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MULTIPLE CHOICE QUESTIONS

Question 1: Given are the intervals I1 = [2, 5], I2 = [1, 3], I3 = (4, 7). Which is the interval
I = (I1 \ I2) ∪ I3 ?

Answer 1: I = [3, 7].

Answer 2: I = [2, 7].

Answer 3: I = (3, 7).

Answer 4: I = [2, 3] ∪ (4, 7).

Answer 5: I = [1, 2] ∪ (4, 7).

Question 2: What is the result of simplifying the term

T = 3[(a− b)(a+ b) + b2]2 + [(a− b)2 + 2ab]2 ?

Answer 1: T = (a+ b)4.

Answer 2: T = 4a4 + 2a2b2 + b4.

Answer 3: T = a2(a2 + 1) + b2(b2 + 1).

Answer 4: T = 2(2a2 + a2b2 + b4).

Answer 5: T = a4 + b4.
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Question 3: Which of the simplifications of the term T = a
a2 − 2ab+ b2

− a
a2 − b2

+ 1
a+ b

is

correct?

Answer 1: T = a+ b
(a− b)2

.

Answer 2: T = 1
a+ b

.

Answer 3: T =
(a+ b)2

(a− b)2
.

Answer 4: T = a2 + b2

(a− b)2(a+ b)
.

Answer 5: T = a+ b
a2 − b2

.

Question 4: Which real numbers are solutions of the equation 2 lg(x− 1) = lg(x+ 5) ?

Answer 1: There is no real solution of the equation.

Answer 2: The only real solution is x = 4.

Answer 3: The equation has exactly the two solutions x1 = 4 and x2 = −1.

Answer 4: The only real solution is x = −1.

Answer 5: The equation has more than two real solutions.

Question 5: Which real numbers are solutions of the equation

(
4

5

)x−7
=

(
25

16

)x+3

?

Answer 1: There exists only one real solution x =
1

3
.

Answer 2: There exists only one real solution x = −10.

Answer 3: There exist exactly two real solutions.

Answer 4: There exist more than two real solutions.

Answer 5: There exists no real solution.

Question 6: Which of the following equalities is not correct?

Answer 1: (a2 − b2) = (a− b)(a+ b).

Answer 2: ex+y = ex · ey.
Answer 3: log2 x

y = y log2 x.

Answer 4: ln(u+ v) = lnu+ ln v.

Answer 5: (
√
x−√y)2 = x+ y − 2

√
xy.
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Question 7: Which real numbers satisfy the equation 3 + 2e−2x − 5e−x = 0 ?

Answer 1: The only solutions of the equation are x1 = 0 and x2 = − ln 3
2 = ln 2

3.

Answer 2: The only solution of the equation is x = 0.

Answer 3: There exists a real double solution x1 = x2 = 0.

Answer 4: The equation has no real solution.

Answer 5: The equation has the two solutions x1 = 0 and x2 = 1.

Question 8: It is known that a car consumes 6.2 l gas per 100 km. Which of the following equal-
ities is not correct if x denotes how many km the car can go if the tank holds 40 l ?

Answer 1: 6.2 : 40 = 100 : x.

Answer 2: 6.2 : x = 100 : 40.

Answer 3: 6.2 · x = 100 · 40.

Answer 4: 6.2 : 100 = 40 : x.

Answer 5: x =
4, 000

6.2
.

Question 9: What can be said about the set L of real numbers satisfying the inequality
−4 > 2x− 2x2 ?

Answer 1: L = (−∞,−1) ∪ (2,∞).

Answer 2: L = (−1, 2).

Answer 3: L = R.

Answer 4: L = (−∞,−1] ∪ [2,∞).

Answer 5: L = ∅.

Question 10: What can be said about the (minimal) number of cases to be considered and the

set L of real numbers satisfying the inequality 6
2x+ 4 ≤ |x| ?

Answer 1: We have to consider only one case and L = [1,∞).

Answer 2: We have to consider two cases and L = (1,∞).

Answer 3: We have to consider three cases and L = (−∞,−2) ∪ [1,∞).

Answer 4: We have to consider four cases and L = ∅.
Answer 5: We have to consider four cases and L = (−∞,−2).
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Question 11: Which of the following equalities is not correct?

Answer 1: cosα = cos2 α2 − sin2 α
2 .

Answer 2: tan 2α = 1
tanα− cotα .

Answer 3: sin 2α = 2 tanα
1 + tan2 α

.

Answer 4: cos2 α = cot2 α
1 + cot2 α

.

Answer 5: sin(α+ t) = sinα cos t+ cosα sin t.

Question 12: Which angles in the interval [0, 360o] are a solution of the equation
2 sinx+ cosx = 2 (angles rounded to two decimal places)?

Answer 1: There are exactly the three solutions x1 = 36.87o, x2 = 90o, x3 = 143.13o.

Answer 2: There is exactly one solution x = 90o.

Answer 3: There are exactly two solutions x1 = 90o and x2 = 143.13o.

Answer 4: There are exactly two solutions x1 = 36.87o and x2 = 90o.

Answer 5: There are the three solutions x1 = 36.87o, x2 = 90o, x3 = 143.13o, but there exist further
solutions.

Question 13: What can be said about the curve of second order 4x2 + y2 − 8x+ 4y = 8 ?

Answer 1: It is a circle with the radius r = 4.

Answer 2: It is an ellipse with the half axes a = 2 and b = 4.

Answer 3: It is an ellipse with the half axes a = 4 and b = 16.

Answer 4: It is a hyperbola with the half axes a = 2 and b = 4.

Answer 5: It is a hyperbola with the half axes a = 4 and b = 16.

Question 14: Given is a sequence with the terms a1 = 1, a2 = 1, a3 = 2, a4 = 3, a5 = 5, a6 = 8.
What are the terms a7 and a8 ?

Answer 1: a7 = 11, a8 = 15.

Answer 2: a7 = 12, a8 = 17.

Answer 3: a7 = 12, a8 = 18.

Answer 4: a7 = 13, a8 = 19.

Answer 5: a7 = 13, a8 = 21.
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Question 15: A company starts with the production of 10,000 trucks in 2011. If the production
increases every year by 10 %, what is the production in 2020 and what will be the first year so that
in total at least 80,000 trucks are produced?

Answer 1: The production in 2020 is 20,000 trucks and in 2017, the total production exceeds 80,000
for the first time.

Answer 2: The production in 2020 is 21,435 trucks and in 2017, the total production exceeds 80,000
for the first time.

Answer 3: The production in 2020 is 23,579 trucks and in 2017, the total production exceeds 80,000
for the first time.

Answer 4: The production in 2020 is 25,937 trucks and in 2016, the total production exceeds 80,000
for the first time.

Answer 5: The production in 2020 is 28,531 trucks and in 2015, the total production exceeds 80,000
for the first time.

Question 16: What can be said about function f : Df → Rf with f(x) = sinx− 1

2
sin 2x ?

Answer 1: Function f has only the zeroes xk = 2kπ, k ∈ Z, is odd and periodic with a period of π.

Answer 2: Function f has only the zeroes xk = kπ, k ∈ Z, is odd and periodic with a period of 2π.

Answer 3: Function f has only the zeroes xk = 2kπ, k ∈ Z, is even and periodic with a period of
2π.

Answer 4: Function f has only the zeroes xk = kπ, k ∈ Z, is even and periodic with a period of π.

Answer 5: Function f has only the zeroes xk = 2kπ, k ∈ Z, is neither even nor odd and also not
periodic.

Question 17: Given are the functions f : [0, 1] → Rf with f(x) = 5x − 1 and g : [−1, 1] → Rg
with g(x) =

√
1− x2. What can be said about the compositions f ◦ g and g ◦ f ?

Answer 1: Both compositions f ◦ g and g ◦ f do not exist.

Answer 2: The composition (f ◦ g)(x) = 5
√

1− x2 − 1 exists, while the composition g ◦ f does not
exist.

Answer 3: The composition f ◦ g does not exist, but the composition (g ◦ f)(x) =
√

1− (5x− 1)2

exists.

Answer 4: The composition f ◦ g does not exist, but the composition (g ◦ f)(x) = 2− 4x exists.

Answer 5: Both compositions f ◦ g and g ◦ f exist.
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Question 18: Given is the function f : Df → Rf with f(x) =
√
x+ 1 − 2. What is the domain

Df , the inverse function f−1 of function f and the domain Df−1 of the inverse function?

Answer 1: Df = [−1,∞), f−1(x) = (x+ 2)2 − 1, Df−1 = [−2,∞) .

Answer 2: Df = [0,∞), f−1(x) = (x+ 2)2 − 1, Df−1 = R.

Answer 3: Df = [−1,∞), f−1(x) = (x+ 1)2 − 2, Df−1 = R.

Answer 4: Df = [−1,∞), f−1(x) =
√
x+ 2− 1, Df−1 = R.

Answer 5: Df = [0,∞), f−1(x) = (x+ 1)2 − 2, Df−1 = R.

Question 19: What can be said about function f : Df → Rf with f(x) =
cos

x

3
(ex −

√
e)(x+ 2)

?

Answer 1: Function f has the zeroes x =
π

2
± kπ, k ∈ Z, and the only pole at x = −2.

Answer 2: Function f has the zeroes x =
3

2
π ± kπ, k ∈ Z, and the only two poles at x1 =

1

2
and

x2 = −2.

Answer 3: Function f has the zeroes x =
3

2
π ± 3kπ, k ∈ Z, and the only two poles at x1 =

1

2
and

x2 = −2.

Answer 4: Function f has the zeroes x =
π

2
± 3kπ, k ∈ Z, and the only two poles at x1 = 1 and

x2 = −2.

Answer 5: Function f has the zeroes x =
3

2
π ± 3kπ, k ∈ Z, and the only two poles at x1 = 1 and

x2 = −2.

Question 20: Given is the function f : Df → Rf with f(x) =
2x− 50√
x− 5

and let L = lim
x→25

f(x).

What can be said about continuity / discontinuity of the function at the point x = 25 and the limit
L ?

Answer 1: Function f is continuous at x = 25 and L = 0.

Answer 2: Function f is discontinuous at x = 25, and the limit L does not exist since the right-
and left-side limits as x tends to 25 do not coincide.

Answer 3: Function f has a pole at x = 25 and L =∞.

Answer 4: Function f has a gap at x = 25 and L = 20.

Answer 5: Function f has a jump at x = 25 and L does not exist.
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Question 21: What can be said about function f : Df → Rf with f(x) = 1− 2ex

ex + 1
?

Answer 1: Function f has no zero and no extreme point, but an inflection point at x = 0.

Answer 2: Function f has no zero and no inflection point, but a local extreme point at x = 0.

Answer 3: Function f has a zero and a local extreme point at x = 0, but no inflection point at
x = 0.

Answer 4: Function f has a zero and an inflection point at x = 0, but it has no local extreme point
at all.

Answer 5: Function f has a zero, an extreme point and an inflection point at x = 0.

Question 22: What can be said about monotonicity as well as convexity / concavity of function

f : Df → Rf with f(x) = 3x− 3
2x3

?

Answer 1: Function f is strictly increasing and strictly convex on the domain Df .

Answer 2: Function f is strictly decreasing and strictly concave on the domain Df .

Answer 3: Function f is strictly increasing on

(
−∞, 3

2

]
as well as strictly decreasing on

[
3

2
,∞
)

and strictly convex on (−∞, 2] as well as strictly concave on [2,∞).

Answer 4: Function f is strictly increasing on (−∞, 0) and strictly decreasing on (0,∞) as well as
strictly convex on (−∞, 0) and strictly concave on (0,∞)

Answer 5: Function f is strictly increasing on (−∞, 0) as well as on

(
0,

3

2

]
and strictly decreasing

on

[
3

2
,∞
)

as well as strictly convex on (−∞, 0), strictly concave on (0, 2] as well as strictly convex

on [2,∞).

Question 23: What can be said about the limits

L1 = lim
x→0

e3x + e−3x − 2

5x2
and L2 = lim

x→0

e3x + e−3x − 2

5x2 − 2x
?

Answer 1: L1 = 1.8 and L2 = 0.

Answer 2: L1 = L2 = 0.

Answer 3: L1 = 0 and L2 = −∞.

Answer 4: L1 =∞ and L2 = −∞.

Answer 5: L1 = L2 =∞.
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Question 24: How can the integral
∫

(x2 + x) · e
x
2 dx be found?

Answer 1: Apply integration by substitution with t = x2 + x.

Answer 2: Apply integration by substitution with t = e
x
2 .

Answer 3: Apply once integration by parts, differentiating the term e
x
2 and integrating the term

x2 + x.

Answer 4: Apply twice integration by parts, differentiating each time the term e
x
2 .

Answer 5: Apply twice integration by parts, integrating each time the term e
x
2 .

Question 25: Which of the following computations of the area A enclosed by the function f :
Df → Rf with f(x) = sin 2x and the x-axis between x1 = 0 and x2 = 2π is correct?

Answer 1: A = 4
π/2∫
0

sin 2xdx.

Answer 2: A =
2π∫
0

sin 2xdx.

Answer 3: A =
∣∣∣ 2π∫
0

sin 2xdx
∣∣∣.

Answer 4: A =
π∫
0

sin 2xdx+
2π∫
π

sin 2xdx.

Answer 5: A =
∣∣∣ π∫
0

sin 2xdx
∣∣∣+
∣∣∣ 2π∫
π

sin 2xdx
∣∣∣.

Question 26: Which of the following answers is correct for the vectors

a =

 1
−1
2

 , b =

 −1
2
0

 , c =

 −1
4
−2

 ?

Answer 1: The vectors a and c are orthogonal.

Answer 2: We have bT · c = 7.

Answer 3: We have |a| = 4.

Answer 4: We have 2a + 3b = c.

Answer 5: Vector a + b is orthogonal to vector c.
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Question 27: How often does one need to throw a dice so that with probability P = 0.9, at least
once the number 1 appears?

Answer 1: One has to throw the dice no more than 6 times.

Answer 2: One has to throw the dice 9 times.

Answer 3: One has to throw the dice less than 12 times.

Answer 4: One has to throw the dice 13 times.

Answer 5: One has to throw the dice at least 18 times.

Question 28: In an urn, there are 16 balls, each of them containing one of the numbers 1, 2,
. . . , 16. If one notices 5 different numbers and then draws 5 balls from the urn, how large is the
probability P1 that exactly 3 of the noticed numbers are drawn and how large is the probability P2

that at most two of the noticed numbers are drawn (probabilities rounded to two decimal places)?

Answer 1: P1 = 0.13 and P2 = 0.86.

Answer 2: P1 = 0.38 and P2 = 0.98.

Answer 3: P1 = 0.01 and P2 = 0.48.

Answer 4: P1 = 0.48 and P2 = 0.99.

Answer 5: P1 = 0.11 and P2 = 0.38.

Question 29: Let X be a discrete random variable with the probabilities

P (X = 1) = 0.12, P (X = 2) = 0.25, P (X = 3) = 0.45, P (X = 4) = 0.15, P (X = 5) = 0.03.

How large are the probabilities P1 = P (X < 4), P2 = P (X ≥ 3), P3 = P (2 < X ≤ 4) ?

Answer 1: P1 = 0.98, P2 = 0.63, P3 = 0.6.

Answer 2: P1 = 0.82, P2 = 0.18, P3 = 0.85.

Answer 3: P1 = 0.82, P2 = 0.18, P3 = 0.45.

Answer 4: P1 = 0.82, P2 = 0.63, P3 = 0.6.

Answer 5: P1 = 0.98, P2 = 0.63, P3 = 0.7.

Question 30: How can the probability that an N(µ, σ2) = N(50, 4)-distributed random variable
is in the interval [42, 62] be calculated using the distribution function Φ of the standard normal
distribution?

Answer 1: One has to calculate Φ(62)− Φ(42).

Answer 2: One has to calculate Φ(62) + Φ(42)− 1.

Answer 3: One has to calculate Φ(6) + Φ(4)− 1.

Answer 4: One has to calculate Φ(3) + Φ(2)− 1.

Answer 5: One has to calculate Φ(6) + 1− Φ(4).
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