Sommersemester 2014

Klausur: 1471 Scheduling Prüfer: Prof. Dr. F. Werner

Zugelassene Hilfsmittel:

- Zwei A4-Blätter (mit beliebigem Vorlesungsmaterial)
- ausgedruckte Datei 'Komplexitaet.pdf' (4 Seiten)
- Taschenrechner

Die folgenden vier Aufgaben sind zu bearbeiten. Die Angabe des Resultats allein ist nicht ausreichend. Der Rechenweg zum Erhalt der Lösung muss ersichtlich sein.

Aufgabenstellung:

1. Betrachtet wird das Einmaschinenproblem $1||\sum w_iU_i$ mit n=4 Aufträgen J_1, \ldots, J_4 , wobei für jeden Auftrag $J_i(1 \leq i \leq 4)$ ein Gewicht w_i , eine Bearbeitungszeit t_i und ein Due Date d_i wie folgt gegeben sind:

Bestimmen Sie den optimalen Zielfunktionswert mittels dynamischer Optimierung und geben Sie alle optimalen Auftragsreihenfolgen an.

(11 Punkte)

2. Gegeben ist ein Problem $1|r_i \geq 0, prec, C_i \leq d_i|\sum w_iC_i$ mit n=5 Aufträgen J_1, \ldots, J_5 , der Vorrangbedingung $J_3 \rightarrow J_5$ sowie der Bereitstellungszeit r_i , der Bearbeitungszeit t_i , dem Gewicht w_i und dem einzuhaltenden Deadline d_i für Auftrag J_i $(1 \leq i \leq 5)$ wie folgt:

- (a) Gehört das zugehörige Entscheidungsproblem zur Klasse P oder NP-complete (Begründung)?
- (b) Bestimmen Sie den Zielfunktionswert der EDD (earliest due date)-Reihenfolge p^{EDD} .
- (c) Ermitteln Sie den besten Nachbarn von p^{EDD} in der API-Nachbarschaft.

(13 Punkte)

3. Gegeben sei ein Flow Shop Problem $F3||C_{max}|$ mit n=5 Aufträgen

 J_1, \ldots, J_5 und der Bearbeitungszeitmatrix

$$T = (t_{ij}) = \begin{pmatrix} 3 & 4 & 2 \\ 10 & 3 & 8 \\ 4 & 5 & 6 \\ 12 & 2 & 5 \\ 3 & 10 & 4 \end{pmatrix},$$

wobei t_{ij} die Bearbeitungszeit von Auftrag J_i auf Maschine M_j bezeichnet. Bestimmen Sie die untere Schranke $LB = \max\{LB_1, LB_2\}$ für den Ziel-

funktionswert aller Auftragsreihenfolgen, die mit J_3 beginnen und mit J_1, J_4 enden, d.h. $p^* = (3, ..., 1, 4)$ auf allen Maschinen.

(b) Seien nun für jeden Auftrag J_i zusätzlich ein Bereitstellungstermin r_i , ein Due Date d_i und ein Gewicht w_i wie folgt gegeben:

Vervollständigen Sie die Teilreihenfolge p^* von (a), indem Sie die fehlenden Aufträge gemäß EDD-Regel auf den freien Positionen anordnen. Zeichnen Sie das maschinenorientierte Ganttdiagram der dabei erhaltenen Reihenfolge p und geben Sie deren Zielfunktionswert für das Problem $F3|r_i \geq 0|\sum w_iU_i$ an.

(14 Punkte)

4. Gegeben sei das Job Shop Problem $J||C_{max}$ mit n=3 Aufträgen, m=4 Maschinen, der Bearbeitungszeitmatrix

$$T = (t_{ij}) = \begin{pmatrix} 6 & 9 & 10 & 8 \\ 7 & 7 & 11 & 6 \\ 6 & 10 & 4 & 15 \end{pmatrix}$$

 $(t_{ij}$ - Bearbeitungszeit von Auftrag J_i auf Maschine M_j) sowie den technologischen Reihenfolgen $q^1=(1,4,3,2),\ q^2=(4,3,2,1)$ und $q^3=(1,4,3,2)$ für die Aufträge J_1,J_2 und J_3 . Es liege ein Teilplan beschrieben durch die Rangmatrix

$$A = (a_{ij}) = \left(\begin{array}{ccc} \cdot & \cdot & 4 & \cdot \\ \cdot & \cdot & 2 & \cdot \\ 1 & 4 & 3 & 2 \end{array}\right)$$

vor.

Ermitteln Sie die Rangmatrizen der Teilpläne, die sich durch Einfügung der nächsten Operation gemäß nichtwachsender Bearbeitungszeiten ergeben! Welcher Teilplan wird für die weiteren Einfügeschritte ausgewählt, wenn der längste Weg, der die eingefügte Operation enthält, minimal sein soll?

(12 Punkte)