y, z such that the Hessian matrix H_f is positive definite (and thus, function F is strictly convex).
- (b) Determine the directional derivative of f at the point

$$(x^0, y^0, z^0) = (0, 1, 1)$$

in the direction given by the vector $(2,1,2)^T$.

2. Consider the utility maximization problem

$$U(x,y) = \frac{1}{2}\ln(x+1) + \frac{1}{4}\ln(y+1)$$

s.t.

$$2x + 3y = t,$$

where $t \in \mathbb{R}$.

- (a) Determine a solution x(t), y(t) and the multiplier $\lambda(t)$ of the necessary optimality conditions in dependence on the parameter t (do **not** check the sufficient optimality conditions!).
- (b) Find an explicit expression for the (maximum) value function $U^*(t)$ and verify that

$$\frac{dU^*}{dt} = -\lambda(t)$$

3. Consider the optimization problem

$$F(x, y, z) = x - 3\ln(1+x) + 2y + z \rightarrow \min!$$

s.t.

$$x^{2} - y - z \le 0$$

$$x \ge 0, \quad y \ge 0, \quad z \ge 0.$$

- (a) Determine all solutions of the Karush-Kuhn-Tucker (KKT) conditions.
- (b) Is the Slater condition satisfied?
- 4. Consider the following system of differential equations:

$$\dot{x} = x + y \\
\dot{y} = 3x - y$$

- (a) Determine the equilibrium point.
- (b) Draw the nullclines into a phase diagram and for each sector resulting from the nullclines, draw the directions of motion into the phase diagram.
- (c) Find the general solution by the eigenvalue method.
- 5. Consider the following control problem:

$$\int_0^{10} \left(-x^2 - \frac{1}{2}u^2 \right) \cdot e^{-3t} dt \to \text{max!}$$

$$\dot{x} = x + u, \quad x(0) = 3, \quad x(10) \text{ free,} \quad u \in \mathbb{R}.$$

(a) Formulate the necessary optimality conditions obtained from the maximum principle (use $\lambda_0 = 1$) and give the resulting system of first-order differential equations in the form

$$\dot{x} = f(x, \lambda)$$

 $\dot{\lambda} = g(x, \lambda)$

with λ being the current value shadow price.

- (b) Transform this system into a second-order differential equation in x and then its solution $x^*(t)$ and the resulting functions $\lambda(t)$ and $u^*(x)$ still including the constants (do **not** compute them).
- (c) Why is the pair $(x^*(t), u^*(t))$ indeed a solution?