
1. Multivariable Calculus

Definition 1:

A set M is called convex if for any two
points (vectors) x1,x2 ∈ M , any convex
combination

λx1 + (1− λ)x2

with 0 ≤ λ ≤ 1 also belongs to set M .

Theorem 1:

Let M1, M2, . . . ,Mn be convex sets. Then

M = M1 ∩M2 ∩ . . . ∩Mn

is also convex.
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Definition 2:

Let M ⊆ Rn be a convex set. A function
f : M → R is called convex on M if

f (λx1+(1−λ)x2) ≤ λf (x1)+(1−λ)f (x2) (6)

for all x1,x2 ∈ M and all λ ∈ [0, 1].

Function f is called concave if (6) holds
with ≤ replaced by ≥.
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Theorem 2:

Let f : Df → R, Df ⊆ Rn, be twice con-
tinuously differentiable and M ⊆ Df con-
vex. Then:

(a) f is convex on M ⇐⇒ the Hessian
matrix Hf (x) is positive semi-definite for
all x ∈ M ;

(b) f is concave on M ⇐⇒ the Hessian
matrix Hf (x) is negative semi-definite for
all x ∈ M ;

(c) the Hessian matrix Hf (x) is positive
definite for all x ∈ M =⇒ f is strictly
convex on M ;

(d) the Hessian matrix Hf (x) is negative
definite for all x ∈ M =⇒ f is strictly
concave on M ;
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Theorem 3:

Let f : M → R, g : M → R and M ⊆ Rn

be convex. Then:

(a) f, g are convex on M and a ≥ 0, b ≥ 0
=⇒ af + bg is convex on M ;

(b) f, g are concave on M and a ≥ 0, b ≥
0 =⇒ af + bg is concave on M .
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Theorem 4:

Let f : M → R with M ⊆ Rn be con-
vex and let F : DF → R with Rf ⊆ DF .
Then:

(a) f is convex and F is convex and in-
creasing =⇒ (F ◦ f )(x) = F (f (x)) is con-
vex;

(b) f is convex and F is concave and de-
creasing =⇒ (F ◦ f )(x) = F (f (x)) is con-
cave;

(c) f is concave and F is concave and in-
creasing =⇒ (F ◦ f )(x) = F (f (x)) is con-
cave;

(d) f is concave and F is convex and de-
creasing =⇒ (F ◦ f )(x) = F (f (x)) is con-
vex;
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Theorem 5:

Let M ⊆ Rn be a convex set and f : M →
R be continuously differentiable. Then:

(a) f is convex on M ⇐⇒
∀x1,x2 ∈ M :

f (x2) ≥ f (x1) + (x2 − x1)T · ∇f (x1)

(b) f is strictly convex on M ⇐⇒
∀x1,x2 ∈ M, x1 6= x2 :

f (x2) > f (x1) + (x2 − x1)T · ∇f (x1)
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Definition 3:

Let M ⊆ Rn be convex and f : M → R.

For any a ∈ R, the set

Pa = {x ∈ M | f (x) ≥ a}
is called an upper level set for f .
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Theorem 6:

Let M ⊆ Rn be a convex set and f : M →
R. Then:

(a) If f is concave, then

Pa = {x ∈ M | f (x) ≥ a}
is a convex set for any a ∈ R.

(b) If f is convex, then

P a = {x ∈ M | f (x) ≤ a}
(lower level set) is a convex set for any
a ∈ R.

(c) f is convex ⇐⇒
M

f
= {(x, y) | x ∈ M and y ≥ f (x)}

is a convex set.

(d) f is concave ⇐⇒
Mf = {(x, y) | x ∈ M and y ≤ f (x)}

is a convex set.
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Definition 4:

Let M ⊆ Rn be a convex set and f : M →
R.

Function f is called quasi-concave if the
upper level set

Pa = {x ∈ M | f (x) ≥ a}
is convex for any number a ∈ R.

Function f is called quasi-convex if −f is
quasi-concave.
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Theorem 7:

Let M ⊆ Rn be a convex set, f : M → R
and F : DF → R with Rf ⊆ DF . Then:

(a) If f is quasi-concave (quasi-convex)
and F is increasing, then

(F ◦ f )(x) = F (f (x))

is quasi-concave (quasi-convex).

(b) If f is quasi-concave (quasi-convex)
and F is decreasing, then

(F ◦ f )(x) = F (f (x))

is quasi-convex (quasi-concave).
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Definition 5:

Let M ⊆ Rn be a convex set and f : M →
R.

Function f is called strictly quasi-concave
if

f (λx1 + (1− λ)x2) > min{f (x1), f(x2)}
for all x1,x2 ∈ M with x1 6= x2 and λ ∈
(0, 1).

Function f is called strictly quasi-convex
if −f is strictly quasi-concave.
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Theorem 8:

Let M ⊆ Rn be a convex set and f : M →
R continuously differentiable. Then:

f is quasi-concave on M ⇐⇒

for all x1,x2 ∈ M :{
f (x2) ≥ f (x1) =⇒

[∇f (x1)]T · (x2 − x1) ≥ 0
}
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Theorem 9:

Let f : Df → R, Df ⊆ R2 be twice con-
tinuously differentiable on a convex set M
and B2(x, y) as defined. Then:

(a) A necessary condition for f to be quasi-
concave on M is that

B2(x, y) ≥ 0

for all (x, y) ∈ M.

(b) A sufficient condition for f to be strictly
quasi-concave on M is that

fx(x, y) 6= 0 and B2(x, y) > 0

for all x, y ∈ M.
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Theorem 10:

Let f : Df → R, Df ⊆ Rn, be twice
continuously differentiable on a convex set
M ⊆ Rn and let

Br(x) =

∣∣∣∣∣∣∣∣
0 fx1(x) . . . fxr(x)

fx1(x) fx1x1(x) . . . fx1xr(x)
. . . . . . . . . . . .

fxr(x) fxrx1(x) . . . fxrxr(x)

∣∣∣∣∣∣∣∣
Then:

(a) A necessary condition for f to be quasi-
concave is that

(−1)r ·Br(x) ≥ 0

for all x ∈ M and all r = 1, 2, . . . , n.

(b) A sufficient condition for f to be strictly
quasi-concave is that

(−1)r ·Br(x) > 0

for all x ∈ M and all r = 1, 2, . . . , n.
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2. Nonlinear Programming

Definition 1:

A point x∗ ∈ M is called a global mini-
mum point for f in M if

f (x∗) ≤ f (x)

for all x ∈ M .

Theorem 1: (necessary first-order con-
ditions)

Let f : M → R be differentiable and x∗ =
(x∗1, x

∗
2, . . . , x

∗
n) be an interior point of M .

A necessary condition for x∗ to be an ex-
treme point is

∇f (x∗) = 0,

i.e.

fx1(x
∗) = fx2(x

∗) = . . . = fxn(x∗) = 0.
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Theorem 2: (sufficient conditions)

Let f : M → R with M ⊆ Rn being a
convex set.

(a) If f is convex on M , then:

x∗ is a (global) minimum point for f in
M ⇐⇒ x∗ is a stationary point for f .

(b) If f is concave on M , then:

x∗ is a (global) maximum point for f in
M ⇐⇒ x∗ is a stationary point for f .
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Definition 2:

The set

Uε(x
∗) := {x ∈ Rn | |x− x∗| < ε}

is called an (open) ε-neighborhood Uε(x
∗)

with ε > 0.

Definition 3:

A point x∗ ∈ M is called a local mini-
mum point for function f in M if there
exists an ε > 0 such that

f (x∗) ≤ f (x)

for all x ∈ M ∩ Uε(x
∗).
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Theorem 3: (necessary optimality condi-
tion)

Let f : M → R be continuously differen-
tiable and x∗ be an interior point of M
and a local minimum or maximum point.
Then

∇f (x∗) = 0.

Theorem 4: (sufficient optimality condi-
tion)

Let f : M → R be twice continuously dif-
ferentiable and x∗ be an interior point.

(a) If ∇f (x∗) = 0 and H(x∗) is positive
definite, then x∗ is a local minimum point.

(b) If ∇f (x∗) = 0 and H(x∗) is nega-
tive definite, then x∗ is a local maximum
point.
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Theorem 5: (necessary optimality con-
dition; Lagrange’s theorem)

Let functions f and gi, i = 1, 2, . . . ,m, m <
n, be continuously differentiable and let
x0 = (x0

1, x
0
2, . . . , x

0
n) ∈ Df be a local ex-

treme point of function f subject to the
constraints

gi(x1, x2, . . . , xn) = 0, i = 1, 2, . . . ,m.

Moreover, let |J(x0
1, x

0
2, . . . x

0
n)| 6= 0.

Then there exists a λ0 = (λ0
1, λ

0
2, . . . , λ

0
m)

such that

∇ L(x0, λ0) = 0.
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Theorem 6: (local sufficient conditions)

Let functions f and gi, i = 1, 2, . . . ,m, m < n, be twice
continuously differentiable and (x0; λ0) with x0 ∈ Df be a
solution of the system ∇L(x; λ) = 0. Moreover, let

HL(x; λ) =



0 · · · 0 Lλ1x1
(x; λ) · · · Lλ1xn

(x; λ)
...

...
...

...
0 · · · 0 Lλmx1

(x; λ) · · · Lλmxn
(x; λ)

Lx1λ1
(x; λ) · · · Lx1λm

(x; λ) Lx1x1
(x; λ) · · · Lx1xn

(x; λ)
...

...
...

...
Lxnλ1

(x; λ) · · · Lxnλm
(x; λ) Lxnx1

(x; λ) · · · Lxnxn
(x; λ)


be the bordered Hessian and consider its leading principal

minors Dj(x
0; λ0) of order j = 2m + 1, 2m + 2, . . . , n + m at

point (x0; λ0). Then:

(1) If all leading principal minors Dj(x
0; λ0), 2m + 1 ≤ j ≤

n + m, have the sign (−1)m, then x0 = (x0
1, x

0
2, . . . , x

0
n) is

a local minimum point of function f subject to the given

constraints.

(2) If all leading principal minors Dj(x
0; λ0), 2m + 1 ≤ j ≤

n+m, alternate in sign, the sign of Dn+m(x0; λ0) being that

of (−1)n, then x0 = (x0
1, x

0
2, . . . , x

0
n) is a local maximum point

of function f subject to the given constraints.

(3) If neither the conditions of (1) nor of (2) are satisfied,

then x0 is not a local extreme point of function f subject

to the constraints gi(x) = 0, i = 1, 2, . . . ,m. Here the case

when one or several leading principal minors have value zero

is not considered as a violation of condition (1) or (2).
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Theorem 7: (sufficient condition for global
optimality)

Let there exist numbers (λ0
1, λ

0
2, . . . , λ

0
m) =

λ0 and an x0 ∈ Df such that ∇L(x0; λ0) =
0. Then:

(a) If

L(x) = f (x) +

m∑
i=1

λ0
i gi(x)

is concave in x, then x0 is a global maxi-
mum point.

(b) If

L(x) = f (x) +

m∑
i=1

λ0
i gi(x)

is convex in x, then x0 is a global mini-
mum point.
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Definition 4:

A point (x∗, λ∗) is called a saddle point
of the Lagrangian function L, if

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗) (12)

for all x ∈ Rn, λ ∈ Rm
+ .

Theorem 8:

If (x∗, λ∗) with λ∗ ≥ 0 is a saddle point
of L, then x∗ is an optimal solution of
problem (11).
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Theorem 9: (Theorem by Kuhn and
Tucker)

If condition (S) is satisfied, then x∗ is an
optimal solution of the convex problem

f (x) → min!

s.t. (13)

gi(x) ≤ 0, i = 1, 2, . . . ,m

f, g1, . . . , gm convex functions

if and only if L has a saddle point (x∗, λ∗)
with λ∗ ≥ 0.
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Theorem 10: (KKT conditions)

If condition (S) is satisfied and functions
f, g1, . . . , gm are continuously differentiable
and convex, then x∗ is an optimal solution
of problem (13) if and only if the fol-
lowing Karush-Kuhn-Tucker (KKT) con-
ditions (14) are satisfied:

∇f (x∗) +

m∑
i=1

λ∗i ∇gi(x
∗) = 0

λ∗i · gi(x
∗) = 0

gi(x
∗) ≤ 0

λ∗i ≥ 0

i = 1, 2, . . . ,m
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DUALITY IN LINEAR PROGRAM-
MING

Theorem 11:

The dual problem of (D) is again problem
(P).

Theorem 12:

Let
x = (x1, x2, . . . , xn)T

be an arbitrary feasible solution of prob-
lem P and

u = (un+1, un+2, . . . , un+m)T

be an arbitrary feasible solution of prob-
lem (D). Then

z0 = cT · x ≤ bT · u = w0.
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Theorem 13:

If one of the problems (P) or (D) has an
optimal solution, then the other one has
also an optimal solution, and both opti-
mal solutions x∗ and u∗ have the same
objective function value, i.e.

zmax
0 = cT · x∗ = bT · u∗ = wmin

0 .

Theorem 14:

If one of the problems (P) or (D) has a
feasible solution but no optimal solution,
then the other one does not have a feasible
solution at all.
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Theorem 15:

The coefficients of the non-basic variables
xj in the objective row of the optimal tableau
of problem (P) are equal to the optimal
values of the corresponding variables uj
of problem (D), and conversely:

The optimal values of the basic variables
of problem (P ) are equal to the coefficients
of the corresponding dual variables in the
objective row of problem (D).
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Some comments on quasi-convex pro-
gramming

Theorem 16:

Consider a problem (20) (or (11)) , where
function f is continuously differentiable
and quasi-convex. Assume that there ex-
ist numbers λ∗1, λ

∗
2, . . . , λ

∗
m and a vector

x∗ such that

(a) the KKT conditions are satisfied,

(b) ∇f (x∗) 6= 0, and

(c) λ∗i · gi(x) is quasi-convex for

i = 1, 2, . . . ,m.

Then x∗ is optimal for problem (20)
(problem (11), respectively ).
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Constraint qualifications

Definition 5:

A constraint function gi with

gi(x
∗) = 0, x∗ ∈ M,

is said to be active at x∗.
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Theorem 17: (Arrow-Hurwicz-Uzawa)

Conditions (KKT) are necessary for con-
dition (LM), provided that any one of the
following conditions holds:

(a) The functions gi(x), i = 1, 2, . . . ,m,
are all concave.

(b) The functions gi(x), i = 1, 2, . . . ,m,
are all linear.

(c) The functions gi(x), i = 1, 2, . . . ,m,
are all convex and condition (S) is satis-
fied.

(d) The constraint set M is convex and
possesses an interior point, and ∇gj(x

∗) 6=
0 for all j ∈ E, where E is the set of all
the active constraints at x∗.

(e) Rank condition (R) is satisfied.
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Theorem 18: (Arrow and Enthoven)

Let function f and gi, i = 1, 2, . . . ,m, be
quasi-convex functions. Then conditions
(KKT) are sufficient for condition (M),
if any one of the following conditions is
satisfied:

(a) fxi(x
∗) > 0 for at least one variable

xi.

(b) fxi(x
∗) < 0 for at least one relevant

variable xi, where xi is said to be a rel-
evant variable, if there exists a feasible
x ∈ Rn

+ such that xi > 0.

(c) ∇f (x∗) 6= 0 and f is twice continu-
ously differentiable in a neighborhood.

(d) Function f is convex.
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4. Differential Equations

Definition 1:

A relationship

F (x, y, y′, y′′, . . . , y(n)) = 0

between the independent variable x, a func-
tion y(x) and its derivatives is called an or-
dinary differential equation.

The order of the differential equation is de-
termined by the highest order of the deriva-
tives appearing in the differential equation.
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Definition 2:

A function y(x) for which relationship

F (x, y, y′, y′′, . . . , y(n)) = 0

holds for all values x ∈ Dy, is called a so-
lution of the differential equation.

The set

S = {y(x) | F (x, y, y′, y′′, . . . , y(n)) = 0

for all x ∈ Dy}
is called the set of solutions or general
solution of the differential equation.
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Definition 3:

A point a represents an equilibrium or
stationary state for equation (7) if

F (a) = 0.

Theorem 1:

The homogeneous differential equation (9)
has the general solution

xH(t) = C1 x1(t)+C2 x2(t); C1, C2 ∈ R,

where x1(t), x2(t) are two solutions that
are not proportional (i.e. linearly inde-
pendent).

The non-homogeneous equation (8) has the
general solution

x(t) = xH(t) + xN (t)

= C1 x1(t) + C2 x2(t) + xN (t),

where xN (t) is any particular solution of
the non-homogeneous equation.
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Table: Settings for special forcing terms

Forcing term q(t) Setting xN(t)

p · est (a) A · est

if s is not a root of the characteristic
equation

(b) A · tk · est

if s is a root of multiplicity k of the
characteristic equation

pnt
n + pn−1t

n−1 + . . . + p1t + p0 (a) Ant
n + An−1t

n−1 + . . . + A1t + A0

if b 6= 0 in the homogeneous equation

(b) tk(Ant
n + An−1t

n−1 + . . . + A1t + A0)
with k = 1 if b = 0 (x does not occur)
and k = 2 if a = b = 0

(x, ẋ do not occur)
in the homogeneous equation,

p · cos st + r · sin st (a) A cos st + B sin st

(p or r can be equal to zero) if si is not a root of the characteristic
equation

(b) tk · (A · cos st + B · sin st)
if si is a root of multiplicity k(≤ 2)
of the characteristic equation
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Definition 4:

Equation (11) is called globally asymp-
totically stable if every solution

xH(t) = C1 x1(t) + C2 x2(t)

of the associated homogeneous equation tends
to 0 as t →∞ for all values of C1 and C2.

Theorem 2:

Equation

ẍ + aẋ + bx = q(t)

is globally asymptotically stable if and only
if a > 0 and b > 0.
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Theorem 3:

Suppose that |A| 6= 0. For the linear sys-
tem

ẋ = a11 x + a12 y + q1

ẏ = a21 x + a22 y + q2,

the equilibrium point (x∗, y∗) is globally
asymptotically stable if and only if

tr(A) = a11 + a22 < 0

and

|A| =

∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ > 0,

where tr(A) is the trace of A

(or equivalently, if and only if both eigen-
values of A have negative real parts).
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Theorem 4: (Lyapunov)

Let (a, b) be an equilibrium point of system
(17) and

A = J(a, b) =

(
fx(a, b) fy(a, b)
gx(a, b) gy(a, b)

)
.

If

tr(A) = fx(a, b) + gy(a, b) < 0

and

|A| = fx(a, b)·gy(a, b)−gx(a, b)·fy(a, b) > 0

(i.e. both eigenvalues of A have negative
real parts), then (a, b) is locally asymp-
totically stable.
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Theorem 5: (Olech)

Let (a, b) be an equilibrium point of sys-
tem (17) and A(x, y) be the Jacobian ma-
trix at point (x, y) ∈ R2. Assume that the
following three conditions are satisfied:

(a) tr(A(x, y)) = fx(x, y) + gy(x, y) < 0

for all (x, y) ∈ R2;

(b) det A(x, y) = fx(x, y)·gy(x, y)−fy(x, y)·
gx(x, y) > 0 for all (x, y) ∈ R2;

(c) fx(x, y)·gy(x, y) 6= 0 for all (x, y) ∈ R2

or
fy(x, y) · gx(x, y) 6= 0 for all (x, y) ∈ R2.

Then (a, b) is globally asymptotically sta-
ble.
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Theorem 6:

Let (a, b) be an equilibrium point of system
(17) and

A = J(a, b) =

(
fx(a, b) fy(a, b)
gx(a, b) gy(a, b)

)
.

Moreover, let det A < 0
(or equivalently, the eigenvectors of A are
nonzero real numbers of opposite signs).

Then:
For any given start point t0, there exist
exactly two solution paths

(x1(t), y1(t)) and (x2(t), y2(t))

defined on [t0,∞) that converge towards
(a, b) from opposite directions in the phase
plane

(i.e. (a, b) is a local saddle point).
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4.3 Linear differential equations of
order n

Definition 5:
The solutions

x1(t), x2(t), . . . , xm(t), m ≤ n,

of a linear homogeneous differential equation
of order n are said to be linearly indepen-
dent if

C1 x1(t) + C2 x2(t) + . . . + Cm xm(t) = 0

for all t ∈ Dx is only possible for

C1 = C2 = . . . = Cm = 0.

Otherwise, the solutions are said to be lin-
early dependent.
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Theorem 7: The solutions

x1(t), x2(t), . . . , xm(t), m ≤ n,

of a linear homogeneous differential equa-
tion of order n are linearly independent if
and only if

W (t) =

∣∣∣∣∣∣∣∣
x1(t) x2(t) . . . xm(t)
ẋ1(t) ẋ2(t) . . . ẋm(t)

... ... ...

x
(m−1)
1 (t) x

(m−1)
2 (t) . . . x

(m−1)
m (t)

∣∣∣∣∣∣∣∣ 6= 0

for t ∈ Dx.
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Theorem 8: A linear homogeneous dif-
ferential equation of order n has the gen-
eral solution

xH(t) = C1x1(t)+C2x2(t)+ . . .+Cnxn(t),

where x1(t), x2(t), . . . , xn(t) are n linearly
independent solutions and C1, C2, . . . , Cn ∈
R.

The non-homogeneous equation (18) has
the general solution

x(t) = xH(t) + xN (t),

where xN is a particular solution of equa-
tion (18).
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5 CALCULUS OF VARIATIONS AND
CONTROL THEORY

5.1 Calculus of variations

Theorem 1: If

F (t, x, ẋ)

is concave in (x, ẋ), a feasible x∗(t) that
satisfies the Euler equation solves the max-
imization problem (1).
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Theorem 2: (Transversality condi-
tions)

If x∗(t) solves problem (3) with either (a)
or (b) as the transversality condition, then
x∗(t) must satisfy the Euler equation.

With the terminal condition (a), the transver-
sality condition is(

∂F ∗

∂ẋ

)
t=t1

= 0. (4)

With the terminal condition (b), the transver-
sality condition is(

∂F ∗

∂ẋ

)
t=t1

≤ 0( (
∂F ∗

∂ẋ

)
t=t1

= 0 if x∗(t1) > x1

)
(5)
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5.2 Control Theory

5.2.1 Basic Problems

Theorem 3: (Maximum principle)

Suppose that

(x∗(t), u∗(t))

is an optimal pair for problem (9) - (10).

Then there exists a continuous function
p(t) such that, for all t ∈ [t0, t1],

• u = u∗(t) maximizes

H(t, x∗(t), u, p(t)) for u ∈ (−∞,∞) (11)

• ṗ(t) = −Hx(t, x
∗(t), u∗(t), p(t)), p(t1) = 0 (12)
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Theorem 4:

If the condition

H(t, x, u, p(t)) is concave in (x, u)

for each t ∈ [t0, t1] (13)

is added to the conditions of Theorem 3,
then we obtain a sufficient optimality con-
dition, i.e.,
if we find a triple

(x∗(t), u∗(t), p(t))

that satisfies (10) - (13), then

(x∗(t), u∗(t))

is optimal.
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5.2.2 Standard Problems

Theorem 5: (Maximum principle for stan-
dard end constraints)

Suppose that (x∗(t), u∗(t)) is an optimal pair for
problem (16) - (18). Then there exist a continu-
ous function p(t) and a number p0 ∈ {0, 1} such
that for all t ∈ [t0, t1], we have (p0, p(t)) 6= (0, 0)
and, moreover:

• The control u = u∗(t) maximizes the Hamilto-
nian H(t, x∗(t), u, p(t)) w. r. t. u ∈ U , i.e.,
H(t, x∗(t), u, p(t)) ≤ H(t, x∗(t), u∗(t), p(t))
for all u ∈ U ;

• ṗ(t) = −Hx(t, x
∗(t), u∗(t), p(t)); (19)

• Corresponding to each of the terminal condi-
tions (b) and (c) in (18), there is a transver-
sality condition on p(t1):

(b’) p(t1) ≥ 0 (with p(t1) = 0 if x∗(t1) > x1);

(c’) p(t1) = 0;

(In case (a) there is no condition on p(t1)).
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Theorem 6: (Mangasarian)

Suppose that

(x∗(t), u∗(t))

is a feasible pair with corresponding costate
variable p(t) such that conditions (I) - (III)
in Theorem 5 are satisfied with p0 = 1.
Suppose further that

• the control region U is convex and that

•H(t, x, u, p(t)) is concave in (x, u) for
every t ∈ [t0, t1].

Then
(x∗(t), u∗(t))

is an optimal pair.
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5.2.3 Current Value Formulations

Theorem 7: (Maximum principle;
current value formulation)

Suppose that a feasible pair

(x∗(t), u∗(t))

solves problem (20) a let Hc be the cur-
rent value Hamiltonian. Then there ex-
ist a continuous function λ(t) and a num-
ber λ0 (either 0 or 1) such that for all
t ∈ [t0, t1], we have (λ0, λ(t)) 6= (0, 0) and:

(I) u = u∗(t) maximizes Hc(t, x∗(t), u, λ(t))
for u ∈ U ;

(II) λ̇(t) = −rλ(t) = −∂Hc(t,x∗(t),u∗(t),λ(t))
∂x ;

(III) The transversality conditions are:

(a’) no condition on λ(t1);

(b’) λ(t1) ≥ 0
(λ(t1) = 0 if x∗(t1) > x1);

(c’) λ(t1) = 0.
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5.2.4 Scrap Values

Theorem 8: (Sufficient conditions with
scrap value)

Suppose that (x∗(t), u∗(t)) is a feasible pair
for the scrap-value problem (21) and that
there exists a continuous function p(t) such
that for all t ∈ [t0, t1], we have:

• The control u = u∗(t) maximizes the
Hamiltonian H(t, x∗(t), u, p(t)) with
respect to u ∈ U ;

• ṗ(t) = −Hx(t, x∗(t), u∗(t), p(t));

p(t1) = S′(x∗(t1))

•H(t, x, u, p(t)) is concave in (x, u) and
S(x) is concave.

Then
(x∗(t), u∗(t))

solves the problem.

51



Current value formulation
(with scrap value)

Theorem 9: (Current value maximum prin-
ciple with scrap value)

Suppose that a feasible pair (x∗(t), u∗(t)) solves prob-
lem (22). Then there exist a continuous function
λ(t) and a number λ0 ∈ {0, 1} such that for all
t ∈ [t0, t1], we have (λ0, λ(t)) 6= (0, 0) and:

• The control u = u∗(t) maximizes

Hc(t, x∗(t), u, λ(t))

with respect to u ∈ U ;

• λ̇(t)− rλ(t) = −∂Hc(t, x∗(t), u∗(t), λ(t))

∂x
;

• The transversality conditions are:

(a’) no condition on λ(t1);

(b’) λ(t1) ≥ λ0 ·
∂S(x∗(t1))

∂x

(with equality if x∗(t1) > x1);

(c’) λ(t1) = λ0 ·
∂S(x∗(t1))

∂x
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Theorem 10:

The conditions in Theorem 9 with λ0 = 1
are sufficient if

• U is convex,

•Hc(t, x, u, λ(t)) is concave in (x, u) and

• S(x) is concave in x.
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