Fakultät für Mathematik Institut für Mathematische Optimierung Prof. Dr. F. Werner

Examination in 'Methods for Economists'

(10 February 2015)

Working time: 120 minutes

The derivation of the results must be given clearly. The statement of the result only is not sufficient.

Tools:

- pocket calculator (according to the instructions of FWW)
- two individually prepared sheets of paper with arbitrary material except solved exercises, numerical examples from the lecture and old examination problems
- textbook 'Mathematics of Economics and Business'

It is not allowed to use mobile phones.

Distribution of points obtainable for the problems:

problem	1	2	3	4	5	sum
points	13	12	8	10	7	50

Problems:

1. Given is the optimization problem

$$f(x,y) = x^2 + y^2 \rightarrow \min! \text{ (or max!)}$$

s.t.

$$g(x,y) = x^2 + xy + y^2 = a,$$

where a is a non-negative real parameter.

- (a) Determine all points satisfying the necessary conditions for a local extreme point.
- (b) Among the points found in (a), check the sufficient condition for a local extreme point for the point having the largest x-value and determine its type. Give its function value.
- 2. Given is the nonlinear programming problem

$$F(x,y) = x^3 - 2x - y \to \min!$$

s.t.

$$x + y \le s$$
$$x \ge 0, \ y \ge 0$$

$$(s \in [1,2) \subset \mathbb{R}).$$

- (a) Determine all solutions of the KKT-conditions.
- (b) Is the solution obtained globally optimal (give an argument).
- (c) What is the condition on parameter s such that the optimal function value is at most equal to -2.
- 3. Consider the following system of differential equations:

$$\dot{x} = 2x - y + 8e^{-t}$$

$$\dot{y} = -x + 2y + 3$$

Find the general solution by the eigenvalue method (without reducing the system to a second-order differential equation).

4. Given is the economic model

$$\dot{K} = 3\sqrt{K} - C$$

$$\dot{C} = 8C - \frac{1}{2}KC - C^2$$

- (a) Determine the nullclines and the equilibrium point (K^*, C^*) with $K^* > 0, C^* > 0$ by **computation**.
- (b) Graph the nullclines and the sectors resulting from them and insert the directions of motions for all sectors.
- 5. Consider the following problem:

$$\min \int_0^1 (x^2 + tx + tx\dot{x} + \dot{x}^2) dt$$
$$x(0) = 0; \quad x(1) = 1$$

- (a) Determine a solution x = x(t) of the necessary optimality conditions **without** computing the constants (i.e., without using the initial and terminal conditions).
- (b) Check whether the solution found in (a) is indeed a solution of the problem.