Klausur: 1129 Operations Research Wintersemester 2002/03

Prüfer: Prof. Dr. F. Werner

Zugelassene Hilfsmittel:

- Vorlesungsskript (ohne gelöste Übungsaufgaben)
- Taschenrechner

Die Aufgabenstellung umfaßt 5 Aufgaben, die alle zu bearbeiten sind. Die Angabe des Resultats allein ist nicht ausreichend. Der Rechenweg zum Erhalt der Lösung muß ersichtlich sein!

Aufgabenstellung:

1. Gegeben sei das Optimierungsproblem

$$F(x_1, x_2) = -\frac{x_1}{x_2 + 1}$$

u.d.N.

$$x_1 - x_2 \le 2$$

$$x_1 \ge 0, \ x_2 \ge 0$$

Untersuchen Sie, ob das Problem ein konvexes Optimierungsproblem ist.

(7 Punkte)

2. Gegeben sei das Optimierungsproblem

$$F(x_1, x_2) = x_1^2 - 8x_1 + x_2^2 - 4x_2 \rightarrow \min!$$

u.d.N.

$$x_1 + x_2 \leq 2$$

$$x_1 \ge 0, \ x_2 \ge 0$$

- (a) Verwenden Sie die Karush-Kuhn-Tucker-Bedingungen zur Herleitung einer optimalen Lösung $\overline{\mathbf{x}} = (\overline{x_1}, \overline{x_2})^T$!
- (b) Warum ist die erhaltene Lösung global optimal?
- (c) Wie lautet der optimale Zielfunktionswert?

(10 Punkte)

3. Gegeben sei das Problem

$$F(x_1, x_2) = 2x_1^2 + x_2^2 - 2x_1x_2 \rightarrow \min!$$

Führen Sie ausgehend von der Startlösung $\mathbf{x}^0 = (x_1^0, x_2^0)^T = (1, 1)^T$ **zwei** Iterationen des Gradientenverfahrens durch.

(11 Punkte)

4. Gegeben sei das folgende lineare Vektormaximumproblem:

$$\begin{pmatrix} z_1(\mathbf{x}) \\ z_2(\mathbf{x}) \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 4 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \to \text{``max!''}$$

u.d.N.

$$x_1 + 2x_2 \le 10$$

 $x_1 + x_2 \le 7$
 $x_1, x_2 > 0$

- (a) Ermitteln Sie **graphisch** die individuell optimalen Lösungen sowie die Menge M_E aller effizienten Lösungen! Wie lautet der ideale Zielwertvektor?
- (b) Ermitteln Sie **rechnerisch** eine Optimallösung für das Kompromißmodell mit der Zielfunktion

$$\Phi(\mathbf{x}) = z_1(\mathbf{x}) + 2z_2(\mathbf{x}) \to \max!$$

(c) Entscheiden Sie, ob die unter (b) ermittelte Optimallösung auch für das lexikographische Kompromißprogramm

$$\begin{pmatrix} z_2(\mathbf{x}) \\ z_1(\mathbf{x}) \end{pmatrix} \rightarrow "lexmax"!$$

optimal ist!

(10 Punkte)

5. Gegeben sei das Rucksackproblem

$$5x_1 + 3x_2 + 6x_3 + 8x_4 \rightarrow \max!$$

u.d.N.

$$4x_1 + 2x_2 + 5x_3 + 6x_4 \le V$$
$$x_1, \dots, x_4 \in \{0, 1\}.$$

- (a) Bestimmen Sie eine optimale Lösung für V=10 mittels dynamischer Optimierung!
- (b) Ändert sich der optimale Zielfunktionswert im Fall V=9?
- (c) Für welche Werte V mit 0 < V < 10 ist die optimale Lösung **nicht** eindeutig bestimmt. Geben Sie für **einen** dieser Werte von V alle optimalen Lösungen an!

(10 Punkte)

6. Zwei Spieler legen jeder verdeckt eine Münze auf den Tisch. Nach Offenlegen der Münzen soll je nach ihrer Lage (kopf oder Zahl nach oben) die Auszahlung für Spieler 1 nach folgendem Schema erfolgen:

$$A = (a_{ij}) = \left(\begin{array}{ccc} 3 & 2 & 0 \\ -1 & 0 & 1 \end{array}\right),$$

- (a) Ist das Spiel ein Sattelpunktsspiel (Begründung)?
- (b) Ermitteln Sie **rechnerisch** optimale Strategien für beide Spieler!
- (c) Wie lautet der Wert des Spiels?

(9 Punkte)