AN APPROXIMATION ALGORITHM FOR SINGLE
SERVER PARALLEL MACHINE PROBLEM?*

SVETLANA A. KRAVCHENKOt, FRANK WERNER#

tInstitute of Engineering Cybernetics, Surganov St. 6, 220012 Minsk, Belarus,

kravch@newman.bas-net.by

$Otto-von-Guericke-Universitit, Fakulit fiir Mathematik, PSF 4120, 39016 Magdeburg,
Germany, frank.werner@mathematik.uni-magdeburg.de

Abstract. In this note we consider the problem of scheduling a set of jobs on m identical
parallel machines. For each job, a setup has to be dorie by a single server. The objective is
to minimize the sum of the completion times in the case of unit setup times and arbitrary
processing times. For this strongly NP-hard problem, we give an approximation algorithm
with an absolute error bounded by the product of the number of short jobs (with processing

times less than m - 1) and m - 2.

Key Words. Sheduling, parallel machines, single server, unit setup times, total completion

time, approximation algorithm

LINTRODUCTION

In this paper, we consider the problem of scheduling »
jobs on a set of m identical parallet machinss available
for processing at time zero. The processing of a job
must be performed on one of the machines without
interruption. Before the processing of a job can start, a
setup must be performed for this job by a server,
which corresponds to a loading of this job on the
corresponding machine. Such a setup is not possible
during the processing of another job on the
corresponding machine. If a server has performed a
setup on a machine, the processing of this job can
immediately start, but on the other hand, the server is
free to perform another setup on another machine. It is
assumed that travel times of a server between the
machines are equal to zero.

Classical scheduling objectives in connecticn with this
type of problems have been considered by Hall, Potts
& Sriskandarajah [3]. In that paper, a study of
algorithmic and computational complexity is

*) This research was supported by the International Association for
the Promotion of Cooperation with Scientists from the Independent
States of the Former Soviet Union, Project INTAS-96-820 and by
Belarussian Fundamental Research Foundation

performed. Ir dependence on the objective function,
the number of machines, and the struciure of the
processing and setup times, for the majority of these
problems there is either given an efficient algorithm,
or it has been proved that the corresponding problem
is NP-hard which implies that the existence of such an
efficient algorithm is rather unlikely. Some of the
efficient algorithms have been obtained by adapting
classical scheduling algorithms to the corresponding
problem with a single server.

A beam search heuristic for parallel machine
scheduling problems with a single server in such a
static environment described above has been suggested
by Koulamas [4]. Kravchenko & Wemer [5] consider
parallel machine scheduling problems with a single
server and the minimization of the makespan as well
as of the forced idle time (or interference). In the latter
paper, a pseudopolynomial algorithm for the 2-
machine problem with unit setup times is given.
Moreover, some complexity issues, polynomially
special cases and heuristics are discussed. Problems
with multiple servers have been considered by
Kravchenko & Werner [6].

In {1}, it has been proven that the problem of
scheduling a set of jobs on m identical parallel
machines M,,..., M, with a single server such that
the sum of completion times becomes minimal is
already strongly NP-hard in the case of unit setup
times. The latter problem may be denoted as
P.Slls; =1£C; (see [1, 2]). In this note, we present
an approximation algorithm and prove that the derived
performance bound is tight.

2. THE ALGORITHM

It is easy to see that an optimal schedule for problem
P,Slls; = JZ C, can be found within the class of list
schedules. ~ Further we work only with such
schedules. The construction of any list schedule
consists of » steps: In step i, we schedule the i-th job
from the list at the earliest possible time in the partial
schedule created in the previous (i-1)-th step. We
suppose that before the first step, we have a partial
schedule with the profile (0,1,...,m-1), i.e. before the
first step the machine A; is available for processing at
time i-1, where ie {1,....m}.

We say that in some step job j creates a conflict if,
after scheduling this job j into the partial schedule
obtained in the previous step, there is a scheduled job
isuch that C;=C; holds.

Algorithm 1

Step §; (i=1,...,n1).

Among all unscheduled jobs choose the shortest job
which does not create a conflict.

If this is impossible, take any unscheduled job j.
Schedule / in the partial schedule.

Denote by 5,C; the sum of completion titnes for the

schedule created by Algorithm 1, and by Y.C; the sum
of completion times for an optimal schedule. Let n'=|{
I pi<m-1}| be the number of jobs with the total tength
{ptsi) being less than the number of machines.

Theorem. Algorithm 1 creates a schedule for which
the following estimation holds:

LC-2C <n(m-2).

n n
=| 1=

Proof: Assume that Algorithm | gerierates some
schedule s. For convenience, divide all jobs into two
sets. Namely, the set of jobs {i| p;<m-1} {further we
denote these jobs as short jobs), and the set of jobs { 4]
pi2 m-1} (further we denote them as long jobs).

There is some step in Algorithm 1, say step z, when
the last short job is scheduled in s. Note that, if there

are no short jobs, Algorithm 1 turns out to be SPT
rule, and in this case it produces an optimal schedule.
Now we show that the server works without idle times
during the interval [0,z+1] in schedule s.

Let g<z be the first step of Algorithm 1 when an idle
time is created, i.e. in [0,q] the server works without
being idle, and in [g,g+1] the server is idle. It means
that all m machines are working in [g,g+1] and
therefore, there is no job finished at time g. Then, it is
possible to show that the set

J'={i] pi<m-1 and i is unscheduled up to step g+1}

is empty. Really, J'cannot contain job i with pi=k,
where 0 < & < m-1, since otherwise in step g-k of
Algorithm 1 such a job / has to be scheduled, but this
is impossible since at time g there is no job finishing
its processing. Thus, set J'is empty at step ¢, and we
obtain a contradiction to the fact that some short job is
scheduled in step z of Algorithm 1.

Now we show that all long jobs {i|p2m-1} are
scheduled by Algorithm 1 in nondecreasing order of
their processing times. Since the algorithm chooses
the shortest job which can be scheduled by the list
procedure without a conflict, in each step we get some
partial schedule with a profile (1,,....1,,), where 4
denotes the time when machine M; becomes free and

max;{#;}-min;{t;} <
min{p;| pizm-1 and i is unscheduled }

holds, ie. in any step of Algorithm 1, each
unscheduled long job does not create a conflict.
Hence, if Algorithm 1 schedules a long job, it chooses
the shortest unscheduled long job. Thus, all jobs { i |p;
2 m-1} are scheduled in nondecreasing order of their
processing times. ;

In schedule s produced by Algorithm 1, we enumerate
all jobs in nondecreasing order of their processing
times, say { i,....in}, i.e.

Py <SPy SoSp, .
In an optimal schedule we enumerate all jobs in
nondecreasing crder of their completion times, say
J1see-dns 1€

20, << C -
In fact, in the previous two paragraphs we proved that
in the first z steps Algorithm 1 schedules all short jobs
and z-n' long jobs, ie. all jobs {ii, b..., iz} are
scheduled during the first z steps of Algorithm 1. Since
the server is not idle during the interval [0,2+1], we
get that

58

g ~ 3 g
Y.C, =0+1+. Hg~-D+Ts +2p (N
k=1 * k=1 k=1 "

holds for any 1< g < z+1. Note that

q 44 4
.G Zt, + 25 Z 20+ 1+ .+
: e

i=1

holds for any schedule and any 1< g < n. Hence, by
proving (1) we show that

~ 3

2f G, < 2§.4C)

gk
holds for any 1< g < z+1.

Next, we show that, if there is an idle time on some of
the machines, then Algorithm 1 produces an optimal
schedule. Suppose that under the schedule s, there is
an idle time on some machine. Hence, in some step,
say step k, all jobs would create a conflict. But any
long job cannot create a conflict, and therefore in step
k there are no long jobs. Therefore, the server works
without idle times and Algonthm 1" produces an
optimal schedule

Now we consider the case when under schedule s, all
machines work without idle times. Since only list
schedules are considered and all long jobs are
scheduled in nondecreasing order of their processing
times, each job i is scheduled in step & of Algorithm 1
if &>z holds. Remind that z is the number of the step
when the last short job is scheduled. Taking into
account that there is no idle time in schedule s and that

J R P, S5 p

holds, we obtain that

- =~ o~ n
C, +C +.+C =0+1+.+(m-1)+ k}'] 5, +

n » £ ~*
p,<C +C +.+C,
k=1 k sn n-t

Fr-met

holds, if n-m+1>z, and

~

C

+C +..+C; =0+ 14.4+(m - 1)+
Inm In-nm-1 Ly-2mst 4
n—-m II:IH *
. < s
"-} S+ kz—‘xp' = Cln ot («, et F

holds, if n-2m+1>z. In general,

C, C todC =04 14+

+C
Fna(y-1)m In=(q=1m-1 n-gm+1

60

) n-(g-Dm n-(g=bHm .
(m=1+ kz..'l St El Pi SC/ﬂ—w—nm *

* +C (2)

Jn-(g-Dym-1 +.. Jn—gm1
holds for any ¢ such that n-gm+1>z.

Now we show that, if there is a value, say d, such that
n-dm+1=z+1 or n-dm+1=z+2 holds, then the schedule
s is optimal. Let n-dm+1=y, where

ye {z+]1, z+2}

holds. Then it follows from (2) that

= Y 1“

in—(q~l)m _,‘"”w m-t Ipegael T ne(geDm

»

at ~*

+..+0

/j»—-(q—l)m-l o v/n-—qm*l
holds for any g=[1,d]. From (1) it follows that
Zly-l z Z)l<l
holds. Therefore, inequality
22#62‘. <, Z:lC;k
holds.
Now we consider the case when there is no integer ¢,
such that n-gm+1=z+1 or n-gm+1=z+2 holds. Then

there is a value, say d, such that n-dm+1>z+2 and n-
{d+1)m+1<z hold. Consider all long jobs from the set

{ indm> in.dm.ir-s in.a'm.<m«n},

without loss of generality we will suppose that they all
are long. Since n-dm+1>z+2 holds, job iy.gm is
scheduled in step n-dm, and job iy gp,., is scheduled
in step n-dm-1. In step n-dm-2, some short job will be
scheduled, if #-dm-2=z holds. Denote all short jobs
scheduled between job in.dgm.gn.,) and job in_gm., by
Uy, Uy, Up.
Note that

{ug,ury sl iy, Indeiyn}

holds, and all jobs from the set

{ipeobngdamiM 4,00}

are scheduled in the steps 1, 2,.., n-(d+D)m-r of
Algorithm 1, i.e. the server performs the setups for the

jobs of this set in the interval

[0,n-(d+1)m-r].

In the interval

[n-(d+ D)ym-r, n-dm-2},

the server performs the setups for the jobs
in.dm.za-~-,indm.(m-1)

and jobs

Uyyeoylip

It means that the setup of job u, is started no later than
attime n-dm-2, i.e.

t'?, <n—dm-2;

the setup of job u., is started no later than at time
n-dm-3, i.e.

t,? Sn—-dm-3;
-\

see,

the setup of job u, is started no later than at time n-
dm-2-(r-2), i.e.

2 <n-dm-2-(r-2);

and the setup of job u, is started no later than at time
n-dm-2-(r-1), ie.

0 <n-dm-2-(r-1).

In other words, the inequalities

13’ Sn=(d+Dm—r+r+(m-2);

0

L,sn=-(d+Dm-r+(r-D+(m-2):

e

o Sn—(d+Dm—r+2+(m~2):

t,?l Sn-(d+Dm=r+1+(m-2)

hold, i.e. we get

n~{d+m _ n—(d+)m a=(d4V)m n-(d-Dm
e =)y tfk + X S’A~ + ¥ p,v(‘ <-
k=1 k=1 k=1 k=t
n—-(dit)m n—(d+1)m
O+.4n-(d+hm-H+ % 5, + X p, +
k=1 k=1

n-(d+1Ym

im-2)< Y% C;‘+r(m~2).
k=1

Since inequality

‘n — n *
C < > c,
k=n-(d+m+]

k=n—-(;l+!)m+]

holds, we obtain that

n . n
>C, - LC sr(m-2)

k=1 " k=

holds. Because we have 7 <n', the theorem has
been proved. n

Now we show that the above bound is tight. Suppose
we have an instance with 3m-1 jobs, there are 2(m-2)
jobs with

P1= T Pymgy=m-1,

there are two jobs

Pams=Pam,=0,

and there are m+1 jobs with

Pama=Dam=... =Pym. =3m=3.

An optimal schedule is obtained by the list

2m-1,1, ..., m-2,2m-3, m-1, ...,
2Am-2), 2m-2, 2m,..., 3m-1.

In this schedule the server works without idle times n

[0,3m-1]. Thus, for the optimal function value we
have
Im-1 . 3m-l 0 3m-t 3m-1
2C =Yt + Ts+ Sp =041+ .+
i=1 i=} i=1 i=]
3m-1 3m-1

Gm-2)+ Zs+ Zp,.

However, Algorithm 1 schedules all jobs by the list

L., 2m-2), 2m-1, ..., 3m-3,
2m-3, 2m-2, 3m-2, 3m-1.

The server is working without idle times during

{0,3m-2} and {Sm-6,5m-5]. For the value 25, we
have

I~ 3m-1 o 3Im-1 3m-1
C=2 0+ s+ Xp=0+1+4.+
1 i=1 i1 i=1

3m-~1 3m-1
3n-3+5Sm-6+ Y5+ Yp, .

i=] f=}

3n

M3

it

i

Therefore, £C -3 C =2m-~ 2) holds.

Consider the example with m=5. There are 14 jobs:
six jobs with p =...=p;=4, two jobs with P7=pe=0,
61

ey :

and six jobs with p,=..=p,=12. An optimal schedule
is obtained by the list 9, 1, 2, 3, 7, 4, §, 6, 8, 10, 11,
12, 13, 14, and the server works without idle times
during [0,14]. Algorithm 1 schedules all jobs by the
list

1,2,3,4,5,6,9,10,11,12,7,8, 13, 14,

Under this schedule the server works without idle
times during [0,13] and [19,20]. Thus,

LG -2C =6=n'(m-2)

holds.

5. REFERENCES

1. Brucker P., Dhaenens-Flipo C., Knust S,
Kravchenko S.A., Werner F. Complexity results for
parallel machine problems with a single server,
Preprint, Heft 219, Osnabriicker schriften zur
Mathematik, 2000,

2. Graham R.L., Lawler E.L., Lenstra J.K., Rinnooy
Kan A.H.G. Optimization and approximation in
deterministic machine scheduling: a survey, Annals of
Discrete Mathematics, vol. 5, 1979, pp. 287 - 326. »

3. Hall N.G, Potts C.N.,, Sriskandarajah C. Parallel
machine scheduling with a common server, Discrete
Applied Math., 2000 (to appear).

4. Koulamas C.P. Scheduling on two parallel machines
for minimizing machine interference, Working Paper,
Department of Decision Sciences and Information
Systems, Florida International University, 1993,

5. Kravchenko S.A., Werner F. Parallel machine
scheduling problems with a single server, Mathl.
Comput. Modelling , vol. 26, No. 12, 1997, pp.1 - 11.
6. Kravchenko S.A., Werner F. Scheduling on parallel
machines with a single server, Otto-von-Guericke-
Universitdt Magdeburg, FMA, Preprint 30/98, 1998.

62

