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Parallel Machine Problems with Equal Processing Times

Svetlana A. Kravchenko · Frank Werner

Abstract The basic scheduling problem we are dealing with is the following. There

are n jobs, each requiring an identical execution time. All jobs have to be processed on

a set of parallel machines. Preemptions can be either allowed or forbidden. The aim is

to construct a feasible schedule such that a given criterion is minimized. For a couple

of problems of this type, recently the complexity status has been solved and several

interesting results have been presented. In this paper, we survey existing approaches

for the problem class considered.

1 Introduction

We consider the following basic scheduling problem. There are n jobs, denoted by

J1, J2, . . . , Jn, each requiring an identical execution time p. With each job Jj , j =

1, . . . , n, there are associated a release time rj , a due date dj , a deadline Dj and a

weight wj . All jobs have to be processed on a set of m identical machines. Each machine

can process only one job at a time. During the processing of the jobs, preemptions can

be allowed or forbidden. In the first case, the processing of any job once started has

to be completed without any interruptions. In the second case, the processing of any

operation may be interrupted and resumed later, possibly on another machine. The

objective is to construct a feasible schedule so as to minimize a given criterion. In this

paper, we discuss several solution approaches for the problem considered and expose

problems with an open complexity status. For the interested readers, we can recommend

in addition the collections of results from [8] and [14].

United Institute of Informatics Problems
Minsk, 220012 Belarus
E-mail: kravch@newman.bas-net.by

Fakultät für Mathematik, Otto-von-Guericke-Universität
Magdeburg, 39106 Germany
E-mail: frank.werner@mathematik.uni-magdeburg.de



2 Problems without preemptions

Whereas the overwhelming majority of scheduling problems appears to be NP-hard,

problems with equal processing time jobs form a remarkable case which is still open

for most problems. Intuitively, such problems look polynomially solvable.

Due to the possibility to enumerate the possible places of the jobs in an optimal

schedule, the model reminds an assignment problem. Therefore, one can intuitively

suppose the existence of a polynomial algorithm for any monotonic criterion. Never-

theless, since prime conflicts are caused by overlapping intervals most of the problems

have an open complexity status.

A special case is the model with p = 1. For most criteria, this model can be solved

by a network flow algorithm. However, this approach cannot be applied to the general

model with arbitrary p since, in the case of p = 1, the main conflicts among overlapping

places for processing jobs disappear. We refer the reader to [3] for a survey.

2.1 Classical criteria

If the processing times can be arbitrary, problem 1|rj , Dj |− is unary NP-hard by a

polynomial reduction from the 3-partition problem, see [26]. In [17], an O(n log n)

algorithm has been proposed for problem 1|rj , pj = p, Dj , prec| Cmax. More precisely,

the authors consider a problem with unit processing times and arbitrary rational release

dates and deadlines. However, by an appropriate scaling one can show that these two

models are equivalent. They show that it is possible to modify the release times and

deadlines so as to reflect the partial order (i.e., for the problem considered the constraint

prec is irrelevant) by assigning rj := max{{rj} ∪ {ri + 1 | Ti ≺ Tj}} and dj :=

min{{dj} ∪ {di − 1 | Tj ≺ Ti}}. After such an assignment condition, Ti ≺ Tj implies

ri < rj and di < dj . By straightforward interchange arguments, one can show that

any schedule for problem 1 | rj , pj = p, Dj | Cmax can be transformed into a schedule

for problem 1 | rj , pj = p, Dj , prec | Cmax without changing the Cmax-value. To solve

problem 1 | rj , pj = p, Dj | Cmax, the concept of forbidden regions (intervals) has been

proposed (see [17]), i.e., open intervals where no job can start. The set of all forbidden

regions is formed iteratively. The main observation used is the following. Assume that

one knows the set of forbidden regions in the interval [ri, Dj ], and let J1, . . . , Jk be

the set of jobs with release times and deadlines from the interval [ri, Dj ]. Now we set

r1 = . . . = rk = ri and D1 = . . . = Dk = Dj and find the largest value of e such that

all jobs J1, . . . , Jk can be scheduled in [e, Dj ] under the condition that no job can

start in a forbidden interval. Now, if ri ≤ e < ri + 1, then ]e − 1, ri[ is declared as a

forbidden region, since in any feasible schedule a job starting in ]e− 1, ri[ is not from

{J1, . . . , Jk} and hence, the set {J1, . . . , Jk} is finished after Dj . After forming the

set of all forbidden regions, the implementation of the earliest deadline scheduling rule

gives an optimal schedule.

In [35], it has been shown that problem P |pj = 1, Dj , prec|− is unary NP-hard

by a polynomial reduction from the 3-satisfiability problem. In [27], the authors have

shown that even problem P | pj = 1, Dj = 3, prec | − is unary NP-hard. Note that

problem P | pj = 1, Dj = 2, prec | − can be polynomially solved in O(n) time. The

important question about the complexity status of problem P3 | pj = 1, prec | Cmax is

still open whereas in [16], problem P2 | pj = 1, prec | Cmax was solved in O(n3) time

by a reduction of the problem to the maximum matching problem. In [7], an O(n log n)



algorithm has been proposed for problem P | rj , pj = p, outtree | Cmax and it has

been shown that problem P | rj , pj = p, intree | Cmax is unary NP-hard.

In [30], a polynomial algorithm with complexity O(n3 log log n) has been developed

for problem P |rj , pj = p, Dj |−. The algorithm is based on an analysis of the structural

properties of an optimal schedule. The main features of the optimal structure used in

that paper are the following:

1. Any schedule is completely defined by the set of time slots (1, t1), (2, t2), . . . ,

(n, tn), where i = 1, . . . , n is the slot number and ti is the starting time of slot i.

2. If we know the set of all occupied time slots, then an optimal schedule can be

constructed by the earliest deadline scheduling procedure.

3. If the earliest deadline scheduling procedure generates a sequence (1, t1), . . . , (k, tk),

such that job Jl processed in (k, tk) is late, then job Jl cannot be scheduled in

(k, tk) and has to be scheduled earlier. To provide this, one of the slots (1, t1), . . . ,

(k − 1, tk−1) has to be pulled right. To this end, Simons chooses the closest to

(k, tk) slot which is occupied by a job whose deadline exceeds Dl.

It has been shown that the use of these principles leads to the construction of an optimal

schedule for problem P |rj , pj = p, Dj |−. The same algorithm solves the problems

P |rj , pj = p, Dj |Cmax and P |rj , pj = p, Dj |
∑

Cj .

In [32], an O(mn2) time algorithm was proposed for problems P |rj , pj = p, Dj |−,

P |rj , pj = p, Dj |Cmax, and P |rj , pj = p, Dj |
∑

Cj . The algorithm is substantially

based on the ideas from [17] and [30]. In [10], the following linear programming formu-

lation was proposed for problem P |rj , pj = p, Dj |−:

z∑

i=1

xji = p, j = 1, . . . , n (1)

n∑

j=1

xj,i+1 + . . . +

n∑

j=1

xj,i+y ≤ mp, i = 0, . . . , z − y (2)

xji = 0 if Ii 6⊆ [rj , Dj [, i = 1, . . . , z, j = 1, . . . , n (3)

0 ≤ xji ≤ p, i = 1, . . . , z, j = 1, . . . , n (4)

Here xji is equal to the amount of job Jj processed in the interval Ii, where {Ii |
i ∈ {1, . . . , z}} = {[rj + kp, rj + kp + p [ | k ∈ {. . . ,−1, 0, 1, . . .}}, and y = max{k |
Ii+1 ∩ . . .∩ Ii+k 6= ∅, i ∈ {0, . . . , z − k}}. In the above system, the polyhedron (1) and

for each i = 0, . . . , z− y, with i + ey ≤ z, the polyhedron (2) are integer. Nevertheless,

their intersection is not an integer polyhedron and therefore, the obtained solution

is not necessarily integer. Using an obtained solution, one can construct an optimal

schedule in two equivalent ways, namely:

1. It is possible to find the intervals which are occupied in a feasible schedule. Then

the earliest deadline scheduling procedure generates an optimal schedule.

2. It is possible to transform the obtained solution into the form x∗ji ∈ {0, p}. The

obtained vector gives an optimal solution for problem P | rj , pj = p, Dj | −.

In both cases, the following property of an optimal solution holds: If k = min{i | x∗ji 6=
0, j = 1, . . . , n} for the optimal solution, then the time slot Ik is occupied in an optimal

schedule.



It has been shown in [10] that, to solve problem P |rj , pj = p, Dj |
∑

Cj , it is

sufficient to solve the following linear programming problem:

Minimize

z∑

i=1

n∑

j=1

D(Ii)xji

subject to (1), (2), (3), (4).

Here D(Ii) is the right endpoint of the interval Ii.

In [15], the proposed linear programming formulation was transformed by means

of the substitution yt =
∑t

s=1

∑n
j=1 xjs into the following form:

Minimize

z∑

i=1

D(Ii)(yi − yi−1)

subject to yz − y0 = n

yi − yi−1 ≥ 0, i = 1, . . . , n

yi − yi−y+1 ≤ m, i = y, . . . , n

y0 = 0.

The authors have shown that this model can be solved in O(n4) time.

To solve problem P |rj , pj = p|∑wjCj , it is sufficient to solve the following linear

program (see [10]):

Minimize

z∑

i=1

n∑

j=1

wjD(Ii)xji

subject to (1), (2), (3), (4).

In [11], it has been shown that, in order to solve problem P |rj , pj = p|∑Tj , it is

sufficient to

Minimize

z∑

i=1

n∑

j=1

max{0, D(Ii)− dj} xji

subject to (1), (2), (3), (4).

In [2], a polynomial time algorithm with the complexity O(n6m+1) was proposed for

problem Pm | rj , pj = p | ∑wjUj . The algorithm is based on the following observa-

tions and definitions:

1. It is possible to restrict the set of starting times by {rj + zp | z ∈ {0, . . . , n}, j ∈
{0, . . . , n}}.

2. If the set of time slots (1, t1), . . . , (n, tn) is known in advance for an optimal sched-

ule, where i = 1, . . . , n is a slot number and ti is the starting time of slot i, then

the desired schedule can be constructed by the earliest due date rule.

3. The only situation when job Jj follows Ji with dj < di is the situation when Ji is

processed within ]rj − p, rj + p[, i.e., the starting time of Ji is before rj .

4. A profile is defined as a vector (a1, . . . , am), where ai ∈ {rj +zp | z ∈ {0, . . . , n}, j ∈
{0, . . . , n}}, and max{a1, . . . , am} −min{a1, . . . , am} ≤ p. In an optimal schedule,

for any job Jj scheduled at tj , only a profile a with tj ∈ {a1, . . . , am} can be

prescribed.



5. k[a, b] is defined as the set of early jobs from {J1, . . . , Jk} scheduled between the

profiles a and b, and Wk[a, b] is the maximal weight for such a set.

Now, dynamic programming can be applied by using the formulas

Wk[a, b] = max{W ′
k[a, b], Wk−1[a, b]} if max{a1, . . . , am}− p ≤ rk < min{b1, . . . , bm},

and Wk[a, b] = Wk−1[a, b] if rk 6∈ [max{a1, . . . , am} − p, min{b1, . . . , bm}[,
where W ′

k[a, b] = max
min{x1,...,xm}∈

[rk,dk−p]

{Wk−1[a, x] + wk + Wk−1[x
′, b]}.

In [12], an O(n5) algorithm was proposed for problem 1 | rj , pj = p | ∑Uj . This

algorithm is analogous to the algorithm from [2], however, the authors do not use

Wk[a, b] but wk[a, B], i.e., for the given w, k and a, the authors minimize B. For the

single machine case, B is the length of the considered subschedule. Thus, they define:

1. k[a, ·] is the set of jobs from {J1, . . . , Jk} such that rj ≥ a holds,

2. wk[a, B] equals the minimal value B such that it is possible to execute w jobs from

k[a, ·] in the time interval [a + p, b].

In [29], a polynomial time algorithm was proposed for problem P | rj , pj = p, Dj |
Lmax. It is based on a binary search technique and on the fact that the number of

possible starting points is polynomial in the problem size.

In [13], the case with identical jobs and uniform parallel machines has been con-

sidered, i.e., when each machine has some given speed. It has been shown how to

solve problems Q|pj = p|∑ϕj and Q|pj = p|max ϕj in O(n2) time, where max ϕj =

max1≤j≤n ϕj(Cj), and ϕj , j = 1, . . . , n, are non-decreasing functions in the job com-

pletion times. The authors also indicated how to reduce the complexity for classical

criteria and solved problems Q|rj , pj = p|Cmax and Q|rj , pj = p|∑Cj in O(n log n)

and O(mn2m+1) time, respectively.

Note that currently the most interesting open problems are P | rj , pj = p | ∑Uj

and P | rj , pj = p, Dj |
∑

wjCj .

2.2 Some generalizations

In [6], a dynamic programming approach was used to solve polynomially problem Pm |
rj , pj = p | ∑

fj , where
∑

fj is an objective function depending on the completion

times Cj , such that fj is non-decreasing and fi − fk is monotonic. Note that both

classical criteria
∑

wjCj and
∑

Tj can be described in such a way.

In [20], a linear programming approach was proposed for problem P | rj , pj = p |∑
fj , where

∑
fj is the objective function from [6], i.e., fj depends on the completion

time Cj , such that fj is non-decreasing, and fi − fk is monotonic, and for problem

P | rj , pj = p, Dj | max ϕj , where ϕj is any non-decreasing function in the completion

time Cj . The classical scheduling criteria described as max ϕj(Cj) are the minimization

of maximum lateness Lmax = maxj{Cj − dj} and maximum tardiness maxj{Tj} =

maxj{Lj , 0}.
The approach for problem P | rj , pj = p | ∑ fj is analogous to that from [11] and

consists in minimizing
z∑

i=1

n∑

j=1

fj(D(Ii))xji



subject to (1), (2),

xji = 0 if R(Ii) < rj , i = 1, . . . , z, j = 1, . . . , n

xji ≥ 0, i = 1, . . . , z, j = 1, . . . , n.

Here R(Ii) is the left endpoint of the interval Ii.

A polynomial algorithm for problem P | rj , pj = p, Dj | max ϕj(Cj) can be briefly

described as follows. Note that the number of intervals available for processing can be

polynomially bounded. Therefore, the possible number of different values ϕj(D(Ii)) is

polynomially bounded, too. Take any F = ϕj(D(Ii)) for some i and j. Consider the

following feasibility problem:

z∑

i=1

xji = p, j = 1, . . . , n

n∑

j=1

xj,i+1 + . . . +

n∑

j=1

xj,i+y ≤ mp, i = 0, . . . , z − y

xji = 0 if R(Ii) < rj i = 1, . . . , z, j = 1, . . . , n

xji = 0 if ϕj(D(Ii)) > F

xji ≥ 0, i = 1, . . . , z, j = 1, . . . , n

It is possible to find a solution for the above problem such that xj,i ∈ {0, p}. At

the same time, the obtained solution can be considered as a solution for problem P |
rj , pj = p, Dj | max ϕj(Cj) ≤ F . Applying the same procedure for all different values

of F = ϕj(D(Ii)), we can choose the minimal value of F. Since the number of different

values ϕj(D(Ii)) is polynomially bounded, the proposed algorithm is polynomial.

In [31], the following problem has been considered. With each of the n jobs, there

is associated a set of intervals. Each interval has a starting time and a finishing time.

All data are assumed to be integers. The goal is to construct a feasible schedule so that

each job is processed only in one of the prescribed intervals. It has been shown that the

considered problem is unary NP -hard for the case of one machine and two prescribed

intervals for each job by a polynomial reduction from the 3-satisfiability problem.

In [19], the following problem has been considered. As before, for each job Jj ,

j = 1, . . . , n, a processing time pj = p, a release date rj , and a deadline Dj are

given. Besides we suppose that the time interval [minj{rj}, maxj{Dj}[ is divided into

several intervals [t1, t2[, [t2, t3[, . . . , [tT−1, tT [, where minj{rj} = t1 ≤ t2 ≤ . . . ≤ tT =

maxj{Dj}, such that for each interval [tg, tg+1[ the number of available machines

mg+1 is known in advance. Note that we do not fix the concrete set of mg+1 machines,

i.e., at two different points of [tg, tg+1[, one can use different sets of mg+1 machines.

Preemption of processing is not allowed, i.e., the processing of any job started at

time t on one of the identical machines will be completed at time t + p on the same

machine. We want to find a feasible schedule such that the maximal number of machines

used by J1, . . . , Jn is minimal. The problem has been reduced to the following linear

programming problem.

Minimize M

subject to

z∑

i=1

xji = p, j ∈ {1, . . . , n}



n∑

j=1

xj,i+1 + . . . +

n∑

j=1

xj,i+q ≤ min{M, mk+1}p,

where i ∈ {0, . . . , z − q}, q ∈ {1, . . . , y},
k ∈ {1, . . . , T − 1},
Ii+1 ∩ . . . ∩ Ii+q ∩ [tk, tk+1[ 6= ∅

xji = 0 if R(Ii) < rj , i = 1, . . . , z, j = 1, . . . , n

xji = 0 if Dj < D(Ii), i = 1, . . . , z, j = 1, . . . , n

xji ≥ 0, i = 1, . . . , z, j = 1, . . . , n.

If we set xji equal to the amount of job Jj processed in the interval Ii and M is the

number of machines we want to minimize, then any feasible schedule for the scheduling

problem under consideration can be described as a feasible solution of the above linear

programming problem.

On the other hand, the solution (x∗, M∗) obtained for the linear programming prob-

lem can be transformed into an optimal solution of the scheduling problem considered

in polynomial time.

3 Problems with preemptions

Now we consider the following basic problem. There are m parallel machines and n

jobs, each requiring an identical execution time p. With each job Jj , there is associated

a release time rj . The processing of any job may be interrupted arbitrarily often and

resumed later on any machine. The objective is to construct a feasible schedule so as

to minimize a given criterion.

It has been shown in [34] that problem P | pj = 1, prec, pmtn | ∑
Cj is unary

NP-hard. In [24], the technique based on linear programming has been developed. The

proposed approach allows one to solve problem R | rj , pmtn | Lmax in polynomial time.

Using a pseudopolynomial reduction from numerical matching with target sums, it has

been proved that problem P | pj = p, pmtn | ∑wjUj is unary NP-hard [9]. It has been

noted in [2] that the algorithm developed in [24] for problem R | rj , pmtn | Lmax can

be used to solve both problem P | pj = p, pmtn | ∑Uj and problem Q | pj = p, pmtn |∑
Uj in polynomial time. Problem P | rj , pj = p, pmtn | ∑Uj is unary NP-hard [18].

It is interesting to note that problem P | pmtn | ∑Uj is binary NP-hard [23], however,

its complexity status under an unary encoding is still an open question.

Problem P | rj , pj = p, pmtn | ∑Cj has been solved in [1]. It is possible to prove

that for problem P | rj , pj = p, pmtn | ∑
Cj , an optimal schedule can be found in

the class of schedules, where each job Jj is processed on machine m only within an

(possibly empty) interval [Sj,m, Cj,m[, such that Cj,m ≤ Sj+1,m for each m and j < n,

and Cj,m ≤ Sj,m−1 for each m > 1 and j.

Using such a structure of an optimal schedule, one can formulate the following

linear program which will solve problem P | rj , pj = p, pmtn | ∑
Cj in polynomial

time.

Minimize

n∑

j=1

Cj,1

subject to Sj,m ≥ rj , j = 1, . . . , n



m∑
q=1

(Cj,m − Sj,m) = p, j = 1, . . . , n

Sj,m − Cj,m ≤ 0, j = 1, . . . , n, m = 1, . . . , m

Cj,q − Sj,q−1 ≤ 0, j = 1, . . . , n, q = 2, . . . , m

Cj,q − Sj+1,q ≤ 0, j = 1, . . . , n− 1, q = 1, . . . , m

Another idea was used in [21] for problem Q | rj , pj = p, pmtn | ∑Cj . Note that

for problem Q | rj , pj = p, pmtn | ∑Cj , an optimal schedule can be found in the class

of schedules, for which C1 ≤ C2 ≤ · · · ≤ Cn holds, i.e., there exists an optimal solution

in which the completion times are in the same order as the release times.

Let s∗ be an optimal schedule for problem Q | rj , pj = p, pmtn | ∑
Cj with

C1(s
∗) ≤ · · · ≤ Cn(s∗). Further we set rn+1 = rn + n · maxq{p/sq}, i.e., rn+1 is a

time point after which no job will be processed. Each Cj(s
∗) belongs to some interval

[ri, ri+1]. However, if we know for each Cj(s
∗) the corresponding interval [ri, ri+1] such

that Cj(s
∗) ∈ [ri, ri+1], then an optimal schedule can be easily found using a reduction

to a network flow problem, see [25]. Thus, the main question is to know the interval

[ri, ri+1] for each Cj(s
∗) such that Cj(s

∗) ∈ [ri, ri+1]. However, this difficulty can be

avoided due to criterion
∑

Cj . For any job Jj , let the time interval [ri, ri+1] be such

that Cj ∈ [ri, ri+1]. Taking into account that r1 = 0, we obtain Cj = (r2 − r1) +

(r3 − r2) + · · ·+ (ri − ri−1) + (Cj − ri). Due to this decomposition, we introduce the

completion time of job Jj for each interval [ri, ri+1].

For each job Jj with j = 1, . . . , n and for each interval [ri, ri+1] with i = 1, . . . , n,

we define the value C(Jj , ri) such that C(Jj , ri) = Cj(s
∗) if Cj(s

∗) ∈ ]ri, ri+1[,

but if Cj(s
∗) ≤ ri, then we set C(Jj , ri) = ri, and if Cj(s

∗) ≥ ri+1, then we set

C(Jj , ri) = ri+1. So, for each i = 1, . . . , n, the values ri ≤ C(J1, ri) ≤ · · · ≤ C(Ji, ri)

≤ C(Ji+1, ri) = · · · = C(Jn, ri) = ri+1 define a partition of the interval [ri, ri+1]. In

turn, each interval [C(Jj−1, ri), C(Jj , ri)] is completely defined by the jobs processed

in it. Thus, we denote by v(Jk, Mq, Jj , ri) the part (amount) of job Jk processed in

the interval [C(Jj−1, ri), C(Jj , ri)] by machine Mq, i.e., the total processing time of

job Jk by machine Mq in the interval [C(Jj−1, ri), C(Jj , ri)] equals
v(Jk,Mq,Jj ,ri)

sq
and

for any job Jk, equality
∑m

q=1

∑n
i=1

∑n
j=1 v(Jk, Mq, Jj , ri) = p holds. The values

C(Jj , ri), where j = 1, . . . , n, i = 1, . . . , n, and the values v(Jk, Mq, Jj , ri), where

i, j = 1, . . . , n, k = j, . . . , i, q = 1, . . . , m, define a feasible solution of the following

linear program. For convenience, we introduce C(J0, ri) = ri.

Minimize

n∑

i=1

(
(C(J1, ri)− ri) + · · ·+ (C(Jn, ri)− ri)

)

subject to

ri = C(J0, ri) ≤ C(J1, ri) ≤ · · · ≤ C(Ji+1, ri) = · · · = C(Jn, ri) = ri+1,

m∑
q=1

v(Jk, Mq, Jj , ri)

sq
≤ C(Jj , ri)− C(Jj−1, ri),



n∑

k=1

v(Jk, Mq, Jj , ri)

sq
≤ C(Jj , ri)− C(Jj−1, ri),

n∑

i=1

n∑

j=1

m∑
q=1

v(Jk, Mq, Jj , ri) = p,

where i = 1, . . . , n, j = 1, . . . , n, k = 1, . . . , n, q = 1, . . . , m,

C(Jj , ri) ≥ 0, i = 1, . . . , n, j = 1, . . . , n,

and for q = 1, . . . , m

v(Jk, Mq, Jj , ri) = 0, i = 1, . . . , n− 1, j = i + 1, . . . , n, k = 1, . . . , n

v(Jk, Mq, Jj , ri) = 0, i = 1, . . . , n, j = 1, . . . , i, k = 1, . . . , j − 1,

v(Jk, Mq, Jj , ri) = 0, i = 1, . . . , n− 1, j = 1, . . . , i, k = i + 1, . . . , n,

v(Jk, Mq, Jj , ri) ≥ 0 i = 1, . . . , n, j = 1, . . . , n, k = 1, . . . , n.

The above formulation includes O(mn3) variables and constraints, i.e., this problem

can be polynomially solved. In [21], it has been shown that an optimal solution of the

above linear program can be used to obtain an optimal schedule.

Problem P | rj , pmtn | ∑Cj has been proved to be unary NP-hard by a reduction

from 3-partition in [1]. Problem P | rj , pj = p, pmtn | ∑wjCj is unary NP-hard [28].

Thus, the minimal open problems are 1 | rj , pj = p, pmtn | ∑wjCj and P | rj , pj =

p, pmtn | ∑Tj .

4 Summary

In Table 1, we give an overview on the main results for classical criteria.
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Table 1: Polynomially solvable and NP-hard problems

Non-preemptive problems

1|rj , Dj |− unary NP-hard [26]

P |pj = 1, Dj , prec|− unary NP-hard [35]

P | pj = 1, Dj = 3, prec | − unary NP-hard [27]

P | pj = 1, Dj = 2, prec | − solvable in O(n) [27]

P |rj , pj = p, Dj |− solvable in O(mn2) [32]

1|rj , pj = p, Dj , prec|Cmax solvable in O(n log n) [17]

P2|pj = 1, prec|Cmax solvable in O(n3) [16]

P | rj , pj = p, outtree | Cmax solvable in O(n log n) [7]

P | rj , pj = p, intree | Cmax unary NP -hard [7]

P |rj , pj = p, Dj |Cmax solvable in O(mn2) [32]

Q|rj , pj = p|Cmax solvable in O(n log n) [13]

Q|pj = p|Cmax solvable in O(n + m log m) [13]

Q|pj = p|Lmax solvable in O(n log n) [13]

P |rj , pj = p, Dj |Lmax solvable in O(mn4) [29]

P |rj , pj = p, Dj |
∑

Cj solvable in O(mn2) [32]

Q|rj , pj = p|∑Cj solvable in O(mn2m+1) [13]

Q|pj = p|∑Cj solvable in O(n + m log m) [13]

P |rj , pj = p|∑wjCj reducible to LP [10]

Q|pj = p|∑wjCj solvable in O(n log n) [13]

1|rj , pj = p|∑Tj solvable in O(n7) [6]

P |rj , pj = p|∑Tj reducible to LP [11]

Q|pj = p|∑Tj solvable in O(n log n) [13]

Q|pj = p|max wjTj solvable in O(n log2 n) [13]

1 | rj , pj = p | ∑Uj solvable in O(n5) [12]

1 | rj , pj = p | ∑wjUj solvable in O(n7) [5]

Pm | rj , pj = p | ∑wjUj solvable in O(n6m+1) [2]

Q|pj = p|∑wjUj solvable in O(n log n) [13]

Preemptive problems

P | pj = 1, prec, pmtn | ∑Cj unary NP-hard [34]

P | rj , pmtn | ∑Cj unary NP-hard [1]

Q | rj , pj = p, pmtn | ∑Cj reducible to LP [21]

P | rj , pj = p, pmtn | ∑wjCj unary NP-hard [28]

R | rj , pmtn | Lmax reducible to LP [24]

1 | rj , pj = p, pmtn | ∑Uj solvable in O(n log n) [22]

P | rj , pj = p, pmtn | ∑Uj unary NP-hard [18]

P | pmtn | ∑Uj binary NP-hard [23]

Q | pj = p, pmtn | ∑Uj solvable in O(n log2 n + mn log n) [2]

1 | rj , pj = p, pmtn | ∑wjUj solvable in O(n4) [4]

P | pj = p, pmtn | ∑wjUj unary NP-hard [9]

1 | rj , pj = p, pmtn | ∑Tj solvable in O(n2) [33]


