Sommersemester 2010

Prüfer: Prof. Dr. F. Werner

Klausur: Scheduling

Zugelassene Hilfsmittel:

- Zwei A4-Blätter (mit beliebigem Material)

- Taschenrechner

Die folgenden vier Aufgaben sind zu bearbeiten. Die Angabe des Resultats allein ist nicht ausreichend. Der Rechenweg zum Erhalt der Lösung muss ersichtlich sein.

Aufgabenstellung:

1. Betrachtet wird ein Einmaschinenproblem, wobei für jeden Auftrag J_i (i = 1, ..., 5) ein Gewinn g_i , eine Bearbeitungszeit t_i und ein Due Date d_i wie folgt gegeben sind:

i		2	_	4	5
g_i	1	49	50	52	10
g_i t_i d_i	2	4	5	6	5
d_i	3	5	6	8	9

Der Gewinn g_i wird erzielt, falls für das Bearbeitungsende vom Auftrag J_i die Beziehung $C_i \leq d_i$ gilt. Andernfalls wird kein Gewinn für J_i erzielt.

- (a) Berechnen Sie mittels vollpolynomialem Approximationsschema eine Näherungslösung mit der Genauigkeitsschranke $\varepsilon=0,4.$
- (b) Welche Tupel lassen sich in der im letzten Schritt erstellten Menge $R^{(5)}$ durch Anwendung des Dominanzkriteriums ausschließen?

(12 Punkte)

2. Gegeben ist ein Problem $1|prec, r_i \geq 0|\sum w_i T_i$ mit n=5 Aufträgen J_1, \ldots, J_5 und der Bereitstellungszeit r_i , dem Gewicht w_i , der Bearbeitungszeit t_i und dem Due Date d_i für Auftrag J_i $(1 \leq i \leq 5)$:

i	1	2	3	4	5
r_i	1	3	16	7	11
w_i	1	3	5	4	6
t_i	4	5	7	2	3
d_{i}	10	12	20	17	18

Ferner bestehen die Vorrangbedingungen $J_1 \to J_2$, $J_1 \to J_4$ und $J_2 \to J_3$.

- (a) Ermitteln Sie den Zielfunktionswert der nach nichtfallenden Bereitstellungszeiten (ERD-Reihenfolge) sortierten Auftragsreihenfolge p.
- (b) Ermitteln Sie den besten Nachbarn der ERD-Reihenfolge p in der API-Nachbarschaft.
- (c) Wie viele zulässige Nachbarn von p existieren in der Pairwise Interchange Nachbarschaft?

(12 Punkte)

3. Gegeben sei ein Flow Shop Problem $F3||C_{max}$ mit n=6 Aufträgen J_1, \ldots, J_6 und der Bearbeitungszeitmatrix

$$T = (t_{ij}) = \begin{pmatrix} 7 & 11 & 12 \\ 8 & 4 & 9 \\ 10 & 7 & 5 \\ 5 & 9 & 3 \\ 6 & 5 & 8 \\ 9 & 6 & 7 \end{pmatrix},$$

wobei t_{ij} die Bearbeitungszeit von Auftrag J_i auf Maschine M_j bezeichnet.

Bestimmen Sie die untere Schranke $LB = \max\{LB_i \mid i = 1, 2\}$ für den Zielfunktionswert aller Auftragsreihenfolgen p, die mit J_3 beginnen und mit J_4, J_2 enden, d.h. $p = (J_3, \ldots, J_4, J_2)$.

(11 Punkte)

4. Gegeben sei ein Job Shop Problem mit n=3 Aufträgen $J_1, J_2, J_3, m=3$ Maschinen M_1, M_2, M_3 und der Bearbeitungszeitmatrix

$$T = (t_{ij}) = \begin{pmatrix} 4 & 7 & 4 \\ 5 & 5 & 4 \\ 4 & 3 & 9 \end{pmatrix}$$

 $(t_{ij}$ Bearbeitungszeit von J_i auf M_j). Ferner seien die Gewichte der Aufträge $w_1 = 3, w_2 = 1$ und $w_3 = 7$ für J_1, J_2, J_3 gegeben. Betrachtet wird ein zulässiger Plan beschrieben durch die Rangmatrix

$$A = (a_{ij}) = \begin{pmatrix} 2 & 1 & 3 \\ 1 & 2 & 4 \\ 3 & 4 & 1 \end{pmatrix},$$

wobei a_{ij} den Rang der Operation (i, j) bezeichnet.

- (a) Erstellen Sie das maschinenorientierte Ganttdiagramm für den durch A beschriebenen Plan und geben Sie den Zielfunktionswert für $F_1 = \sum w_i C_i$ an.
- (b) Es wird die Reihenfolge der Aufträge J_1 und J_3 auf Maschine M_1 vertauscht, d.h. $p^1 = (J_2, J_3, J_1)$, während die anderen organisatorischen Reihenfolgen unverändert bleiben. Verbessert sich der Zielfunktionswert $F_1 = \sum w_i C_i$ nach dem Austausch?
- (c) Ermitteln Sie die untere Schranke $LB_1^1(D_S)$ für die Zielfunktion $F_2 = C_{max}$ und $D_S = \emptyset$ bzgl. M_1 , d.h. es wird die Wurzel des Verzweigungsbaumes betrachtet und nur die technologischen Reihenfolgen sind gemäß A fixiert.

(15 Punkte)