1. Multivariable Calculus

Definition 1:

A set M is called convex if for any two

points (vectors) x!,x? € M, any convex

combination
Axt + (1 — \)x?
with 0 < A <1 also belongs to set M.

Theorem 1:
Let My, Mo, ..., M, be convexr sets. Then
M=MN"MyN...NMp,

15 also convex.




Definition 2:

Let M C R"™ be a convex set. A function
f: M — R is called convex on M if

FOXMH(1=A)x%) < Af(H+H(1=N)f(x%) (6)
for all x1,x2% € M and all X\ € [0, 1].

Function f is called concave if (6) holds
with < replaced by >.



Theorem 2:

Let f: Dy — R, Dy CR", be twice con-
tinuously differentiable and M C Dy con-
ver. Then:

(a) f is convex on M <= the Hessian
matriz H(x) is positive semi-definite for

all x € M ;

(b) f is concave on M <= the Hessian
matric H f(X) 15 negative sema-definite for
all x € M;

(c) the Hessian matriz H ¢(x) is positive
definite for all x € M — f is strictly
convex on M ;

(d) the Hessian matriz H¢(x) is negative
definite for all x € M = f 1is strictly
concave on M ;




Theorem 3:

Let f - M —-R,g: M — R and M C R"
be convex. Then:

(a) f, g are convex on M and a > 0,0 >0
—> af + bg 1s convex on M ;

(b) f,qg are concave on M and a > 0,b >
0 = af + bg is concave on M.




Theorem 4:

Let f : M — R with M C R" be con-
vex and let I Dp — R with Ry C Dp.
Then:

(a) f is convex and F is convexr and in-
creasing —> (F'o f)(z) = F(f(x)) is con-

VEx;

(b) [ is convex and F' is concave and de-
creasing — (F'o f)(z) = F(f(x)) is con-

Cave;

(c) f is concave and F is concave and in-
creasing —> (F'o f)(x) = F(f(x)) is con-
cave;

(d) f is concave and F is convex and de-
creasing =—> (F o f)(x) = F(f(x)) is con-
vex;




Theorem 5:

Let M C R" be a convex set and f : M —
R be continuously differentiable. Then:

(a) f is convex on M <—
vxl x2 e M -
%) 2 fh) + (xF = x)T - V()

(b) f is strictly convex on M <~
vxl x? e M, x! #x?:
FO2) > ) + (o = x) T V)




Definition 3:

Let M C R" be convex and f : M — R.

For any a € R, the set
Po={xe M| f(x) = a}

is called an upper level set for f.



Theorem 6:

Let M C R" be a convex set and f : M —
R. Then:

(a) If f is concave, then
Po={xe M| f(x) = a}

s a convez set for any a € R.

(b) If f is convex, then
Pi={x e M| f(x) < a}
(lower level set) is a convexr set for any

a € R.

(c) f is conver <=
M = {(xy) [ x € M andy > f(x)}

1S a convex set.

(d) f is concave <=
My ={(x,y) | x €M andy < f(x)}

1S a convex set.




Definition 4:

Let M C R" be a convex set and f : M —
R.

Function f is called quasi-concave if the
upper level set

Po={xe M| f(x) > a}
is convex for any number a € R.

Function f is called quasi-convex if — f is
quasl-concave.



Theorem 7:

Let M C R" be a convex set, f: M — R
and I': Dp — R with Ry € Dp. Then:

(a) If f is quasi-concave (quasi-conver)
and F' 1s increasing, then

(Fro f)lx) = F(f(z))

IS quasi-concave (quasi-convex).

(b) If f is quasi-concave (quasi-convex)
and F' 1s decreasing, then

(Fro f)(x) = F(f(z))

IS quasi-convexr (quasi-concave).
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Definition 5:

Let M C R" be a convex set and f : M —
R.

Function f is called strictly quasi-concave
if

FO!+ (1= X)x%) > min{ f(x"), f(x*)}
for all x1,x% € M with x! # x? and \ €
(0,1).

Function f is called strictly quasi-convex
if —f is strictly quasi-concave.
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Theorem 8:

Let M C R" be a convex set and f : M —
R continuously differentiable. Then:

f s quasi-concave on M <

for all x1,x% € M:
{163 > fxh) =

VT (x2-x) >0 |
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Theorem 9:

Let f - Dy — R, Dy C R? be twice con-
tinuously differentiable on a convex set M
and Bo(x,y) as defined. Then:

(a) A necessary condition for f to be quasi-
concave on M 1is that

Ba(z,y) = 0
for all (x,y) € M.

(b) A sufficient condition for f to be strictly
quasi-concave on M 1is that

folz,y) #0  and  B(z,y) >0
for all xz,y € M.
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Theorem 10:

Let f : Dy — R, Dy C R", be twice
continuously differentiable on a convex set
M C R"™ and let

0 fr(x) ..o fo,(x)
B,(x) = For(X) foo(X) - fayz,(X)

Fer (%) Loy () - farey (X)
Then:

(a) A necessary condition for f to be quasi-
concave 1s that

(=1)" - Bp(x) = 0
forallx e M and allr=1,2,...,n.

(b) A sufficient condition for f to be strictly
quasi-concave is that

(—1)" - Bp(x) >0
forallx e M and allr =1,2,...,n.
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2. Nonlinear Programming

Definition 1:

A point x* € M is called a global mini-
mum point for f in M it

f(x) < f(x)
for all x € M.

Theorem 1:  (necessary first-order con-
ditions)

Let f: M — R be differentiable and x* =
(z7,25,...,2y) be an interior point of M.
A necessary condition for x* to be an ex-
treme point 18

1.€.

fm(X*) = fm(X*) = ... = f,(X7) = 0.
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Theorem 2: (sufficient conditions)

Let f : M — R with M C R" being a
convex set.

(a) If f is convex on M, then:

x* is a (global) minimum point for f in

M <— x* is a stationary point for f.

(b) If f is concave on M, then:

x* is a (global) maximum point for f in

M <— x* is a stationary point for f.
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Definition 2:
The set
U(x") = {x e R" | |x —x*| < €}

is called an (open) e-neighborhood U (x*)
with € > 0.

Definition 3:

A point x* € M is called a local mini-
mum point for function f in M if there
exists an € > 0 such that

f(x¥) < f(x)
for all x € M N Ug(x™).
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Theorem 3: (necessary optimality condi-
tion)

Let f : M — R be continuously differen-
tiable and x* be an interior point of M

and a local minimum or marimum point.
Then
Vfix*) =0.

Theorem 4: (sufficient optimality condi-
tion)

Let f: M — R be twice continuously dif-
ferentiable and x* be an interior point.
(a) If Vf(x*) = 0 and H(X") is positive
definite, then x* is a local minimum point.
(b) If Vf(x*) = 0 and H(X") is nega-
tive definite, then xX* is a local maximum
pont.
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Theorem 5: (necessary optimality con-
dition; Lagrange’s theorem)

Let functions f and g;, 1 =1,2,...,m, m <
n, be continuously differentiable and let
xV = (¥, 29, ... 2}) € Dy be a local ex-
treme point of function f subject to the
constraints

gi(x1, @9, ... an) =0,i=1,2,...,m
Moreover, let |J(zY,29,...2})| # 0.

Then there exists a \O = ()\0, Ao )\7071)
such that

vV L(x%\0) =
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Theorem 6: (local sufficient conditions)

Let functions f and ¢;, © = 1,2,....,m, m < n, be twice
continuously differentiable and (x° \°) with x° € Dy be a
solution of the system V L(x;\) = 0. Moreover, let

( 0 cee 0 L>\1$1 (X; )\) s L)\lmn (X; )\) \
. . 0 cee 0 L)\mxl(X; /\) s L)\mxn (X; )\)
MO = LGN Lo | L 06 A) — Leye, (6 )
\ L-Tn)\l (X’ >\) U anAm(X; >\) anxl (X7 )\) T anxn (X7 )\) /

be the bordered Hessian and consider its leading principal
minors D;(x% \%) of order j =2m+1,2m+2,....,n+m at
point (x°; \°). Then:

(1) If all leading principal minors D;(x% A%), 2m+1 < j <

n + m, have the sign (—=1)™, then x° = (2,29,...,20) is
a local mintmum point of function f subject to the given

constraints.

(2) If all leading principal minors D;(x%;A\°), 2m+1 < j <
n+m, alternate in sign, the sign of D, n(x% A\°) being that
of (=1)", then x° = (29,29, ..., 20) is a local mazimum point
of function f subject to the given constraints.

(3) If neither the conditions of (1) nor of (2) are satisfied,
then x° is not a local extreme point of function f subject
to the constraints g;(x) = 0,7 = 1,2,...,m. Here the case
when one or several leading principal minors have value zero
is not considered as a violation of condition (1) or (2).
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Theorem 7: (sufficient condition for global
optimality)

Let there exist numbers ()\O, )\O, el )\Qn) =
M\ and an xY € D¢ such that VL(XO; )\0) =
0. Then:

(a) If
L(x) = f(x)+ Y A gi(x)
1=1

0

1s concave in X, then X~ 1s a global maxi-

mum point.

(b) If
L(x) = f(x)+ Y A} gi(x)
1=1

0

1s convexr in X, then x° 1s a global mini-

mum point.
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Definition 4:

A point (x*, \*) is called a saddle point
of the Lagrangian function L. it

L(x*, \) < L(x*,\*) < L(x,\*) (12)
for all x € R", A € R

Theorem 8:

If (x*, \*) with \* > 0 is a saddle point
of L, then x* is an optimal solution of
problem (11).
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Theorem 9: (Theorem by Kuhn and
Tucker)

If condition (S) is satisfied, then x* is an
optimal solution of the convex problem
f(x) — min!
s.t. (13)
g;(x) <0, 1=1,2,...,m
f,q91,...,9m convex functions

if and only if L has a saddle point (x*, \¥)
with \* > 0.
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Theorem 10: (KKT conditions)

If condition (S) is satisfied and functions
f,q1,...,9m are continuously differentiable
and convez, then x* is an optimal solution
of problem (13) if and only if the fol-
lowing Karush-Kuhn-Tucker (KKT) con-
ditions (14) are satisfied:

V) +> A Vgi(x") =0
1=1

A; - gi(xT) =0
QZ(X*> < 0
AE >0
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DUALITY IN LINEAR PROGRAM-
MING

Theorem 11:
The dual problem of (D) is again problem

(P).

Theorem 12:

Let
x = (x1,29, ... ,:En)T
be an arbitrary feasible solution of prob-
lem P and
U = (Ut 1, Uyt - - - ,un+m)T
be an arbitrary feasible solution of prob-
lem (D). Then

z():cT-X<bT-u:w0.
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Theorem 13:

If one of the problems (P) or (D) has an
optimal solution, then the other one has
also an optimal solution, and both opti-
mal solutions x* and u* have the same
objective function value, 1.e.

Zgnaa: _ CT e bT ut = wz)nm

Theorem 14:

If one of the problems (P) or (D) has a
feasible solution but no optimal solution,
then the other one does not have a feasible
solution at all.
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Theorem 15:

The coefficients of the non-basic variables
xj in the objective row of the optimal tableau
of problem (P) are equal to the optimal
values of the corresponding variables u;
of problem (D), and conversely:

The optimal values of the basic vartables
of problem (P) are equal to the coefficients
of the corresponding dual variables in the
objective row of problem (D).
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Some comments on quasi-convex pro-
gramming

Theorem 16:
Consider a problem (20) (or (11)) , where

function f 1s continuously differentiable
and quasi-convex. Assume that there ex-
ist numbers A7, A5, ..., A}, and a vector

x* such that

(a) the KK'T conditions are satisfied,
(b) Vf(x*)#0, and

(c) X7 - gi(x) is quasi-convex for

i=1,2.....m.

Then x* is optimal for problem (20)
(problem (11), respectively ).
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Constraint qualifications

Definition 5:
A constraint function g; with
gZ<X*) = 0, X" € M,

is said to be active at x*.
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Theorem 17: (Arrow-Hurwicz-Uzawa)

Conditions (KK'T) are necessary for con-
dition (LM ), provided that any one of the
following conditions holds:

(a) The functions g;(x), i = 1,2,...,m,
are all concave.

(b) The functions g;(x), i = 1,2,...,m,
are all linear.

(c) The functions g;(x), 1 = 1,2,...,m,
are all convex and condition (S) is satis-

fied.

(d) The constraint set M 1is conver and
possesses an interior point, and V g;(x*) #
0 for all j € E, where E 1s the set of all
the active constraints at x*.

(e) Rank condition (R) is satisfied.
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Theorem 18: (Arrow and Enthoven)

Let function f and g;, 1 =1,2,...,m, be
quasi-convex functions. Then conditions
(KKT) are sufficient for condition (M),
if any one of the following conditions 1s
satisfied:

(a) fr,(x*) > 0 for at least one variable
;.

[/

(b) fo:(x*) < 0 for at least one relevant
variable x;, where x; s said to be a rel-
evant variable, if there exists a feasible
x € R such that T; > 0.

(c) Vf(x*) # 0 and f is twice continu-
ously differentiable in a neighborhood.

(d) Function f is convex.
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4. Differential Equations

Definition 1:
A relationship

F(‘/’C7 y? y/7 y//7 © e 7y<n>> — O

between the independent variable x. a func-
tion y(x) and its derivatives is called an or-
dinary differential equation.

The order of the differential equation is de-
termined by the highest order of the deriva-
tives appearing in the differential equation.
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Definition 2:
A function y(z) for which relationship
F(:C7 y? y/7 y//7 c y(n>> — O

holds for all values x € Dy, 1s called a so-
lution of the differential equation.

The set

S ={y) | Flx,y, 9y, ...y™) =0
for all z € Dy}

is called the set of solutions or general
solution of the differential equation.
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Definition 3:

A point a represents an equilibrium or
stationary state for equation (7) if

F(a)=0.

Theorem 1:

The homogeneous differential equation (9)
has the general solution

vy (t) = Cr21(t)+Car wo(t);  C1,Co €R,
where x1(t), xo(t) are two solutions that

are not proportional (i.e. linearly inde-
pendent).

The non-homogeneous equation (8) has the
general solution

r(t) = zp(t) + zN(1)
= C1 21(t) + Oy 22(t) + 2N (1),
where xn(t) is any particular solution of
the non-homogeneous equation.
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Table: Settings for special forcing terms

Forcing term ¢(t)

Setting xy(?)

p'GSt

(a)

A . 6st
if s is not a root of the characteristic
equation

A-th.est
if s is a root of multiplicity £ of the
characteristic equation

Pt 4+ po1t" N+ it + o

A+ A, "+ At + A
if b £ 0 in the homogeneous equation

tk(Antn + An_ltn_l + ...+ At + Ao)
with k =1ifb=0 (x does not occur)
and k=2ifa=0=0

(x, & do not occur)
in the homogeneous equation,

p - cosst 4 7 -sin st
(p or r can be equal to zero)

A cos st + Bsin st
if s7 is not a root of the characteristic
equation

th . (A-cosst+ B -sinst)
if si is a root of multiplicity k(< 2)
of the characteristic equation
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Definition 4:

Equation (11) is called globally asymp-
totically stable if every solution

xp(t) = Cp o1(t) + Co wo(t)

of the associated homogeneous equation tends
to 0 as t — oo for all values of C and Cs.

Theorem 2:
Equation
T+ ax + br = q(t)

15 globally asymptotically stable if and only
if a >0 and b > 0.
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Theorem 3:

Suppose that |A| # 0. For the linear sys-
tem

T =aprtapytq
Y = a1 T+ any + g2,
the equilibrium point (x*,y™) is globally
asymptotically stable if and only if
tr(A) = a1 + ag < 0

and

aj] a2
az1 a2
where tr(A) is the trace of A

Al = > 0,

(or equivalently, if and only if both eigen-
values of A have negative real parts).
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Theorem 4: (Lyapunov)

Let (a, b) be an equilibrium point of system

(17) and
A= J(a7b) — (fx(avb) gy(&,b

If
tr(A) = fz(a,b) + gy(a,b) <0
and
Al = fa(a, b)-gy(a, b)—gu(a,b) fy(a,b) >0

(i.e. both eigenvalues of A have negative
real parts), then (a,b) is locally asymp-
totically stable.
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Theorem 5: (Olech)

Let (a,b) be an equilibrium point of sys-
tem (17) and A(x,y) be the Jacobian ma-
triz at point (z,y) € R%. Assume that the
following three conditions are satisfied:

(a) tr(Alz,y)) = fa(2,y) + gy(2,y) <0
for all (z,y) € R?;

(b) det A(z,y) = fu(x,y)gy(x, y)—fy(z,y)-
gz(x,y) >0 for all (x,y) € R?:

(c) fuelz,y)-gy(z,y) # 0 for all (z,y) € R?
or

fy(2,y) - gu(z,y) # 0 for all (z,y) € R%.

Then (a,b) is globally asymptotically sta-
ble.
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Theorem 6:

Let (a, b) be an equilibrium point of system

(17) and
_ _ f:lf(aa b) fy(a’v b))
A=Ja,b <gx<a, ) gylab) )
Moreover, let det A < 0

(or equivalently, the eigenvectors of A are
nonzero real numbers of opposite signs).

Then:

For any given start point ty, there exist
exactly two solution paths

(z1(t),91(t))  and  (22(t), y2(t))

defined on [tg, 00) that converge towards
(a, b) from opposite directions in the phase
plane

(i.e. (a,b) is a local saddle point).

40



4.3 Linear differential equations of
order n

Definition 5:
The solutions

r1(t), xo(t), ..., xm(t), m <mn,

of a linear homogeneous differential equation

of order n are said to be linearly indepen-
dent if

for all £ € D, is only possible for
Cr=0=...=Cp, =0.

Otherwise, the solutions are said to be lin-
early dependent.
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Theorem 7: The solutions

r1(t), xo(t), ..., xm(t), m <mn,

of a linear homogeneous differential equa-

tion of order n are linearly independent if
and only if

W) — .; '2 x'mz(t) 20
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Theorem 8: A linear homogeneous dif-
ferential equation of order n has the gen-
eral solution

rp(t) = Cra(t)+ Coxa(t)+. ..+ Crhan(t),

where x1(t), xo(t),...,xn(t) are n linearly

independent solutions and C, Cy, ..., Cy €
R.

The non-homogeneous equation (18) has
the general solution

z(t) =z g(t) + zn (D),
where xn s a particular solution of equa-

tion (18).
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5 CALCULUS OF VARIATIONS AND
CONTROL THEORY

5.1 Calculus of variations

Theorem 1: If
F(t,z, )

is concave in (x,x), a feasible x*(t) that
satisfies the Euler equation solves the maz-
imization problem (1).
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Theorem 2: (Transversality condi-
tions)

If x*(t) solves problem (3) with either (a)
or (b) as the transversality condition, then
¥ (t) must satisfy the Fuler equation.

With the terminal condition (a), the transver-
sality condition 1s

I

With the terminal condition (b), the transver-
sality condition 1s

()., ="
( (85;*)“1 =0 ifa’(t1) >z ) ()
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5.2 Control Theory

5.2.1 Basic Problems

Theorem 3: (Maximum principle)

Suppose that

(2™ (t), u™(t))

is an optimal pair for problem (9) - (10).

Then there exists a continuous function
p(t) such that, for all t € [ty,t1],

o u = u*(t) maximizes

H(t,z*(t), u, p(t)) foru € (—o0,00) (11)

i p(t) — _Ha:(ta $*<t), u*<t>,p<t>), p(tl) =0 (12)
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Theorem 4:

If the condition
H(t,x,u,p(t)) is concave in (x,u)

for each t € [tg,t] (13)
s added to the conditions of Theorem &,
then we obtain a sufficient optimality con-
dition, 1.e.,
if we find a triple
(z%(t), u™(t), p(t))
that satisfies (10) - (13), then

(2™(t), u™(t))

1s optimal.
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5.2.2 Standard Problems

Theorem 5: (Maximum principle for stan-
dard end constraints)

Suppose that (x*(t),u*(t)) is an optimal pair for
problem (16) - (18). Then there exist a continu-
ous function p(t) and a number py € {0,1} such
that for all t € [ty,t1], we have (po,p(t)) # (0,0)
and, moreover:

e The control u = u*(t) maximizes the Hamilto-
nian H(t,x*(t),u,p(t)) w. r. t. uw e U, i.e.,
)

)
H(t, z*(t), u, p(t)) < H(t, z*(t),u(t),p(t))
for all uw € Uy,

o p(t) = —H.(t, 2"(t), u"(t), p(t)); (19)

e Corresponding to each of the terminal condi-
tions (b) and (c) in (18), there is a transver-
sality condition on p(ty):

(b°) p(t1) = 0 (with p(t1) = 0 if x*(t1) > 1);

(C )) p(t1> =0;

(In case (a) there is no condition on p(ty)).
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Theorem 6: (Mangasarian)

Suppose that

(2*(t), w(1))
15 a feasible pair with corresponding costate
variable p(t) such that conditions (1) - (111)

in Theorem 5 are satisfied with pg = 1.
Suppose further that

e the control region U is convex and that
o H(t,x,u,p(t)) is concave in (x,u) for

every t € |ty, 1]

Then
(2™ (), u(t))

1s an optimal pair.
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5.2.3 Current Value Formulations

Theorem 7: (Maximum principle;
current value formulation)

Suppose that a feasible pair

(2(1), u™(1))
solves problem (20) a let H® be the cur-
rent value Hamailtonian. Then there ezx-

ist a continuous function A(t) and a num-

ber \qg (either 0 or 1) such that for all

t € [to, 1], we have (Mg, A(t)) # (0,0) and:

(1) u = u*(t) maximizes H(t, x*(t), u, \(t))
foru € U;

() A(t) = —rA(t) = — 2O AD)

(I11) The transversality conditions are:

(a’) no condition on A(ty);
(0°) Alt1) = 0

(At1) = 0 of 2*(t1) > 21);
(c’) Mty) = 0.
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5.2.4 Scrap Values

Theorem 8: (Sufficient conditions with
scrap value)

Suppose that (x*(t), u*(t)) is a feasible pair
for the scrap-value problem (21) and that
there exists a continuous function p(t) such
that for all t € [tg, t1], we have:

e The control u = u*(t) maximizes the
Hamiltonian  H(t,x*(t),u,p(t)) with
respect to u € U;

o p(t) = —Hy(t,z*(t),u(1), p(t));
p(t1) = S'(z*(t1))

o H(t,x,u,p(t)) is concave in (x,u) and
S(x) is concave.

Then
(27 (¢), u(1))

solves the problem.
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Current value formulation
(with scrap value)

Theorem 9: (Current value maximum prin-
ciple with scrap value)

Suppose that a feasible pair (z*(t), u*(t)) solves prob-
lem (22). Then there exist a continuous function

A(t) and a number Ny € {0,1} such that for all
t € [to, t1], we have (Ao, A(t)) # (0,0) and:

o The control u = u*(t) maximizes
He(t,z"(t), u, \(t))
with respect to u € U;
COH (¢, 27 (8), u (1), A(t)) |
ox ’

° )\(t) — T)x(?f) =

e The transversality conditions are:
(a’) no condition on A(ty);
0S(x*(t1))
ox
(with equality if x*(t1) > x1);

, B 0S(x*(t1))
(C))\(?fl)—)\o' 833

(b7) Nt1) > Ao -
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Theorem 10:

The conditions in Theorem 9 with \g = 1
are sufficient if

o U 1s conver,
o HE(t, x,u, A(t)) is concave in (x,u) and

e S(x) is concave in x.
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